1/*
2*******************************************************************************
3*
4*   Copyright (C) 2000-2012, International Business Machines
5*   Corporation and others.  All Rights Reserved.
6*
7*******************************************************************************
8*
9* File reslist.c
10*
11* Modification History:
12*
13*   Date        Name        Description
14*   02/21/00    weiv        Creation.
15*******************************************************************************
16*/
17
18#include <assert.h>
19#include <stdio.h>
20#include "reslist.h"
21#include "unewdata.h"
22#include "unicode/ures.h"
23#include "unicode/putil.h"
24#include "errmsg.h"
25
26#include "uarrsort.h"
27#include "uelement.h"
28#include "uinvchar.h"
29#include "ustr_imp.h"
30#include "unicode/utf16.h"
31/*
32 * Align binary data at a 16-byte offset from the start of the resource bundle,
33 * to be safe for any data type it may contain.
34 */
35#define BIN_ALIGNMENT 16
36
37static UBool gIncludeCopyright = FALSE;
38static UBool gUsePoolBundle = FALSE;
39static int32_t gFormatVersion = 2;
40
41static UChar gEmptyString = 0;
42
43/* How do we store string values? */
44enum {
45    STRINGS_UTF16_V1,   /* formatVersion 1: int length + UChars + NUL + padding to 4 bytes */
46    STRINGS_UTF16_V2    /* formatVersion 2: optional length in 1..3 UChars + UChars + NUL */
47};
48
49enum {
50    MAX_IMPLICIT_STRING_LENGTH = 40  /* do not store the length explicitly for such strings */
51};
52
53/*
54 * res_none() returns the address of kNoResource,
55 * for use in non-error cases when no resource is to be added to the bundle.
56 * (NULL is used in error cases.)
57 */
58static const struct SResource kNoResource = { URES_NONE };
59
60static UDataInfo dataInfo= {
61    sizeof(UDataInfo),
62    0,
63
64    U_IS_BIG_ENDIAN,
65    U_CHARSET_FAMILY,
66    sizeof(UChar),
67    0,
68
69    {0x52, 0x65, 0x73, 0x42},     /* dataFormat="ResB" */
70    {1, 3, 0, 0},                 /* formatVersion */
71    {1, 4, 0, 0}                  /* dataVersion take a look at version inside parsed resb*/
72};
73
74static const UVersionInfo gFormatVersions[3] = {  /* indexed by a major-formatVersion integer */
75    { 0, 0, 0, 0 },
76    { 1, 3, 0, 0 },
77    { 2, 0, 0, 0 }
78};
79
80static uint8_t calcPadding(uint32_t size) {
81    /* returns space we need to pad */
82    return (uint8_t) ((size % sizeof(uint32_t)) ? (sizeof(uint32_t) - (size % sizeof(uint32_t))) : 0);
83
84}
85
86void setIncludeCopyright(UBool val){
87    gIncludeCopyright=val;
88}
89
90UBool getIncludeCopyright(void){
91    return gIncludeCopyright;
92}
93
94void setFormatVersion(int32_t formatVersion) {
95    gFormatVersion = formatVersion;
96}
97
98void setUsePoolBundle(UBool use) {
99    gUsePoolBundle = use;
100}
101
102static void
103bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status);
104
105/* Writing Functions */
106
107/*
108 * type_write16() functions write resource values into f16BitUnits
109 * and determine the resource item word, if possible.
110 */
111static void
112res_write16(struct SRBRoot *bundle, struct SResource *res,
113            UErrorCode *status);
114
115/*
116 * type_preWrite() functions calculate ("preflight") and advance the *byteOffset
117 * by the size of their data in the binary file and
118 * determine the resource item word.
119 * Most type_preWrite() functions may add any number of bytes, but res_preWrite()
120 * will always pad it to a multiple of 4.
121 * The resource item type may be a related subtype of the fType.
122 *
123 * The type_preWrite() and type_write() functions start and end at the same
124 * byteOffset values.
125 * Prewriting allows bundle_write() to determine the root resource item word,
126 * before actually writing the bundle contents to the file,
127 * which is necessary because the root item is stored at the beginning.
128 */
129static void
130res_preWrite(uint32_t *byteOffset,
131             struct SRBRoot *bundle, struct SResource *res,
132             UErrorCode *status);
133
134/*
135 * type_write() functions write their data to mem and update the byteOffset
136 * in parallel.
137 * (A kingdom for C++ and polymorphism...)
138 */
139static void
140res_write(UNewDataMemory *mem, uint32_t *byteOffset,
141          struct SRBRoot *bundle, struct SResource *res,
142          UErrorCode *status);
143
144static uint16_t *
145reserve16BitUnits(struct SRBRoot *bundle, int32_t length, UErrorCode *status) {
146    if (U_FAILURE(*status)) {
147        return NULL;
148    }
149    if ((bundle->f16BitUnitsLength + length) > bundle->f16BitUnitsCapacity) {
150        uint16_t *newUnits;
151        int32_t capacity = 2 * bundle->f16BitUnitsCapacity + length + 1024;
152        capacity &= ~1;  /* ensures padding fits if f16BitUnitsLength needs it */
153        newUnits = (uint16_t *)uprv_malloc(capacity * 2);
154        if (newUnits == NULL) {
155            *status = U_MEMORY_ALLOCATION_ERROR;
156            return NULL;
157        }
158        if (bundle->f16BitUnitsLength > 0) {
159            uprv_memcpy(newUnits, bundle->f16BitUnits, bundle->f16BitUnitsLength * 2);
160        } else {
161            newUnits[0] = 0;
162            bundle->f16BitUnitsLength = 1;
163        }
164        uprv_free(bundle->f16BitUnits);
165        bundle->f16BitUnits = newUnits;
166        bundle->f16BitUnitsCapacity = capacity;
167    }
168    return bundle->f16BitUnits + bundle->f16BitUnitsLength;
169}
170
171static int32_t
172makeRes16(uint32_t resWord) {
173    uint32_t type, offset;
174    if (resWord == 0) {
175        return 0;  /* empty string */
176    }
177    type = RES_GET_TYPE(resWord);
178    offset = RES_GET_OFFSET(resWord);
179    if (type == URES_STRING_V2 && offset <= 0xffff) {
180        return (int32_t)offset;
181    }
182    return -1;
183}
184
185static int32_t
186mapKey(struct SRBRoot *bundle, int32_t oldpos) {
187    const KeyMapEntry *map = bundle->fKeyMap;
188    int32_t i, start, limit;
189
190    /* do a binary search for the old, pre-bundle_compactKeys() key offset */
191    start = bundle->fPoolBundleKeysCount;
192    limit = start + bundle->fKeysCount;
193    while (start < limit - 1) {
194        i = (start + limit) / 2;
195        if (oldpos < map[i].oldpos) {
196            limit = i;
197        } else {
198            start = i;
199        }
200    }
201    assert(oldpos == map[start].oldpos);
202    return map[start].newpos;
203}
204
205static uint16_t
206makeKey16(struct SRBRoot *bundle, int32_t key) {
207    if (key >= 0) {
208        return (uint16_t)key;
209    } else {
210        return (uint16_t)(key + bundle->fLocalKeyLimit);  /* offset in the pool bundle */
211    }
212}
213
214/*
215 * Only called for UTF-16 v1 strings and duplicate UTF-16 v2 strings.
216 * For unique UTF-16 v2 strings, res_write16() sees fRes != RES_BOGUS
217 * and exits early.
218 */
219static void
220string_write16(struct SRBRoot *bundle, struct SResource *res, UErrorCode *status) {
221    struct SResource *same;
222    if ((same = res->u.fString.fSame) != NULL) {
223        /* This is a duplicate. */
224        if (same->fRes == RES_BOGUS) {
225            /* The original has not been visited yet. */
226            string_write16(bundle, same, status);
227        }
228        res->fRes = same->fRes;
229        res->fWritten = same->fWritten;
230    }
231}
232
233static void
234array_write16(struct SRBRoot *bundle, struct SResource *res,
235              UErrorCode *status) {
236    struct SResource *current;
237    int32_t res16 = 0;
238
239    if (U_FAILURE(*status)) {
240        return;
241    }
242    if (res->u.fArray.fCount == 0 && gFormatVersion > 1) {
243        res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ARRAY);
244        res->fWritten = TRUE;
245        return;
246    }
247    for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
248        res_write16(bundle, current, status);
249        res16 |= makeRes16(current->fRes);
250    }
251    if (U_SUCCESS(*status) && res->u.fArray.fCount <= 0xffff && res16 >= 0 && gFormatVersion > 1) {
252        uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fArray.fCount, status);
253        if (U_SUCCESS(*status)) {
254            res->fRes = URES_MAKE_RESOURCE(URES_ARRAY16, bundle->f16BitUnitsLength);
255            *p16++ = (uint16_t)res->u.fArray.fCount;
256            for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
257                *p16++ = (uint16_t)makeRes16(current->fRes);
258            }
259            bundle->f16BitUnitsLength += 1 + res->u.fArray.fCount;
260            res->fWritten = TRUE;
261        }
262    }
263}
264
265static void
266table_write16(struct SRBRoot *bundle, struct SResource *res,
267              UErrorCode *status) {
268    struct SResource *current;
269    int32_t maxKey = 0, maxPoolKey = 0x80000000;
270    int32_t res16 = 0;
271    UBool hasLocalKeys = FALSE, hasPoolKeys = FALSE;
272
273    if (U_FAILURE(*status)) {
274        return;
275    }
276    if (res->u.fTable.fCount == 0 && gFormatVersion > 1) {
277        res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_TABLE);
278        res->fWritten = TRUE;
279        return;
280    }
281    /* Find the smallest table type that fits the data. */
282    for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
283        int32_t key;
284        res_write16(bundle, current, status);
285        if (bundle->fKeyMap == NULL) {
286            key = current->fKey;
287        } else {
288            key = current->fKey = mapKey(bundle, current->fKey);
289        }
290        if (key >= 0) {
291            hasLocalKeys = TRUE;
292            if (key > maxKey) {
293                maxKey = key;
294            }
295        } else {
296            hasPoolKeys = TRUE;
297            if (key > maxPoolKey) {
298                maxPoolKey = key;
299            }
300        }
301        res16 |= makeRes16(current->fRes);
302    }
303    if (U_FAILURE(*status)) {
304        return;
305    }
306    if(res->u.fTable.fCount > (uint32_t)bundle->fMaxTableLength) {
307        bundle->fMaxTableLength = res->u.fTable.fCount;
308    }
309    maxPoolKey &= 0x7fffffff;
310    if (res->u.fTable.fCount <= 0xffff &&
311        (!hasLocalKeys || maxKey < bundle->fLocalKeyLimit) &&
312        (!hasPoolKeys || maxPoolKey < (0x10000 - bundle->fLocalKeyLimit))
313    ) {
314        if (res16 >= 0 && gFormatVersion > 1) {
315            uint16_t *p16 = reserve16BitUnits(bundle, 1 + res->u.fTable.fCount * 2, status);
316            if (U_SUCCESS(*status)) {
317                /* 16-bit count, key offsets and values */
318                res->fRes = URES_MAKE_RESOURCE(URES_TABLE16, bundle->f16BitUnitsLength);
319                *p16++ = (uint16_t)res->u.fTable.fCount;
320                for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
321                    *p16++ = makeKey16(bundle, current->fKey);
322                }
323                for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
324                    *p16++ = (uint16_t)makeRes16(current->fRes);
325                }
326                bundle->f16BitUnitsLength += 1 + res->u.fTable.fCount * 2;
327                res->fWritten = TRUE;
328            }
329        } else {
330            /* 16-bit count, 16-bit key offsets, 32-bit values */
331            res->u.fTable.fType = URES_TABLE;
332        }
333    } else {
334        /* 32-bit count, key offsets and values */
335        res->u.fTable.fType = URES_TABLE32;
336    }
337}
338
339static void
340res_write16(struct SRBRoot *bundle, struct SResource *res,
341            UErrorCode *status) {
342    if (U_FAILURE(*status) || res == NULL) {
343        return;
344    }
345    if (res->fRes != RES_BOGUS) {
346        /*
347         * The resource item word was already precomputed, which means
348         * no further data needs to be written.
349         * This might be an integer, or an empty or UTF-16 v2 string,
350         * an empty binary, etc.
351         */
352        return;
353    }
354    switch (res->fType) {
355    case URES_STRING:
356        string_write16(bundle, res, status);
357        break;
358    case URES_ARRAY:
359        array_write16(bundle, res, status);
360        break;
361    case URES_TABLE:
362        table_write16(bundle, res, status);
363        break;
364    default:
365        /* Only a few resource types write 16-bit units. */
366        break;
367    }
368}
369
370/*
371 * Only called for UTF-16 v1 strings.
372 * For UTF-16 v2 strings, res_preWrite() sees fRes != RES_BOGUS
373 * and exits early.
374 */
375static void
376string_preWrite(uint32_t *byteOffset,
377                struct SRBRoot *bundle, struct SResource *res,
378                UErrorCode *status) {
379    /* Write the UTF-16 v1 string. */
380    res->fRes = URES_MAKE_RESOURCE(URES_STRING, *byteOffset >> 2);
381    *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR;
382}
383
384static void
385bin_preWrite(uint32_t *byteOffset,
386             struct SRBRoot *bundle, struct SResource *res,
387             UErrorCode *status) {
388    uint32_t pad       = 0;
389    uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength);
390
391    if (dataStart % BIN_ALIGNMENT) {
392        pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT);
393        *byteOffset += pad;  /* pad == 4 or 8 or 12 */
394    }
395    res->fRes = URES_MAKE_RESOURCE(URES_BINARY, *byteOffset >> 2);
396    *byteOffset += 4 + res->u.fBinaryValue.fLength;
397}
398
399static void
400array_preWrite(uint32_t *byteOffset,
401               struct SRBRoot *bundle, struct SResource *res,
402               UErrorCode *status) {
403    struct SResource *current;
404
405    if (U_FAILURE(*status)) {
406        return;
407    }
408    for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
409        res_preWrite(byteOffset, bundle, current, status);
410    }
411    res->fRes = URES_MAKE_RESOURCE(URES_ARRAY, *byteOffset >> 2);
412    *byteOffset += (1 + res->u.fArray.fCount) * 4;
413}
414
415static void
416table_preWrite(uint32_t *byteOffset,
417               struct SRBRoot *bundle, struct SResource *res,
418               UErrorCode *status) {
419    struct SResource *current;
420
421    if (U_FAILURE(*status)) {
422        return;
423    }
424    for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
425        res_preWrite(byteOffset, bundle, current, status);
426    }
427    if (res->u.fTable.fType == URES_TABLE) {
428        /* 16-bit count, 16-bit key offsets, 32-bit values */
429        res->fRes = URES_MAKE_RESOURCE(URES_TABLE, *byteOffset >> 2);
430        *byteOffset += 2 + res->u.fTable.fCount * 6;
431    } else {
432        /* 32-bit count, key offsets and values */
433        res->fRes = URES_MAKE_RESOURCE(URES_TABLE32, *byteOffset >> 2);
434        *byteOffset += 4 + res->u.fTable.fCount * 8;
435    }
436}
437
438static void
439res_preWrite(uint32_t *byteOffset,
440             struct SRBRoot *bundle, struct SResource *res,
441             UErrorCode *status) {
442    if (U_FAILURE(*status) || res == NULL) {
443        return;
444    }
445    if (res->fRes != RES_BOGUS) {
446        /*
447         * The resource item word was already precomputed, which means
448         * no further data needs to be written.
449         * This might be an integer, or an empty or UTF-16 v2 string,
450         * an empty binary, etc.
451         */
452        return;
453    }
454    switch (res->fType) {
455    case URES_STRING:
456        string_preWrite(byteOffset, bundle, res, status);
457        break;
458    case URES_ALIAS:
459        res->fRes = URES_MAKE_RESOURCE(URES_ALIAS, *byteOffset >> 2);
460        *byteOffset += 4 + (res->u.fString.fLength + 1) * U_SIZEOF_UCHAR;
461        break;
462    case URES_INT_VECTOR:
463        if (res->u.fIntVector.fCount == 0 && gFormatVersion > 1) {
464            res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_INT_VECTOR);
465            res->fWritten = TRUE;
466        } else {
467            res->fRes = URES_MAKE_RESOURCE(URES_INT_VECTOR, *byteOffset >> 2);
468            *byteOffset += (1 + res->u.fIntVector.fCount) * 4;
469        }
470        break;
471    case URES_BINARY:
472        bin_preWrite(byteOffset, bundle, res, status);
473        break;
474    case URES_INT:
475        break;
476    case URES_ARRAY:
477        array_preWrite(byteOffset, bundle, res, status);
478        break;
479    case URES_TABLE:
480        table_preWrite(byteOffset, bundle, res, status);
481        break;
482    default:
483        *status = U_INTERNAL_PROGRAM_ERROR;
484        break;
485    }
486    *byteOffset += calcPadding(*byteOffset);
487}
488
489/*
490 * Only called for UTF-16 v1 strings. For UTF-16 v2 strings,
491 * res_write() sees fWritten and exits early.
492 */
493static void string_write(UNewDataMemory *mem, uint32_t *byteOffset,
494                         struct SRBRoot *bundle, struct SResource *res,
495                         UErrorCode *status) {
496    /* Write the UTF-16 v1 string. */
497    int32_t length = res->u.fString.fLength;
498    udata_write32(mem, length);
499    udata_writeUString(mem, res->u.fString.fChars, length + 1);
500    *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR;
501    res->fWritten = TRUE;
502}
503
504static void alias_write(UNewDataMemory *mem, uint32_t *byteOffset,
505                        struct SRBRoot *bundle, struct SResource *res,
506                        UErrorCode *status) {
507    int32_t length = res->u.fString.fLength;
508    udata_write32(mem, length);
509    udata_writeUString(mem, res->u.fString.fChars, length + 1);
510    *byteOffset += 4 + (length + 1) * U_SIZEOF_UCHAR;
511}
512
513static void array_write(UNewDataMemory *mem, uint32_t *byteOffset,
514                        struct SRBRoot *bundle, struct SResource *res,
515                        UErrorCode *status) {
516    uint32_t  i;
517
518    struct SResource *current = NULL;
519
520    if (U_FAILURE(*status)) {
521        return;
522    }
523    for (i = 0, current = res->u.fArray.fFirst; current != NULL; ++i, current = current->fNext) {
524        res_write(mem, byteOffset, bundle, current, status);
525    }
526    assert(i == res->u.fArray.fCount);
527
528    udata_write32(mem, res->u.fArray.fCount);
529    for (current = res->u.fArray.fFirst; current != NULL; current = current->fNext) {
530        udata_write32(mem, current->fRes);
531    }
532    *byteOffset += (1 + res->u.fArray.fCount) * 4;
533}
534
535static void intvector_write(UNewDataMemory *mem, uint32_t *byteOffset,
536                            struct SRBRoot *bundle, struct SResource *res,
537                            UErrorCode *status) {
538    uint32_t i = 0;
539    udata_write32(mem, res->u.fIntVector.fCount);
540    for(i = 0; i<res->u.fIntVector.fCount; i++) {
541      udata_write32(mem, res->u.fIntVector.fArray[i]);
542    }
543    *byteOffset += (1 + res->u.fIntVector.fCount) * 4;
544}
545
546static void bin_write(UNewDataMemory *mem, uint32_t *byteOffset,
547                      struct SRBRoot *bundle, struct SResource *res,
548                      UErrorCode *status) {
549    uint32_t pad       = 0;
550    uint32_t dataStart = *byteOffset + sizeof(res->u.fBinaryValue.fLength);
551
552    if (dataStart % BIN_ALIGNMENT) {
553        pad = (BIN_ALIGNMENT - dataStart % BIN_ALIGNMENT);
554        udata_writePadding(mem, pad);  /* pad == 4 or 8 or 12 */
555        *byteOffset += pad;
556    }
557
558    udata_write32(mem, res->u.fBinaryValue.fLength);
559    if (res->u.fBinaryValue.fLength > 0) {
560        udata_writeBlock(mem, res->u.fBinaryValue.fData, res->u.fBinaryValue.fLength);
561    }
562    *byteOffset += 4 + res->u.fBinaryValue.fLength;
563}
564
565static void table_write(UNewDataMemory *mem, uint32_t *byteOffset,
566                        struct SRBRoot *bundle, struct SResource *res,
567                        UErrorCode *status) {
568    struct SResource *current;
569    uint32_t i;
570
571    if (U_FAILURE(*status)) {
572        return;
573    }
574    for (i = 0, current = res->u.fTable.fFirst; current != NULL; ++i, current = current->fNext) {
575        assert(i < res->u.fTable.fCount);
576        res_write(mem, byteOffset, bundle, current, status);
577    }
578    assert(i == res->u.fTable.fCount);
579
580    if(res->u.fTable.fType == URES_TABLE) {
581        udata_write16(mem, (uint16_t)res->u.fTable.fCount);
582        for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
583            udata_write16(mem, makeKey16(bundle, current->fKey));
584        }
585        *byteOffset += (1 + res->u.fTable.fCount)* 2;
586        if ((res->u.fTable.fCount & 1) == 0) {
587            /* 16-bit count and even number of 16-bit key offsets need padding before 32-bit resource items */
588            udata_writePadding(mem, 2);
589            *byteOffset += 2;
590        }
591    } else /* URES_TABLE32 */ {
592        udata_write32(mem, res->u.fTable.fCount);
593        for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
594            udata_write32(mem, (uint32_t)current->fKey);
595        }
596        *byteOffset += (1 + res->u.fTable.fCount)* 4;
597    }
598    for (current = res->u.fTable.fFirst; current != NULL; current = current->fNext) {
599        udata_write32(mem, current->fRes);
600    }
601    *byteOffset += res->u.fTable.fCount * 4;
602}
603
604void res_write(UNewDataMemory *mem, uint32_t *byteOffset,
605               struct SRBRoot *bundle, struct SResource *res,
606               UErrorCode *status) {
607    uint8_t paddingSize;
608
609    if (U_FAILURE(*status) || res == NULL) {
610        return;
611    }
612    if (res->fWritten) {
613        assert(res->fRes != RES_BOGUS);
614        return;
615    }
616    switch (res->fType) {
617    case URES_STRING:
618        string_write    (mem, byteOffset, bundle, res, status);
619        break;
620    case URES_ALIAS:
621        alias_write     (mem, byteOffset, bundle, res, status);
622        break;
623    case URES_INT_VECTOR:
624        intvector_write (mem, byteOffset, bundle, res, status);
625        break;
626    case URES_BINARY:
627        bin_write       (mem, byteOffset, bundle, res, status);
628        break;
629    case URES_INT:
630        break;  /* fRes was set by int_open() */
631    case URES_ARRAY:
632        array_write     (mem, byteOffset, bundle, res, status);
633        break;
634    case URES_TABLE:
635        table_write     (mem, byteOffset, bundle, res, status);
636        break;
637    default:
638        *status = U_INTERNAL_PROGRAM_ERROR;
639        break;
640    }
641    paddingSize = calcPadding(*byteOffset);
642    if (paddingSize > 0) {
643        udata_writePadding(mem, paddingSize);
644        *byteOffset += paddingSize;
645    }
646    res->fWritten = TRUE;
647}
648
649void bundle_write(struct SRBRoot *bundle,
650                  const char *outputDir, const char *outputPkg,
651                  char *writtenFilename, int writtenFilenameLen,
652                  UErrorCode *status) {
653    UNewDataMemory *mem        = NULL;
654    uint32_t        byteOffset = 0;
655    uint32_t        top, size;
656    char            dataName[1024];
657    int32_t         indexes[URES_INDEX_TOP];
658
659    bundle_compactKeys(bundle, status);
660    /*
661     * Add padding bytes to fKeys so that fKeysTop is 4-aligned.
662     * Safe because the capacity is a multiple of 4.
663     */
664    while (bundle->fKeysTop & 3) {
665        bundle->fKeys[bundle->fKeysTop++] = (char)0xaa;
666    }
667    /*
668     * In URES_TABLE, use all local key offsets that fit into 16 bits,
669     * and use the remaining 16-bit offsets for pool key offsets
670     * if there are any.
671     * If there are no local keys, then use the whole 16-bit space
672     * for pool key offsets.
673     * Note: This cannot be changed without changing the major formatVersion.
674     */
675    if (bundle->fKeysBottom < bundle->fKeysTop) {
676        if (bundle->fKeysTop <= 0x10000) {
677            bundle->fLocalKeyLimit = bundle->fKeysTop;
678        } else {
679            bundle->fLocalKeyLimit = 0x10000;
680        }
681    } else {
682        bundle->fLocalKeyLimit = 0;
683    }
684
685    bundle_compactStrings(bundle, status);
686    res_write16(bundle, bundle->fRoot, status);
687    if (bundle->f16BitUnitsLength & 1) {
688        bundle->f16BitUnits[bundle->f16BitUnitsLength++] = 0xaaaa;  /* pad to multiple of 4 bytes */
689    }
690    /* all keys have been mapped */
691    uprv_free(bundle->fKeyMap);
692    bundle->fKeyMap = NULL;
693
694    byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2;
695    res_preWrite(&byteOffset, bundle, bundle->fRoot, status);
696
697    /* total size including the root item */
698    top = byteOffset;
699
700    if (U_FAILURE(*status)) {
701        return;
702    }
703
704    if (writtenFilename && writtenFilenameLen) {
705        *writtenFilename = 0;
706    }
707
708    if (writtenFilename) {
709       int32_t off = 0, len = 0;
710       if (outputDir) {
711           len = (int32_t)uprv_strlen(outputDir);
712           if (len > writtenFilenameLen) {
713               len = writtenFilenameLen;
714           }
715           uprv_strncpy(writtenFilename, outputDir, len);
716       }
717       if (writtenFilenameLen -= len) {
718           off += len;
719           writtenFilename[off] = U_FILE_SEP_CHAR;
720           if (--writtenFilenameLen) {
721               ++off;
722               if(outputPkg != NULL)
723               {
724                   uprv_strcpy(writtenFilename+off, outputPkg);
725                   off += (int32_t)uprv_strlen(outputPkg);
726                   writtenFilename[off] = '_';
727                   ++off;
728               }
729
730               len = (int32_t)uprv_strlen(bundle->fLocale);
731               if (len > writtenFilenameLen) {
732                   len = writtenFilenameLen;
733               }
734               uprv_strncpy(writtenFilename + off, bundle->fLocale, len);
735               if (writtenFilenameLen -= len) {
736                   off += len;
737                   len = 5;
738                   if (len > writtenFilenameLen) {
739                       len = writtenFilenameLen;
740                   }
741                   uprv_strncpy(writtenFilename +  off, ".res", len);
742               }
743           }
744       }
745    }
746
747    if(outputPkg)
748    {
749        uprv_strcpy(dataName, outputPkg);
750        uprv_strcat(dataName, "_");
751        uprv_strcat(dataName, bundle->fLocale);
752    }
753    else
754    {
755        uprv_strcpy(dataName, bundle->fLocale);
756    }
757
758    uprv_memcpy(dataInfo.formatVersion, gFormatVersions + gFormatVersion, sizeof(UVersionInfo));
759
760    mem = udata_create(outputDir, "res", dataName, &dataInfo, (gIncludeCopyright==TRUE)? U_COPYRIGHT_STRING:NULL, status);
761    if(U_FAILURE(*status)){
762        return;
763    }
764
765    /* write the root item */
766    udata_write32(mem, bundle->fRoot->fRes);
767
768    /*
769     * formatVersion 1.1 (ICU 2.8):
770     * write int32_t indexes[] after root and before the strings
771     * to make it easier to parse resource bundles in icuswap or from Java etc.
772     */
773    uprv_memset(indexes, 0, sizeof(indexes));
774    indexes[URES_INDEX_LENGTH]=             bundle->fIndexLength;
775    indexes[URES_INDEX_KEYS_TOP]=           bundle->fKeysTop>>2;
776    indexes[URES_INDEX_RESOURCES_TOP]=      (int32_t)(top>>2);
777    indexes[URES_INDEX_BUNDLE_TOP]=         indexes[URES_INDEX_RESOURCES_TOP];
778    indexes[URES_INDEX_MAX_TABLE_LENGTH]=   bundle->fMaxTableLength;
779
780    /*
781     * formatVersion 1.2 (ICU 3.6):
782     * write indexes[URES_INDEX_ATTRIBUTES] with URES_ATT_NO_FALLBACK set or not set
783     * the memset() above initialized all indexes[] to 0
784     */
785    if (bundle->noFallback) {
786        indexes[URES_INDEX_ATTRIBUTES]=URES_ATT_NO_FALLBACK;
787    }
788    /*
789     * formatVersion 2.0 (ICU 4.4):
790     * more compact string value storage, optional pool bundle
791     */
792    if (URES_INDEX_16BIT_TOP < bundle->fIndexLength) {
793        indexes[URES_INDEX_16BIT_TOP] = (bundle->fKeysTop>>2) + (bundle->f16BitUnitsLength>>1);
794    }
795    if (URES_INDEX_POOL_CHECKSUM < bundle->fIndexLength) {
796        if (bundle->fIsPoolBundle) {
797            indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_IS_POOL_BUNDLE | URES_ATT_NO_FALLBACK;
798            indexes[URES_INDEX_POOL_CHECKSUM] =
799                (int32_t)computeCRC((char *)(bundle->fKeys + bundle->fKeysBottom),
800                                    (uint32_t)(bundle->fKeysTop - bundle->fKeysBottom),
801                                    0);
802        } else if (gUsePoolBundle) {
803            indexes[URES_INDEX_ATTRIBUTES] |= URES_ATT_USES_POOL_BUNDLE;
804            indexes[URES_INDEX_POOL_CHECKSUM] = bundle->fPoolChecksum;
805        }
806    }
807
808    /* write the indexes[] */
809    udata_writeBlock(mem, indexes, bundle->fIndexLength*4);
810
811    /* write the table key strings */
812    udata_writeBlock(mem, bundle->fKeys+bundle->fKeysBottom,
813                          bundle->fKeysTop-bundle->fKeysBottom);
814
815    /* write the v2 UTF-16 strings, URES_TABLE16 and URES_ARRAY16 */
816    udata_writeBlock(mem, bundle->f16BitUnits, bundle->f16BitUnitsLength*2);
817
818    /* write all of the bundle contents: the root item and its children */
819    byteOffset = bundle->fKeysTop + bundle->f16BitUnitsLength * 2;
820    res_write(mem, &byteOffset, bundle, bundle->fRoot, status);
821    assert(byteOffset == top);
822
823    size = udata_finish(mem, status);
824    if(top != size) {
825        fprintf(stderr, "genrb error: wrote %u bytes but counted %u\n",
826                (int)size, (int)top);
827        *status = U_INTERNAL_PROGRAM_ERROR;
828    }
829}
830
831/* Opening Functions */
832
833/* gcc 4.2 complained "no previous prototype for res_open" without this prototype... */
834struct SResource* res_open(struct SRBRoot *bundle, const char *tag,
835                           const struct UString* comment, UErrorCode* status);
836
837struct SResource* res_open(struct SRBRoot *bundle, const char *tag,
838                           const struct UString* comment, UErrorCode* status){
839    struct SResource *res;
840    int32_t key = bundle_addtag(bundle, tag, status);
841    if (U_FAILURE(*status)) {
842        return NULL;
843    }
844
845    res = (struct SResource *) uprv_malloc(sizeof(struct SResource));
846    if (res == NULL) {
847        *status = U_MEMORY_ALLOCATION_ERROR;
848        return NULL;
849    }
850    uprv_memset(res, 0, sizeof(struct SResource));
851    res->fKey = key;
852    res->fRes = RES_BOGUS;
853
854    ustr_init(&res->fComment);
855    if(comment != NULL){
856        ustr_cpy(&res->fComment, comment, status);
857        if (U_FAILURE(*status)) {
858            res_close(res);
859            return NULL;
860        }
861    }
862    return res;
863}
864
865struct SResource* res_none() {
866    return (struct SResource*)&kNoResource;
867}
868
869struct SResource* table_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) {
870    struct SResource *res = res_open(bundle, tag, comment, status);
871    if (U_FAILURE(*status)) {
872        return NULL;
873    }
874    res->fType = URES_TABLE;
875    res->u.fTable.fRoot = bundle;
876    return res;
877}
878
879struct SResource* array_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) {
880    struct SResource *res = res_open(bundle, tag, comment, status);
881    if (U_FAILURE(*status)) {
882        return NULL;
883    }
884    res->fType = URES_ARRAY;
885    return res;
886}
887
888static int32_t U_CALLCONV
889string_hash(const UElement key) {
890    const struct SResource *res = (struct SResource *)key.pointer;
891    return ustr_hashUCharsN(res->u.fString.fChars, res->u.fString.fLength);
892}
893
894static UBool U_CALLCONV
895string_comp(const UElement key1, const UElement key2) {
896    const struct SResource *res1 = (struct SResource *)key1.pointer;
897    const struct SResource *res2 = (struct SResource *)key2.pointer;
898    return 0 == u_strCompare(res1->u.fString.fChars, res1->u.fString.fLength,
899                             res2->u.fString.fChars, res2->u.fString.fLength,
900                             FALSE);
901}
902
903struct SResource *string_open(struct SRBRoot *bundle, const char *tag, const UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) {
904    struct SResource *res = res_open(bundle, tag, comment, status);
905    if (U_FAILURE(*status)) {
906        return NULL;
907    }
908    res->fType = URES_STRING;
909
910    if (len == 0 && gFormatVersion > 1) {
911        res->u.fString.fChars = &gEmptyString;
912        res->fRes = 0;
913        res->fWritten = TRUE;
914        return res;
915    }
916
917    res->u.fString.fLength = len;
918
919    if (gFormatVersion > 1) {
920        /* check for duplicates */
921        res->u.fString.fChars  = (UChar *)value;
922        if (bundle->fStringSet == NULL) {
923            UErrorCode localStatus = U_ZERO_ERROR;  /* if failure: just don't detect dups */
924            bundle->fStringSet = uhash_open(string_hash, string_comp, string_comp, &localStatus);
925        } else {
926            res->u.fString.fSame = uhash_get(bundle->fStringSet, res);
927        }
928    }
929    if (res->u.fString.fSame == NULL) {
930        /* this is a new string */
931        res->u.fString.fChars = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1));
932
933        if (res->u.fString.fChars == NULL) {
934            *status = U_MEMORY_ALLOCATION_ERROR;
935            uprv_free(res);
936            return NULL;
937        }
938
939        uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * len);
940        res->u.fString.fChars[len] = 0;
941        if (bundle->fStringSet != NULL) {
942            /* put it into the set for finding duplicates */
943            uhash_put(bundle->fStringSet, res, res, status);
944        }
945
946        if (bundle->fStringsForm != STRINGS_UTF16_V1) {
947            if (len <= MAX_IMPLICIT_STRING_LENGTH && !U16_IS_TRAIL(value[0]) && len == u_strlen(value)) {
948                /*
949                 * This string will be stored without an explicit length.
950                 * Runtime will detect !U16_IS_TRAIL(value[0]) and call u_strlen().
951                 */
952                res->u.fString.fNumCharsForLength = 0;
953            } else if (len <= 0x3ee) {
954                res->u.fString.fNumCharsForLength = 1;
955            } else if (len <= 0xfffff) {
956                res->u.fString.fNumCharsForLength = 2;
957            } else {
958                res->u.fString.fNumCharsForLength = 3;
959            }
960            bundle->f16BitUnitsLength += res->u.fString.fNumCharsForLength + len + 1;  /* +1 for the NUL */
961        }
962    } else {
963        /* this is a duplicate of fSame */
964        struct SResource *same = res->u.fString.fSame;
965        res->u.fString.fChars = same->u.fString.fChars;
966    }
967    return res;
968}
969
970/* TODO: make alias_open and string_open use the same code */
971struct SResource *alias_open(struct SRBRoot *bundle, const char *tag, UChar *value, int32_t len, const struct UString* comment, UErrorCode *status) {
972    struct SResource *res = res_open(bundle, tag, comment, status);
973    if (U_FAILURE(*status)) {
974        return NULL;
975    }
976    res->fType = URES_ALIAS;
977    if (len == 0 && gFormatVersion > 1) {
978        res->u.fString.fChars = &gEmptyString;
979        res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_ALIAS);
980        res->fWritten = TRUE;
981        return res;
982    }
983
984    res->u.fString.fLength = len;
985    res->u.fString.fChars  = (UChar *) uprv_malloc(sizeof(UChar) * (len + 1));
986    if (res->u.fString.fChars == NULL) {
987        *status = U_MEMORY_ALLOCATION_ERROR;
988        uprv_free(res);
989        return NULL;
990    }
991    uprv_memcpy(res->u.fString.fChars, value, sizeof(UChar) * (len + 1));
992    return res;
993}
994
995
996struct SResource* intvector_open(struct SRBRoot *bundle, const char *tag, const struct UString* comment, UErrorCode *status) {
997    struct SResource *res = res_open(bundle, tag, comment, status);
998    if (U_FAILURE(*status)) {
999        return NULL;
1000    }
1001    res->fType = URES_INT_VECTOR;
1002
1003    res->u.fIntVector.fCount = 0;
1004    res->u.fIntVector.fArray = (uint32_t *) uprv_malloc(sizeof(uint32_t) * RESLIST_MAX_INT_VECTOR);
1005    if (res->u.fIntVector.fArray == NULL) {
1006        *status = U_MEMORY_ALLOCATION_ERROR;
1007        uprv_free(res);
1008        return NULL;
1009    }
1010    return res;
1011}
1012
1013struct SResource *int_open(struct SRBRoot *bundle, const char *tag, int32_t value, const struct UString* comment, UErrorCode *status) {
1014    struct SResource *res = res_open(bundle, tag, comment, status);
1015    if (U_FAILURE(*status)) {
1016        return NULL;
1017    }
1018    res->fType = URES_INT;
1019    res->u.fIntValue.fValue = value;
1020    res->fRes = URES_MAKE_RESOURCE(URES_INT, value & 0x0FFFFFFF);
1021    res->fWritten = TRUE;
1022    return res;
1023}
1024
1025struct SResource *bin_open(struct SRBRoot *bundle, const char *tag, uint32_t length, uint8_t *data, const char* fileName, const struct UString* comment, UErrorCode *status) {
1026    struct SResource *res = res_open(bundle, tag, comment, status);
1027    if (U_FAILURE(*status)) {
1028        return NULL;
1029    }
1030    res->fType = URES_BINARY;
1031
1032    res->u.fBinaryValue.fLength = length;
1033    res->u.fBinaryValue.fFileName = NULL;
1034    if(fileName!=NULL && uprv_strcmp(fileName, "") !=0){
1035        res->u.fBinaryValue.fFileName = (char*) uprv_malloc(sizeof(char) * (uprv_strlen(fileName)+1));
1036        uprv_strcpy(res->u.fBinaryValue.fFileName,fileName);
1037    }
1038    if (length > 0) {
1039        res->u.fBinaryValue.fData   = (uint8_t *) uprv_malloc(sizeof(uint8_t) * length);
1040
1041        if (res->u.fBinaryValue.fData == NULL) {
1042            *status = U_MEMORY_ALLOCATION_ERROR;
1043            uprv_free(res);
1044            return NULL;
1045        }
1046
1047        uprv_memcpy(res->u.fBinaryValue.fData, data, length);
1048    }
1049    else {
1050        res->u.fBinaryValue.fData = NULL;
1051        if (gFormatVersion > 1) {
1052            res->fRes = URES_MAKE_EMPTY_RESOURCE(URES_BINARY);
1053            res->fWritten = TRUE;
1054        }
1055    }
1056
1057    return res;
1058}
1059
1060struct SRBRoot *bundle_open(const struct UString* comment, UBool isPoolBundle, UErrorCode *status) {
1061    struct SRBRoot *bundle;
1062
1063    if (U_FAILURE(*status)) {
1064        return NULL;
1065    }
1066
1067    bundle = (struct SRBRoot *) uprv_malloc(sizeof(struct SRBRoot));
1068    if (bundle == NULL) {
1069        *status = U_MEMORY_ALLOCATION_ERROR;
1070        return 0;
1071    }
1072    uprv_memset(bundle, 0, sizeof(struct SRBRoot));
1073
1074    bundle->fKeys = (char *) uprv_malloc(sizeof(char) * KEY_SPACE_SIZE);
1075    bundle->fRoot = table_open(bundle, NULL, comment, status);
1076    if (bundle->fKeys == NULL || bundle->fRoot == NULL || U_FAILURE(*status)) {
1077        if (U_SUCCESS(*status)) {
1078            *status = U_MEMORY_ALLOCATION_ERROR;
1079        }
1080        bundle_close(bundle, status);
1081        return NULL;
1082    }
1083
1084    bundle->fLocale   = NULL;
1085    bundle->fKeysCapacity = KEY_SPACE_SIZE;
1086    /* formatVersion 1.1: start fKeysTop after the root item and indexes[] */
1087    bundle->fIsPoolBundle = isPoolBundle;
1088    if (gUsePoolBundle || isPoolBundle) {
1089        bundle->fIndexLength = URES_INDEX_POOL_CHECKSUM + 1;
1090    } else if (gFormatVersion >= 2) {
1091        bundle->fIndexLength = URES_INDEX_16BIT_TOP + 1;
1092    } else /* formatVersion 1 */ {
1093        bundle->fIndexLength = URES_INDEX_ATTRIBUTES + 1;
1094    }
1095    bundle->fKeysBottom = (1 /* root */ + bundle->fIndexLength) * 4;
1096    uprv_memset(bundle->fKeys, 0, bundle->fKeysBottom);
1097    bundle->fKeysTop = bundle->fKeysBottom;
1098
1099    if (gFormatVersion == 1) {
1100        bundle->fStringsForm = STRINGS_UTF16_V1;
1101    } else {
1102        bundle->fStringsForm = STRINGS_UTF16_V2;
1103    }
1104
1105    return bundle;
1106}
1107
1108/* Closing Functions */
1109static void table_close(struct SResource *table) {
1110    struct SResource *current = NULL;
1111    struct SResource *prev    = NULL;
1112
1113    current = table->u.fTable.fFirst;
1114
1115    while (current != NULL) {
1116        prev    = current;
1117        current = current->fNext;
1118
1119        res_close(prev);
1120    }
1121
1122    table->u.fTable.fFirst = NULL;
1123}
1124
1125static void array_close(struct SResource *array) {
1126    struct SResource *current = NULL;
1127    struct SResource *prev    = NULL;
1128
1129    if(array==NULL){
1130        return;
1131    }
1132    current = array->u.fArray.fFirst;
1133
1134    while (current != NULL) {
1135        prev    = current;
1136        current = current->fNext;
1137
1138        res_close(prev);
1139    }
1140    array->u.fArray.fFirst = NULL;
1141}
1142
1143static void string_close(struct SResource *string) {
1144    if (string->u.fString.fChars != NULL &&
1145        string->u.fString.fChars != &gEmptyString &&
1146        string->u.fString.fSame == NULL
1147    ) {
1148        uprv_free(string->u.fString.fChars);
1149        string->u.fString.fChars =NULL;
1150    }
1151}
1152
1153static void alias_close(struct SResource *alias) {
1154    if (alias->u.fString.fChars != NULL) {
1155        uprv_free(alias->u.fString.fChars);
1156        alias->u.fString.fChars =NULL;
1157    }
1158}
1159
1160static void intvector_close(struct SResource *intvector) {
1161    if (intvector->u.fIntVector.fArray != NULL) {
1162        uprv_free(intvector->u.fIntVector.fArray);
1163        intvector->u.fIntVector.fArray =NULL;
1164    }
1165}
1166
1167static void int_close(struct SResource *intres) {
1168    /* Intentionally left blank */
1169}
1170
1171static void bin_close(struct SResource *binres) {
1172    if (binres->u.fBinaryValue.fData != NULL) {
1173        uprv_free(binres->u.fBinaryValue.fData);
1174        binres->u.fBinaryValue.fData = NULL;
1175    }
1176    if (binres->u.fBinaryValue.fFileName != NULL) {
1177        uprv_free(binres->u.fBinaryValue.fFileName);
1178        binres->u.fBinaryValue.fFileName = NULL;
1179    }
1180}
1181
1182void res_close(struct SResource *res) {
1183    if (res != NULL) {
1184        switch(res->fType) {
1185        case URES_STRING:
1186            string_close(res);
1187            break;
1188        case URES_ALIAS:
1189            alias_close(res);
1190            break;
1191        case URES_INT_VECTOR:
1192            intvector_close(res);
1193            break;
1194        case URES_BINARY:
1195            bin_close(res);
1196            break;
1197        case URES_INT:
1198            int_close(res);
1199            break;
1200        case URES_ARRAY:
1201            array_close(res);
1202            break;
1203        case URES_TABLE:
1204            table_close(res);
1205            break;
1206        default:
1207            /* Shouldn't happen */
1208            break;
1209        }
1210
1211        ustr_deinit(&res->fComment);
1212        uprv_free(res);
1213    }
1214}
1215
1216void bundle_close(struct SRBRoot *bundle, UErrorCode *status) {
1217    res_close(bundle->fRoot);
1218    uprv_free(bundle->fLocale);
1219    uprv_free(bundle->fKeys);
1220    uprv_free(bundle->fKeyMap);
1221    uhash_close(bundle->fStringSet);
1222    uprv_free(bundle->f16BitUnits);
1223    uprv_free(bundle);
1224}
1225
1226void bundle_closeString(struct SRBRoot *bundle, struct SResource *string) {
1227    if (bundle->fStringSet != NULL) {
1228        uhash_remove(bundle->fStringSet, string);
1229    }
1230    string_close(string);
1231}
1232
1233/* Adding Functions */
1234void table_add(struct SResource *table, struct SResource *res, int linenumber, UErrorCode *status) {
1235    struct SResource *current = NULL;
1236    struct SResource *prev    = NULL;
1237    struct SResTable *list;
1238    const char *resKeyString;
1239
1240    if (U_FAILURE(*status)) {
1241        return;
1242    }
1243    if (res == &kNoResource) {
1244        return;
1245    }
1246
1247    /* remember this linenumber to report to the user if there is a duplicate key */
1248    res->line = linenumber;
1249
1250    /* here we need to traverse the list */
1251    list = &(table->u.fTable);
1252    ++(list->fCount);
1253
1254    /* is list still empty? */
1255    if (list->fFirst == NULL) {
1256        list->fFirst = res;
1257        res->fNext   = NULL;
1258        return;
1259    }
1260
1261    resKeyString = list->fRoot->fKeys + res->fKey;
1262
1263    current = list->fFirst;
1264
1265    while (current != NULL) {
1266        const char *currentKeyString = list->fRoot->fKeys + current->fKey;
1267        int diff;
1268        /*
1269         * formatVersion 1: compare key strings in native-charset order
1270         * formatVersion 2 and up: compare key strings in ASCII order
1271         */
1272        if (gFormatVersion == 1 || U_CHARSET_FAMILY == U_ASCII_FAMILY) {
1273            diff = uprv_strcmp(currentKeyString, resKeyString);
1274        } else {
1275            diff = uprv_compareInvCharsAsAscii(currentKeyString, resKeyString);
1276        }
1277        if (diff < 0) {
1278            prev    = current;
1279            current = current->fNext;
1280        } else if (diff > 0) {
1281            /* we're either in front of list, or in middle */
1282            if (prev == NULL) {
1283                /* front of the list */
1284                list->fFirst = res;
1285            } else {
1286                /* middle of the list */
1287                prev->fNext = res;
1288            }
1289
1290            res->fNext = current;
1291            return;
1292        } else {
1293            /* Key already exists! ERROR! */
1294            error(linenumber, "duplicate key '%s' in table, first appeared at line %d", currentKeyString, current->line);
1295            *status = U_UNSUPPORTED_ERROR;
1296            return;
1297        }
1298    }
1299
1300    /* end of list */
1301    prev->fNext = res;
1302    res->fNext  = NULL;
1303}
1304
1305void array_add(struct SResource *array, struct SResource *res, UErrorCode *status) {
1306    if (U_FAILURE(*status)) {
1307        return;
1308    }
1309
1310    if (array->u.fArray.fFirst == NULL) {
1311        array->u.fArray.fFirst = res;
1312        array->u.fArray.fLast  = res;
1313    } else {
1314        array->u.fArray.fLast->fNext = res;
1315        array->u.fArray.fLast        = res;
1316    }
1317
1318    (array->u.fArray.fCount)++;
1319}
1320
1321void intvector_add(struct SResource *intvector, int32_t value, UErrorCode *status) {
1322    if (U_FAILURE(*status)) {
1323        return;
1324    }
1325
1326    *(intvector->u.fIntVector.fArray + intvector->u.fIntVector.fCount) = value;
1327    intvector->u.fIntVector.fCount++;
1328}
1329
1330/* Misc Functions */
1331
1332void bundle_setlocale(struct SRBRoot *bundle, UChar *locale, UErrorCode *status) {
1333
1334    if(U_FAILURE(*status)) {
1335        return;
1336    }
1337
1338    if (bundle->fLocale!=NULL) {
1339        uprv_free(bundle->fLocale);
1340    }
1341
1342    bundle->fLocale= (char*) uprv_malloc(sizeof(char) * (u_strlen(locale)+1));
1343
1344    if(bundle->fLocale == NULL) {
1345        *status = U_MEMORY_ALLOCATION_ERROR;
1346        return;
1347    }
1348
1349    /*u_strcpy(bundle->fLocale, locale);*/
1350    u_UCharsToChars(locale, bundle->fLocale, u_strlen(locale)+1);
1351
1352}
1353
1354static const char *
1355getKeyString(const struct SRBRoot *bundle, int32_t key) {
1356    if (key < 0) {
1357        return bundle->fPoolBundleKeys + (key & 0x7fffffff);
1358    } else {
1359        return bundle->fKeys + key;
1360    }
1361}
1362
1363const char *
1364res_getKeyString(const struct SRBRoot *bundle, const struct SResource *res, char temp[8]) {
1365    if (res->fKey == -1) {
1366        return NULL;
1367    }
1368    return getKeyString(bundle, res->fKey);
1369}
1370
1371const char *
1372bundle_getKeyBytes(struct SRBRoot *bundle, int32_t *pLength) {
1373    *pLength = bundle->fKeysTop - bundle->fKeysBottom;
1374    return bundle->fKeys + bundle->fKeysBottom;
1375}
1376
1377int32_t
1378bundle_addKeyBytes(struct SRBRoot *bundle, const char *keyBytes, int32_t length, UErrorCode *status) {
1379    int32_t keypos;
1380
1381    if (U_FAILURE(*status)) {
1382        return -1;
1383    }
1384    if (length < 0 || (keyBytes == NULL && length != 0)) {
1385        *status = U_ILLEGAL_ARGUMENT_ERROR;
1386        return -1;
1387    }
1388    if (length == 0) {
1389        return bundle->fKeysTop;
1390    }
1391
1392    keypos = bundle->fKeysTop;
1393    bundle->fKeysTop += length;
1394    if (bundle->fKeysTop >= bundle->fKeysCapacity) {
1395        /* overflow - resize the keys buffer */
1396        bundle->fKeysCapacity += KEY_SPACE_SIZE;
1397        bundle->fKeys = uprv_realloc(bundle->fKeys, bundle->fKeysCapacity);
1398        if(bundle->fKeys == NULL) {
1399            *status = U_MEMORY_ALLOCATION_ERROR;
1400            return -1;
1401        }
1402    }
1403
1404    uprv_memcpy(bundle->fKeys + keypos, keyBytes, length);
1405
1406    return keypos;
1407}
1408
1409int32_t
1410bundle_addtag(struct SRBRoot *bundle, const char *tag, UErrorCode *status) {
1411    int32_t keypos;
1412
1413    if (U_FAILURE(*status)) {
1414        return -1;
1415    }
1416
1417    if (tag == NULL) {
1418        /* no error: the root table and array items have no keys */
1419        return -1;
1420    }
1421
1422    keypos = bundle_addKeyBytes(bundle, tag, (int32_t)(uprv_strlen(tag) + 1), status);
1423    if (U_SUCCESS(*status)) {
1424        ++bundle->fKeysCount;
1425    }
1426    return keypos;
1427}
1428
1429static int32_t
1430compareInt32(int32_t lPos, int32_t rPos) {
1431    /*
1432     * Compare possibly-negative key offsets. Don't just return lPos - rPos
1433     * because that is prone to negative-integer underflows.
1434     */
1435    if (lPos < rPos) {
1436        return -1;
1437    } else if (lPos > rPos) {
1438        return 1;
1439    } else {
1440        return 0;
1441    }
1442}
1443
1444static int32_t U_CALLCONV
1445compareKeySuffixes(const void *context, const void *l, const void *r) {
1446    const struct SRBRoot *bundle=(const struct SRBRoot *)context;
1447    int32_t lPos = ((const KeyMapEntry *)l)->oldpos;
1448    int32_t rPos = ((const KeyMapEntry *)r)->oldpos;
1449    const char *lStart = getKeyString(bundle, lPos);
1450    const char *lLimit = lStart;
1451    const char *rStart = getKeyString(bundle, rPos);
1452    const char *rLimit = rStart;
1453    int32_t diff;
1454    while (*lLimit != 0) { ++lLimit; }
1455    while (*rLimit != 0) { ++rLimit; }
1456    /* compare keys in reverse character order */
1457    while (lStart < lLimit && rStart < rLimit) {
1458        diff = (int32_t)(uint8_t)*--lLimit - (int32_t)(uint8_t)*--rLimit;
1459        if (diff != 0) {
1460            return diff;
1461        }
1462    }
1463    /* sort equal suffixes by descending key length */
1464    diff = (int32_t)(rLimit - rStart) - (int32_t)(lLimit - lStart);
1465    if (diff != 0) {
1466        return diff;
1467    }
1468    /* Sort pool bundle keys first (negative oldpos), and otherwise keys in parsing order. */
1469    return compareInt32(lPos, rPos);
1470}
1471
1472static int32_t U_CALLCONV
1473compareKeyNewpos(const void *context, const void *l, const void *r) {
1474    return compareInt32(((const KeyMapEntry *)l)->newpos, ((const KeyMapEntry *)r)->newpos);
1475}
1476
1477static int32_t U_CALLCONV
1478compareKeyOldpos(const void *context, const void *l, const void *r) {
1479    return compareInt32(((const KeyMapEntry *)l)->oldpos, ((const KeyMapEntry *)r)->oldpos);
1480}
1481
1482void
1483bundle_compactKeys(struct SRBRoot *bundle, UErrorCode *status) {
1484    KeyMapEntry *map;
1485    char *keys;
1486    int32_t i;
1487    int32_t keysCount = bundle->fPoolBundleKeysCount + bundle->fKeysCount;
1488    if (U_FAILURE(*status) || bundle->fKeysCount == 0 || bundle->fKeyMap != NULL) {
1489        return;
1490    }
1491    map = (KeyMapEntry *)uprv_malloc(keysCount * sizeof(KeyMapEntry));
1492    if (map == NULL) {
1493        *status = U_MEMORY_ALLOCATION_ERROR;
1494        return;
1495    }
1496    keys = (char *)bundle->fPoolBundleKeys;
1497    for (i = 0; i < bundle->fPoolBundleKeysCount; ++i) {
1498        map[i].oldpos =
1499            (int32_t)(keys - bundle->fPoolBundleKeys) | 0x80000000;  /* negative oldpos */
1500        map[i].newpos = 0;
1501        while (*keys != 0) { ++keys; }  /* skip the key */
1502        ++keys;  /* skip the NUL */
1503    }
1504    keys = bundle->fKeys + bundle->fKeysBottom;
1505    for (; i < keysCount; ++i) {
1506        map[i].oldpos = (int32_t)(keys - bundle->fKeys);
1507        map[i].newpos = 0;
1508        while (*keys != 0) { ++keys; }  /* skip the key */
1509        ++keys;  /* skip the NUL */
1510    }
1511    /* Sort the keys so that each one is immediately followed by all of its suffixes. */
1512    uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry),
1513                   compareKeySuffixes, bundle, FALSE, status);
1514    /*
1515     * Make suffixes point into earlier, longer strings that contain them
1516     * and mark the old, now unused suffix bytes as deleted.
1517     */
1518    if (U_SUCCESS(*status)) {
1519        keys = bundle->fKeys;
1520        for (i = 0; i < keysCount;) {
1521            /*
1522             * This key is not a suffix of the previous one;
1523             * keep this one and delete the following ones that are
1524             * suffixes of this one.
1525             */
1526            const char *key;
1527            const char *keyLimit;
1528            int32_t j = i + 1;
1529            map[i].newpos = map[i].oldpos;
1530            if (j < keysCount && map[j].oldpos < 0) {
1531                /* Key string from the pool bundle, do not delete. */
1532                i = j;
1533                continue;
1534            }
1535            key = getKeyString(bundle, map[i].oldpos);
1536            for (keyLimit = key; *keyLimit != 0; ++keyLimit) {}
1537            for (; j < keysCount && map[j].oldpos >= 0; ++j) {
1538                const char *k;
1539                char *suffix;
1540                const char *suffixLimit;
1541                int32_t offset;
1542                suffix = keys + map[j].oldpos;
1543                for (suffixLimit = suffix; *suffixLimit != 0; ++suffixLimit) {}
1544                offset = (int32_t)(keyLimit - key) - (suffixLimit - suffix);
1545                if (offset < 0) {
1546                    break;  /* suffix cannot be longer than the original */
1547                }
1548                /* Is it a suffix of the earlier, longer key? */
1549                for (k = keyLimit; suffix < suffixLimit && *--k == *--suffixLimit;) {}
1550                if (suffix == suffixLimit && *k == *suffixLimit) {
1551                    map[j].newpos = map[i].oldpos + offset;  /* yes, point to the earlier key */
1552                    /* mark the suffix as deleted */
1553                    while (*suffix != 0) { *suffix++ = 1; }
1554                    *suffix = 1;
1555                } else {
1556                    break;  /* not a suffix, restart from here */
1557                }
1558            }
1559            i = j;
1560        }
1561        /*
1562         * Re-sort by newpos, then modify the key characters array in-place
1563         * to squeeze out unused bytes, and readjust the newpos offsets.
1564         */
1565        uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry),
1566                       compareKeyNewpos, NULL, FALSE, status);
1567        if (U_SUCCESS(*status)) {
1568            int32_t oldpos, newpos, limit;
1569            oldpos = newpos = bundle->fKeysBottom;
1570            limit = bundle->fKeysTop;
1571            /* skip key offsets that point into the pool bundle rather than this new bundle */
1572            for (i = 0; i < keysCount && map[i].newpos < 0; ++i) {}
1573            if (i < keysCount) {
1574                while (oldpos < limit) {
1575                    if (keys[oldpos] == 1) {
1576                        ++oldpos;  /* skip unused bytes */
1577                    } else {
1578                        /* adjust the new offsets for keys starting here */
1579                        while (i < keysCount && map[i].newpos == oldpos) {
1580                            map[i++].newpos = newpos;
1581                        }
1582                        /* move the key characters to their new position */
1583                        keys[newpos++] = keys[oldpos++];
1584                    }
1585                }
1586                assert(i == keysCount);
1587            }
1588            bundle->fKeysTop = newpos;
1589            /* Re-sort once more, by old offsets for binary searching. */
1590            uprv_sortArray(map, keysCount, (int32_t)sizeof(KeyMapEntry),
1591                           compareKeyOldpos, NULL, FALSE, status);
1592            if (U_SUCCESS(*status)) {
1593                /* key size reduction by limit - newpos */
1594                bundle->fKeyMap = map;
1595                map = NULL;
1596            }
1597        }
1598    }
1599    uprv_free(map);
1600}
1601
1602static int32_t U_CALLCONV
1603compareStringSuffixes(const void *context, const void *l, const void *r) {
1604    struct SResource *left = *((struct SResource **)l);
1605    struct SResource *right = *((struct SResource **)r);
1606    const UChar *lStart = left->u.fString.fChars;
1607    const UChar *lLimit = lStart + left->u.fString.fLength;
1608    const UChar *rStart = right->u.fString.fChars;
1609    const UChar *rLimit = rStart + right->u.fString.fLength;
1610    int32_t diff;
1611    /* compare keys in reverse character order */
1612    while (lStart < lLimit && rStart < rLimit) {
1613        diff = (int32_t)*--lLimit - (int32_t)*--rLimit;
1614        if (diff != 0) {
1615            return diff;
1616        }
1617    }
1618    /* sort equal suffixes by descending string length */
1619    return right->u.fString.fLength - left->u.fString.fLength;
1620}
1621
1622static int32_t U_CALLCONV
1623compareStringLengths(const void *context, const void *l, const void *r) {
1624    struct SResource *left = *((struct SResource **)l);
1625    struct SResource *right = *((struct SResource **)r);
1626    int32_t diff;
1627    /* Make "is suffix of another string" compare greater than a non-suffix. */
1628    diff = (int)(left->u.fString.fSame != NULL) - (int)(right->u.fString.fSame != NULL);
1629    if (diff != 0) {
1630        return diff;
1631    }
1632    /* sort by ascending string length */
1633    return left->u.fString.fLength - right->u.fString.fLength;
1634}
1635
1636static int32_t
1637string_writeUTF16v2(struct SRBRoot *bundle, struct SResource *res, int32_t utf16Length) {
1638    int32_t length = res->u.fString.fLength;
1639    res->fRes = URES_MAKE_RESOURCE(URES_STRING_V2, utf16Length);
1640    res->fWritten = TRUE;
1641    switch(res->u.fString.fNumCharsForLength) {
1642    case 0:
1643        break;
1644    case 1:
1645        bundle->f16BitUnits[utf16Length++] = (uint16_t)(0xdc00 + length);
1646        break;
1647    case 2:
1648        bundle->f16BitUnits[utf16Length] = (uint16_t)(0xdfef + (length >> 16));
1649        bundle->f16BitUnits[utf16Length + 1] = (uint16_t)length;
1650        utf16Length += 2;
1651        break;
1652    case 3:
1653        bundle->f16BitUnits[utf16Length] = 0xdfff;
1654        bundle->f16BitUnits[utf16Length + 1] = (uint16_t)(length >> 16);
1655        bundle->f16BitUnits[utf16Length + 2] = (uint16_t)length;
1656        utf16Length += 3;
1657        break;
1658    default:
1659        break;  /* will not occur */
1660    }
1661    u_memcpy(bundle->f16BitUnits + utf16Length, res->u.fString.fChars, length + 1);
1662    return utf16Length + length + 1;
1663}
1664
1665static void
1666bundle_compactStrings(struct SRBRoot *bundle, UErrorCode *status) {
1667    if (U_FAILURE(*status)) {
1668        return;
1669    }
1670    switch(bundle->fStringsForm) {
1671    case STRINGS_UTF16_V2:
1672        if (bundle->f16BitUnitsLength > 0) {
1673            struct SResource **array;
1674            int32_t count = uhash_count(bundle->fStringSet);
1675            int32_t i, pos;
1676            /*
1677             * Allocate enough space for the initial NUL and the UTF-16 v2 strings,
1678             * and some extra for URES_TABLE16 and URES_ARRAY16 values.
1679             * Round down to an even number.
1680             */
1681            int32_t utf16Length = (bundle->f16BitUnitsLength + 20000) & ~1;
1682            bundle->f16BitUnits = (UChar *)uprv_malloc(utf16Length * U_SIZEOF_UCHAR);
1683            array = (struct SResource **)uprv_malloc(count * sizeof(struct SResource **));
1684            if (bundle->f16BitUnits == NULL || array == NULL) {
1685                uprv_free(bundle->f16BitUnits);
1686                bundle->f16BitUnits = NULL;
1687                uprv_free(array);
1688                *status = U_MEMORY_ALLOCATION_ERROR;
1689                return;
1690            }
1691            bundle->f16BitUnitsCapacity = utf16Length;
1692            /* insert the initial NUL */
1693            bundle->f16BitUnits[0] = 0;
1694            utf16Length = 1;
1695            ++bundle->f16BitUnitsLength;
1696            for (pos = -1, i = 0; i < count; ++i) {
1697                array[i] = (struct SResource *)uhash_nextElement(bundle->fStringSet, &pos)->key.pointer;
1698            }
1699            /* Sort the strings so that each one is immediately followed by all of its suffixes. */
1700            uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **),
1701                           compareStringSuffixes, NULL, FALSE, status);
1702            /*
1703             * Make suffixes point into earlier, longer strings that contain them.
1704             * Temporarily use fSame and fSuffixOffset for suffix strings to
1705             * refer to the remaining ones.
1706             */
1707            if (U_SUCCESS(*status)) {
1708                for (i = 0; i < count;) {
1709                    /*
1710                     * This string is not a suffix of the previous one;
1711                     * write this one and subsume the following ones that are
1712                     * suffixes of this one.
1713                     */
1714                    struct SResource *res = array[i];
1715                    const UChar *strLimit = res->u.fString.fChars + res->u.fString.fLength;
1716                    int32_t j;
1717                    for (j = i + 1; j < count; ++j) {
1718                        struct SResource *suffixRes = array[j];
1719                        const UChar *s;
1720                        const UChar *suffix = suffixRes->u.fString.fChars;
1721                        const UChar *suffixLimit = suffix + suffixRes->u.fString.fLength;
1722                        int32_t offset = res->u.fString.fLength - suffixRes->u.fString.fLength;
1723                        if (offset < 0) {
1724                            break;  /* suffix cannot be longer than the original */
1725                        }
1726                        /* Is it a suffix of the earlier, longer key? */
1727                        for (s = strLimit; suffix < suffixLimit && *--s == *--suffixLimit;) {}
1728                        if (suffix == suffixLimit && *s == *suffixLimit) {
1729                            if (suffixRes->u.fString.fNumCharsForLength == 0) {
1730                                /* yes, point to the earlier string */
1731                                suffixRes->u.fString.fSame = res;
1732                                suffixRes->u.fString.fSuffixOffset = offset;
1733                            } else {
1734                                /* write the suffix by itself if we need explicit length */
1735                            }
1736                        } else {
1737                            break;  /* not a suffix, restart from here */
1738                        }
1739                    }
1740                    i = j;
1741                }
1742            }
1743            /*
1744             * Re-sort the strings by ascending length (except suffixes last)
1745             * to optimize for URES_TABLE16 and URES_ARRAY16:
1746             * Keep as many as possible within reach of 16-bit offsets.
1747             */
1748            uprv_sortArray(array, count, (int32_t)sizeof(struct SResource **),
1749                           compareStringLengths, NULL, FALSE, status);
1750            if (U_SUCCESS(*status)) {
1751                /* Write the non-suffix strings. */
1752                for (i = 0; i < count && array[i]->u.fString.fSame == NULL; ++i) {
1753                    utf16Length = string_writeUTF16v2(bundle, array[i], utf16Length);
1754                }
1755                /* Write the suffix strings. Make each point to the real string. */
1756                for (; i < count; ++i) {
1757                    struct SResource *res = array[i];
1758                    struct SResource *same = res->u.fString.fSame;
1759                    res->fRes = same->fRes + same->u.fString.fNumCharsForLength + res->u.fString.fSuffixOffset;
1760                    res->u.fString.fSame = NULL;
1761                    res->fWritten = TRUE;
1762                }
1763            }
1764            assert(utf16Length <= bundle->f16BitUnitsLength);
1765            bundle->f16BitUnitsLength = utf16Length;
1766            uprv_free(array);
1767        }
1768        break;
1769    default:
1770        break;
1771    }
1772}
1773