1/*
2 * jcparam.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1998, Thomas G. Lane.
6 * Modified 2003-2008 by Guido Vollbeding.
7 * libjpeg-turbo Modifications:
8 * Copyright (C) 2009-2011, D. R. Commander.
9 * For conditions of distribution and use, see the accompanying README file.
10 *
11 * This file contains optional default-setting code for the JPEG compressor.
12 * Applications do not have to use this file, but those that don't use it
13 * must know a lot more about the innards of the JPEG code.
14 */
15
16#define JPEG_INTERNALS
17#include "jinclude.h"
18#include "jpeglib.h"
19
20
21/*
22 * Quantization table setup routines
23 */
24
25GLOBAL(void)
26jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
27		      const unsigned int *basic_table,
28		      int scale_factor, boolean force_baseline)
29/* Define a quantization table equal to the basic_table times
30 * a scale factor (given as a percentage).
31 * If force_baseline is TRUE, the computed quantization table entries
32 * are limited to 1..255 for JPEG baseline compatibility.
33 */
34{
35  JQUANT_TBL ** qtblptr;
36  int i;
37  long temp;
38
39  /* Safety check to ensure start_compress not called yet. */
40  if (cinfo->global_state != CSTATE_START)
41    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
42
43  if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
44    ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
45
46  qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
47
48  if (*qtblptr == NULL)
49    *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
50
51  for (i = 0; i < DCTSIZE2; i++) {
52    temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
53    /* limit the values to the valid range */
54    if (temp <= 0L) temp = 1L;
55    if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
56    if (force_baseline && temp > 255L)
57      temp = 255L;		/* limit to baseline range if requested */
58    (*qtblptr)->quantval[i] = (UINT16) temp;
59  }
60
61  /* Initialize sent_table FALSE so table will be written to JPEG file. */
62  (*qtblptr)->sent_table = FALSE;
63}
64
65
66/* These are the sample quantization tables given in JPEG spec section K.1.
67 * The spec says that the values given produce "good" quality, and
68 * when divided by 2, "very good" quality.
69 */
70static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
71  16,  11,  10,  16,  24,  40,  51,  61,
72  12,  12,  14,  19,  26,  58,  60,  55,
73  14,  13,  16,  24,  40,  57,  69,  56,
74  14,  17,  22,  29,  51,  87,  80,  62,
75  18,  22,  37,  56,  68, 109, 103,  77,
76  24,  35,  55,  64,  81, 104, 113,  92,
77  49,  64,  78,  87, 103, 121, 120, 101,
78  72,  92,  95,  98, 112, 100, 103,  99
79};
80static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
81  17,  18,  24,  47,  99,  99,  99,  99,
82  18,  21,  26,  66,  99,  99,  99,  99,
83  24,  26,  56,  99,  99,  99,  99,  99,
84  47,  66,  99,  99,  99,  99,  99,  99,
85  99,  99,  99,  99,  99,  99,  99,  99,
86  99,  99,  99,  99,  99,  99,  99,  99,
87  99,  99,  99,  99,  99,  99,  99,  99,
88  99,  99,  99,  99,  99,  99,  99,  99
89};
90
91
92#if JPEG_LIB_VERSION >= 70
93GLOBAL(void)
94jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
95/* Set or change the 'quality' (quantization) setting, using default tables
96 * and straight percentage-scaling quality scales.
97 * This entry point allows different scalings for luminance and chrominance.
98 */
99{
100  /* Set up two quantization tables using the specified scaling */
101  jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
102		       cinfo->q_scale_factor[0], force_baseline);
103  jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
104		       cinfo->q_scale_factor[1], force_baseline);
105}
106#endif
107
108
109GLOBAL(void)
110jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
111			 boolean force_baseline)
112/* Set or change the 'quality' (quantization) setting, using default tables
113 * and a straight percentage-scaling quality scale.  In most cases it's better
114 * to use jpeg_set_quality (below); this entry point is provided for
115 * applications that insist on a linear percentage scaling.
116 */
117{
118  /* Set up two quantization tables using the specified scaling */
119  jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
120		       scale_factor, force_baseline);
121  jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
122		       scale_factor, force_baseline);
123}
124
125
126GLOBAL(int)
127jpeg_quality_scaling (int quality)
128/* Convert a user-specified quality rating to a percentage scaling factor
129 * for an underlying quantization table, using our recommended scaling curve.
130 * The input 'quality' factor should be 0 (terrible) to 100 (very good).
131 */
132{
133  /* Safety limit on quality factor.  Convert 0 to 1 to avoid zero divide. */
134  if (quality <= 0) quality = 1;
135  if (quality > 100) quality = 100;
136
137  /* The basic table is used as-is (scaling 100) for a quality of 50.
138   * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
139   * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
140   * to make all the table entries 1 (hence, minimum quantization loss).
141   * Qualities 1..50 are converted to scaling percentage 5000/Q.
142   */
143  if (quality < 50)
144    quality = 5000 / quality;
145  else
146    quality = 200 - quality*2;
147
148  return quality;
149}
150
151
152GLOBAL(void)
153jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
154/* Set or change the 'quality' (quantization) setting, using default tables.
155 * This is the standard quality-adjusting entry point for typical user
156 * interfaces; only those who want detailed control over quantization tables
157 * would use the preceding three routines directly.
158 */
159{
160  /* Convert user 0-100 rating to percentage scaling */
161  quality = jpeg_quality_scaling(quality);
162
163  /* Set up standard quality tables */
164  jpeg_set_linear_quality(cinfo, quality, force_baseline);
165}
166
167
168/*
169 * Huffman table setup routines
170 */
171
172LOCAL(void)
173add_huff_table (j_compress_ptr cinfo,
174		JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
175/* Define a Huffman table */
176{
177  int nsymbols, len;
178
179  if (*htblptr == NULL)
180    *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
181
182  /* Copy the number-of-symbols-of-each-code-length counts */
183  MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
184
185  /* Validate the counts.  We do this here mainly so we can copy the right
186   * number of symbols from the val[] array, without risking marching off
187   * the end of memory.  jchuff.c will do a more thorough test later.
188   */
189  nsymbols = 0;
190  for (len = 1; len <= 16; len++)
191    nsymbols += bits[len];
192  if (nsymbols < 1 || nsymbols > 256)
193    ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
194
195  MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
196
197  /* Initialize sent_table FALSE so table will be written to JPEG file. */
198  (*htblptr)->sent_table = FALSE;
199}
200
201
202LOCAL(void)
203std_huff_tables (j_compress_ptr cinfo)
204/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
205/* IMPORTANT: these are only valid for 8-bit data precision! */
206{
207  static const UINT8 bits_dc_luminance[17] =
208    { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
209  static const UINT8 val_dc_luminance[] =
210    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
211
212  static const UINT8 bits_dc_chrominance[17] =
213    { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
214  static const UINT8 val_dc_chrominance[] =
215    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
216
217  static const UINT8 bits_ac_luminance[17] =
218    { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
219  static const UINT8 val_ac_luminance[] =
220    { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
221      0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
222      0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
223      0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
224      0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
225      0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
226      0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
227      0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
228      0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
229      0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
230      0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
231      0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
232      0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
233      0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
234      0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
235      0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
236      0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
237      0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
238      0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
239      0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
240      0xf9, 0xfa };
241
242  static const UINT8 bits_ac_chrominance[17] =
243    { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
244  static const UINT8 val_ac_chrominance[] =
245    { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
246      0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
247      0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
248      0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
249      0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
250      0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
251      0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
252      0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
253      0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
254      0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
255      0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
256      0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
257      0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
258      0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
259      0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
260      0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
261      0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
262      0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
263      0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
264      0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
265      0xf9, 0xfa };
266
267  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
268		 bits_dc_luminance, val_dc_luminance);
269  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
270		 bits_ac_luminance, val_ac_luminance);
271  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
272		 bits_dc_chrominance, val_dc_chrominance);
273  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
274		 bits_ac_chrominance, val_ac_chrominance);
275}
276
277
278/*
279 * Default parameter setup for compression.
280 *
281 * Applications that don't choose to use this routine must do their
282 * own setup of all these parameters.  Alternately, you can call this
283 * to establish defaults and then alter parameters selectively.  This
284 * is the recommended approach since, if we add any new parameters,
285 * your code will still work (they'll be set to reasonable defaults).
286 */
287
288GLOBAL(void)
289jpeg_set_defaults (j_compress_ptr cinfo)
290{
291  int i;
292
293  /* Safety check to ensure start_compress not called yet. */
294  if (cinfo->global_state != CSTATE_START)
295    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
296
297  /* Allocate comp_info array large enough for maximum component count.
298   * Array is made permanent in case application wants to compress
299   * multiple images at same param settings.
300   */
301  if (cinfo->comp_info == NULL)
302    cinfo->comp_info = (jpeg_component_info *)
303      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
304				  MAX_COMPONENTS * SIZEOF(jpeg_component_info));
305
306  /* Initialize everything not dependent on the color space */
307
308#if JPEG_LIB_VERSION >= 70
309  cinfo->scale_num = 1;		/* 1:1 scaling */
310  cinfo->scale_denom = 1;
311#endif
312  cinfo->data_precision = BITS_IN_JSAMPLE;
313  /* Set up two quantization tables using default quality of 75 */
314  jpeg_set_quality(cinfo, 75, TRUE);
315  /* Set up two Huffman tables */
316  std_huff_tables(cinfo);
317
318  /* Initialize default arithmetic coding conditioning */
319  for (i = 0; i < NUM_ARITH_TBLS; i++) {
320    cinfo->arith_dc_L[i] = 0;
321    cinfo->arith_dc_U[i] = 1;
322    cinfo->arith_ac_K[i] = 5;
323  }
324
325  /* Default is no multiple-scan output */
326  cinfo->scan_info = NULL;
327  cinfo->num_scans = 0;
328
329  /* Expect normal source image, not raw downsampled data */
330  cinfo->raw_data_in = FALSE;
331
332  /* Use Huffman coding, not arithmetic coding, by default */
333  cinfo->arith_code = FALSE;
334
335  /* By default, don't do extra passes to optimize entropy coding */
336  cinfo->optimize_coding = FALSE;
337  /* The standard Huffman tables are only valid for 8-bit data precision.
338   * If the precision is higher, force optimization on so that usable
339   * tables will be computed.  This test can be removed if default tables
340   * are supplied that are valid for the desired precision.
341   */
342  if (cinfo->data_precision > 8)
343    cinfo->optimize_coding = TRUE;
344
345  /* By default, use the simpler non-cosited sampling alignment */
346  cinfo->CCIR601_sampling = FALSE;
347
348#if JPEG_LIB_VERSION >= 70
349  /* By default, apply fancy downsampling */
350  cinfo->do_fancy_downsampling = TRUE;
351#endif
352
353  /* No input smoothing */
354  cinfo->smoothing_factor = 0;
355
356  /* DCT algorithm preference */
357  cinfo->dct_method = JDCT_DEFAULT;
358
359  /* No restart markers */
360  cinfo->restart_interval = 0;
361  cinfo->restart_in_rows = 0;
362
363  /* Fill in default JFIF marker parameters.  Note that whether the marker
364   * will actually be written is determined by jpeg_set_colorspace.
365   *
366   * By default, the library emits JFIF version code 1.01.
367   * An application that wants to emit JFIF 1.02 extension markers should set
368   * JFIF_minor_version to 2.  We could probably get away with just defaulting
369   * to 1.02, but there may still be some decoders in use that will complain
370   * about that; saying 1.01 should minimize compatibility problems.
371   */
372  cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
373  cinfo->JFIF_minor_version = 1;
374  cinfo->density_unit = 0;	/* Pixel size is unknown by default */
375  cinfo->X_density = 1;		/* Pixel aspect ratio is square by default */
376  cinfo->Y_density = 1;
377
378  /* Choose JPEG colorspace based on input space, set defaults accordingly */
379
380  jpeg_default_colorspace(cinfo);
381}
382
383
384/*
385 * Select an appropriate JPEG colorspace for in_color_space.
386 */
387
388GLOBAL(void)
389jpeg_default_colorspace (j_compress_ptr cinfo)
390{
391  switch (cinfo->in_color_space) {
392  case JCS_GRAYSCALE:
393    jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
394    break;
395  case JCS_RGB:
396  case JCS_EXT_RGB:
397  case JCS_EXT_RGBX:
398  case JCS_EXT_BGR:
399  case JCS_EXT_BGRX:
400  case JCS_EXT_XBGR:
401  case JCS_EXT_XRGB:
402  case JCS_EXT_RGBA:
403  case JCS_EXT_BGRA:
404  case JCS_EXT_ABGR:
405  case JCS_EXT_ARGB:
406    jpeg_set_colorspace(cinfo, JCS_YCbCr);
407    break;
408  case JCS_YCbCr:
409    jpeg_set_colorspace(cinfo, JCS_YCbCr);
410    break;
411  case JCS_CMYK:
412    jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
413    break;
414  case JCS_YCCK:
415    jpeg_set_colorspace(cinfo, JCS_YCCK);
416    break;
417  case JCS_UNKNOWN:
418    jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
419    break;
420  default:
421    ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
422  }
423}
424
425
426/*
427 * Set the JPEG colorspace, and choose colorspace-dependent default values.
428 */
429
430GLOBAL(void)
431jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
432{
433  jpeg_component_info * compptr;
434  int ci;
435
436#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl)  \
437  (compptr = &cinfo->comp_info[index], \
438   compptr->component_id = (id), \
439   compptr->h_samp_factor = (hsamp), \
440   compptr->v_samp_factor = (vsamp), \
441   compptr->quant_tbl_no = (quant), \
442   compptr->dc_tbl_no = (dctbl), \
443   compptr->ac_tbl_no = (actbl) )
444
445  /* Safety check to ensure start_compress not called yet. */
446  if (cinfo->global_state != CSTATE_START)
447    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
448
449  /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
450   * tables 1 for chrominance components.
451   */
452
453  cinfo->jpeg_color_space = colorspace;
454
455  cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
456  cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
457
458  switch (colorspace) {
459  case JCS_GRAYSCALE:
460    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
461    cinfo->num_components = 1;
462    /* JFIF specifies component ID 1 */
463    SET_COMP(0, 1, 1,1, 0, 0,0);
464    break;
465  case JCS_RGB:
466    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
467    cinfo->num_components = 3;
468    SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
469    SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
470    SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
471    break;
472  case JCS_YCbCr:
473    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
474    cinfo->num_components = 3;
475    /* JFIF specifies component IDs 1,2,3 */
476    /* We default to 2x2 subsamples of chrominance */
477    SET_COMP(0, 1, 2,2, 0, 0,0);
478    SET_COMP(1, 2, 1,1, 1, 1,1);
479    SET_COMP(2, 3, 1,1, 1, 1,1);
480    break;
481  case JCS_CMYK:
482    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
483    cinfo->num_components = 4;
484    SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
485    SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
486    SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
487    SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
488    break;
489  case JCS_YCCK:
490    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
491    cinfo->num_components = 4;
492    SET_COMP(0, 1, 2,2, 0, 0,0);
493    SET_COMP(1, 2, 1,1, 1, 1,1);
494    SET_COMP(2, 3, 1,1, 1, 1,1);
495    SET_COMP(3, 4, 2,2, 0, 0,0);
496    break;
497  case JCS_UNKNOWN:
498    cinfo->num_components = cinfo->input_components;
499    if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
500      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
501	       MAX_COMPONENTS);
502    for (ci = 0; ci < cinfo->num_components; ci++) {
503      SET_COMP(ci, ci, 1,1, 0, 0,0);
504    }
505    break;
506  default:
507    ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
508  }
509}
510
511
512#ifdef C_PROGRESSIVE_SUPPORTED
513
514LOCAL(jpeg_scan_info *)
515fill_a_scan (jpeg_scan_info * scanptr, int ci,
516	     int Ss, int Se, int Ah, int Al)
517/* Support routine: generate one scan for specified component */
518{
519  scanptr->comps_in_scan = 1;
520  scanptr->component_index[0] = ci;
521  scanptr->Ss = Ss;
522  scanptr->Se = Se;
523  scanptr->Ah = Ah;
524  scanptr->Al = Al;
525  scanptr++;
526  return scanptr;
527}
528
529LOCAL(jpeg_scan_info *)
530fill_scans (jpeg_scan_info * scanptr, int ncomps,
531	    int Ss, int Se, int Ah, int Al)
532/* Support routine: generate one scan for each component */
533{
534  int ci;
535
536  for (ci = 0; ci < ncomps; ci++) {
537    scanptr->comps_in_scan = 1;
538    scanptr->component_index[0] = ci;
539    scanptr->Ss = Ss;
540    scanptr->Se = Se;
541    scanptr->Ah = Ah;
542    scanptr->Al = Al;
543    scanptr++;
544  }
545  return scanptr;
546}
547
548LOCAL(jpeg_scan_info *)
549fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
550/* Support routine: generate interleaved DC scan if possible, else N scans */
551{
552  int ci;
553
554  if (ncomps <= MAX_COMPS_IN_SCAN) {
555    /* Single interleaved DC scan */
556    scanptr->comps_in_scan = ncomps;
557    for (ci = 0; ci < ncomps; ci++)
558      scanptr->component_index[ci] = ci;
559    scanptr->Ss = scanptr->Se = 0;
560    scanptr->Ah = Ah;
561    scanptr->Al = Al;
562    scanptr++;
563  } else {
564    /* Noninterleaved DC scan for each component */
565    scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
566  }
567  return scanptr;
568}
569
570
571/*
572 * Create a recommended progressive-JPEG script.
573 * cinfo->num_components and cinfo->jpeg_color_space must be correct.
574 */
575
576GLOBAL(void)
577jpeg_simple_progression (j_compress_ptr cinfo)
578{
579  int ncomps = cinfo->num_components;
580  int nscans;
581  jpeg_scan_info * scanptr;
582
583  /* Safety check to ensure start_compress not called yet. */
584  if (cinfo->global_state != CSTATE_START)
585    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
586
587  /* Figure space needed for script.  Calculation must match code below! */
588  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
589    /* Custom script for YCbCr color images. */
590    nscans = 10;
591  } else {
592    /* All-purpose script for other color spaces. */
593    if (ncomps > MAX_COMPS_IN_SCAN)
594      nscans = 6 * ncomps;	/* 2 DC + 4 AC scans per component */
595    else
596      nscans = 2 + 4 * ncomps;	/* 2 DC scans; 4 AC scans per component */
597  }
598
599  /* Allocate space for script.
600   * We need to put it in the permanent pool in case the application performs
601   * multiple compressions without changing the settings.  To avoid a memory
602   * leak if jpeg_simple_progression is called repeatedly for the same JPEG
603   * object, we try to re-use previously allocated space, and we allocate
604   * enough space to handle YCbCr even if initially asked for grayscale.
605   */
606  if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
607    cinfo->script_space_size = MAX(nscans, 10);
608    cinfo->script_space = (jpeg_scan_info *)
609      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
610			cinfo->script_space_size * SIZEOF(jpeg_scan_info));
611  }
612  scanptr = cinfo->script_space;
613  cinfo->scan_info = scanptr;
614  cinfo->num_scans = nscans;
615
616  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
617    /* Custom script for YCbCr color images. */
618    /* Initial DC scan */
619    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
620    /* Initial AC scan: get some luma data out in a hurry */
621    scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
622    /* Chroma data is too small to be worth expending many scans on */
623    scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
624    scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
625    /* Complete spectral selection for luma AC */
626    scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
627    /* Refine next bit of luma AC */
628    scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
629    /* Finish DC successive approximation */
630    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
631    /* Finish AC successive approximation */
632    scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
633    scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
634    /* Luma bottom bit comes last since it's usually largest scan */
635    scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
636  } else {
637    /* All-purpose script for other color spaces. */
638    /* Successive approximation first pass */
639    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
640    scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
641    scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
642    /* Successive approximation second pass */
643    scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
644    /* Successive approximation final pass */
645    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
646    scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
647  }
648}
649
650#endif /* C_PROGRESSIVE_SUPPORTED */
651