1#include <float.h>
2#include "pipe/p_context.h"
3#include "pipe/p_defines.h"
4#include "pipe/p_state.h"
5#include "util/u_linkage.h"
6#include "util/u_inlines.h"
7#include "util/u_debug.h"
8
9#include "pipe/p_shader_tokens.h"
10#include "tgsi/tgsi_parse.h"
11#include "tgsi/tgsi_util.h"
12#include "tgsi/tgsi_dump.h"
13#include "tgsi/tgsi_ureg.h"
14
15#include "nv30-40_3d.xml.h"
16#include "nv30_context.h"
17#include "nvfx_shader.h"
18
19struct nvfx_fpc {
20   struct nv30_fragprog *fp;
21
22   unsigned max_temps;
23   unsigned long long r_temps;
24   unsigned long long r_temps_discard;
25   struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS];
26   struct nvfx_reg r_input[PIPE_MAX_SHADER_INPUTS];
27   struct nvfx_reg *r_temp;
28
29   int num_regs;
30
31   unsigned inst_offset;
32   unsigned have_const;
33
34   struct util_dynarray imm_data;
35
36   struct nvfx_reg* r_imm;
37   unsigned nr_imm;
38
39   struct util_dynarray if_stack;
40   //struct util_dynarray loop_stack;
41   struct util_dynarray label_relocs;
42};
43
44static INLINE struct nvfx_reg
45temp(struct nvfx_fpc *fpc)
46{
47   int idx = __builtin_ctzll(~fpc->r_temps);
48
49   if (idx >= fpc->max_temps) {
50      NOUVEAU_ERR("out of temps!!\n");
51      assert(0);
52      return nvfx_reg(NVFXSR_TEMP, 0);
53   }
54
55   fpc->r_temps |= (1ULL << idx);
56   fpc->r_temps_discard |= (1ULL << idx);
57   return nvfx_reg(NVFXSR_TEMP, idx);
58}
59
60static INLINE void
61release_temps(struct nvfx_fpc *fpc)
62{
63   fpc->r_temps &= ~fpc->r_temps_discard;
64   fpc->r_temps_discard = 0ULL;
65}
66
67static inline struct nvfx_reg
68nvfx_fp_imm(struct nvfx_fpc *fpc, float a, float b, float c, float d)
69{
70   float v[4] = {a, b, c, d};
71   int idx = fpc->imm_data.size >> 4;
72
73   memcpy(util_dynarray_grow(&fpc->imm_data, sizeof(float) * 4), v, 4 * sizeof(float));
74   return nvfx_reg(NVFXSR_IMM, idx);
75}
76
77static void
78grow_insns(struct nvfx_fpc *fpc, int size)
79{
80   struct nv30_fragprog *fp = fpc->fp;
81
82   fp->insn_len += size;
83   fp->insn = realloc(fp->insn, sizeof(uint32_t) * fp->insn_len);
84}
85
86static void
87emit_src(struct nvfx_fpc *fpc, int pos, struct nvfx_src src)
88{
89   struct nv30_fragprog *fp = fpc->fp;
90   uint32_t *hw = &fp->insn[fpc->inst_offset];
91   uint32_t sr = 0;
92
93   switch (src.reg.type) {
94   case NVFXSR_INPUT:
95      sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
96      hw[0] |= (src.reg.index << NVFX_FP_OP_INPUT_SRC_SHIFT);
97      break;
98   case NVFXSR_OUTPUT:
99      sr |= NVFX_FP_REG_SRC_HALF;
100      /* fall-through */
101   case NVFXSR_TEMP:
102      sr |= (NVFX_FP_REG_TYPE_TEMP << NVFX_FP_REG_TYPE_SHIFT);
103      sr |= (src.reg.index << NVFX_FP_REG_SRC_SHIFT);
104      break;
105   case NVFXSR_IMM:
106      if (!fpc->have_const) {
107         grow_insns(fpc, 4);
108         hw = &fp->insn[fpc->inst_offset];
109         fpc->have_const = 1;
110      }
111
112      memcpy(&fp->insn[fpc->inst_offset + 4],
113            (float*)fpc->imm_data.data + src.reg.index * 4,
114            sizeof(uint32_t) * 4);
115
116      sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
117      break;
118   case NVFXSR_CONST:
119      if (!fpc->have_const) {
120         grow_insns(fpc, 4);
121         hw = &fp->insn[fpc->inst_offset];
122         fpc->have_const = 1;
123      }
124
125      {
126         struct nv30_fragprog_data *fpd;
127
128         fp->consts = realloc(fp->consts, ++fp->nr_consts *
129                    sizeof(*fpd));
130         fpd = &fp->consts[fp->nr_consts - 1];
131         fpd->offset = fpc->inst_offset + 4;
132         fpd->index = src.reg.index;
133         memset(&fp->insn[fpd->offset], 0, sizeof(uint32_t) * 4);
134      }
135
136      sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
137      break;
138   case NVFXSR_NONE:
139      sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
140      break;
141   default:
142      assert(0);
143   }
144
145   if (src.negate)
146      sr |= NVFX_FP_REG_NEGATE;
147
148   if (src.abs)
149      hw[1] |= (1 << (29 + pos));
150
151   sr |= ((src.swz[0] << NVFX_FP_REG_SWZ_X_SHIFT) |
152          (src.swz[1] << NVFX_FP_REG_SWZ_Y_SHIFT) |
153          (src.swz[2] << NVFX_FP_REG_SWZ_Z_SHIFT) |
154          (src.swz[3] << NVFX_FP_REG_SWZ_W_SHIFT));
155
156   hw[pos + 1] |= sr;
157}
158
159static void
160emit_dst(struct nvfx_fpc *fpc, struct nvfx_reg dst)
161{
162   struct nv30_fragprog *fp = fpc->fp;
163   uint32_t *hw = &fp->insn[fpc->inst_offset];
164
165   switch (dst.type) {
166   case NVFXSR_OUTPUT:
167      if (dst.index == 1)
168         fp->fp_control |= 0x0000000e;
169      else {
170         hw[0] |= NVFX_FP_OP_OUT_REG_HALF;
171         dst.index <<= 1;
172      }
173      /* fall-through */
174   case NVFXSR_TEMP:
175      if (fpc->num_regs < (dst.index + 1))
176         fpc->num_regs = dst.index + 1;
177      break;
178   case NVFXSR_NONE:
179      hw[0] |= (1 << 30);
180      break;
181   default:
182      assert(0);
183   }
184
185   hw[0] |= (dst.index << NVFX_FP_OP_OUT_REG_SHIFT);
186}
187
188static void
189nvfx_fp_emit(struct nvfx_fpc *fpc, struct nvfx_insn insn)
190{
191   struct nv30_fragprog *fp = fpc->fp;
192   uint32_t *hw;
193
194   fpc->inst_offset = fp->insn_len;
195   fpc->have_const = 0;
196   grow_insns(fpc, 4);
197   hw = &fp->insn[fpc->inst_offset];
198   memset(hw, 0, sizeof(uint32_t) * 4);
199
200   if (insn.op == NVFX_FP_OP_OPCODE_KIL)
201      fp->fp_control |= NV30_3D_FP_CONTROL_USES_KIL;
202   hw[0] |= (insn.op << NVFX_FP_OP_OPCODE_SHIFT);
203   hw[0] |= (insn.mask << NVFX_FP_OP_OUTMASK_SHIFT);
204   hw[2] |= (insn.scale << NVFX_FP_OP_DST_SCALE_SHIFT);
205
206   if (insn.sat)
207      hw[0] |= NVFX_FP_OP_OUT_SAT;
208
209   if (insn.cc_update)
210      hw[0] |= NVFX_FP_OP_COND_WRITE_ENABLE;
211   hw[1] |= (insn.cc_test << NVFX_FP_OP_COND_SHIFT);
212   hw[1] |= ((insn.cc_swz[0] << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
213        (insn.cc_swz[1] << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
214        (insn.cc_swz[2] << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
215        (insn.cc_swz[3] << NVFX_FP_OP_COND_SWZ_W_SHIFT));
216
217   if(insn.unit >= 0)
218   {
219      hw[0] |= (insn.unit << NVFX_FP_OP_TEX_UNIT_SHIFT);
220   }
221
222   emit_dst(fpc, insn.dst);
223   emit_src(fpc, 0, insn.src[0]);
224   emit_src(fpc, 1, insn.src[1]);
225   emit_src(fpc, 2, insn.src[2]);
226}
227
228#define arith(s,o,d,m,s0,s1,s2) \
229       nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, -1, \
230                       (d), (m), (s0), (s1), (s2))
231
232#define tex(s,o,u,d,m,s0,s1,s2) \
233   nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, (u), \
234                   (d), (m), (s0), none, none)
235
236/* IF src.x != 0, as TGSI specifies */
237static void
238nv40_fp_if(struct nvfx_fpc *fpc, struct nvfx_src src)
239{
240   const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
241   struct nvfx_insn insn = arith(0, MOV, none.reg, NVFX_FP_MASK_X, src, none, none);
242   uint32_t *hw;
243   insn.cc_update = 1;
244   nvfx_fp_emit(fpc, insn);
245
246   fpc->inst_offset = fpc->fp->insn_len;
247   grow_insns(fpc, 4);
248   hw = &fpc->fp->insn[fpc->inst_offset];
249   /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
250   hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
251      NV40_FP_OP_OUT_NONE |
252      (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
253   /* Use .xxxx swizzle so that we check only src[0].x*/
254   hw[1] = (0 << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
255         (0 << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
256         (0 << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
257         (0 << NVFX_FP_OP_COND_SWZ_W_SHIFT) |
258         (NVFX_FP_OP_COND_NE << NVFX_FP_OP_COND_SHIFT);
259   hw[2] = 0; /* | NV40_FP_OP_OPCODE_IS_BRANCH | else_offset */
260   hw[3] = 0; /* | endif_offset */
261   util_dynarray_append(&fpc->if_stack, unsigned, fpc->inst_offset);
262}
263
264/* IF src.x != 0, as TGSI specifies */
265static void
266nv40_fp_cal(struct nvfx_fpc *fpc, unsigned target)
267{
268        struct nvfx_relocation reloc;
269        uint32_t *hw;
270        fpc->inst_offset = fpc->fp->insn_len;
271        grow_insns(fpc, 4);
272        hw = &fpc->fp->insn[fpc->inst_offset];
273        /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
274        hw[0] = (NV40_FP_OP_BRA_OPCODE_CAL << NVFX_FP_OP_OPCODE_SHIFT);
275        /* Use .xxxx swizzle so that we check only src[0].x*/
276        hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
277                        (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
278        hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
279        hw[3] = 0;
280        reloc.target = target;
281        reloc.location = fpc->inst_offset + 2;
282        util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
283}
284
285static void
286nv40_fp_ret(struct nvfx_fpc *fpc)
287{
288   uint32_t *hw;
289   fpc->inst_offset = fpc->fp->insn_len;
290   grow_insns(fpc, 4);
291   hw = &fpc->fp->insn[fpc->inst_offset];
292   /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
293   hw[0] = (NV40_FP_OP_BRA_OPCODE_RET << NVFX_FP_OP_OPCODE_SHIFT);
294   /* Use .xxxx swizzle so that we check only src[0].x*/
295   hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
296         (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
297   hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
298   hw[3] = 0;
299}
300
301static void
302nv40_fp_rep(struct nvfx_fpc *fpc, unsigned count, unsigned target)
303{
304        struct nvfx_relocation reloc;
305        uint32_t *hw;
306        fpc->inst_offset = fpc->fp->insn_len;
307        grow_insns(fpc, 4);
308        hw = &fpc->fp->insn[fpc->inst_offset];
309        /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
310        hw[0] = (NV40_FP_OP_BRA_OPCODE_REP << NVFX_FP_OP_OPCODE_SHIFT) |
311                        NV40_FP_OP_OUT_NONE |
312                        (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
313        /* Use .xxxx swizzle so that we check only src[0].x*/
314        hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
315                        (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
316        hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH |
317                        (count << NV40_FP_OP_REP_COUNT1_SHIFT) |
318                        (count << NV40_FP_OP_REP_COUNT2_SHIFT) |
319                        (count << NV40_FP_OP_REP_COUNT3_SHIFT);
320        hw[3] = 0; /* | end_offset */
321        reloc.target = target;
322        reloc.location = fpc->inst_offset + 3;
323        util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
324        //util_dynarray_append(&fpc->loop_stack, unsigned, target);
325}
326
327/* warning: this only works forward, and probably only if not inside any IF */
328static void
329nv40_fp_bra(struct nvfx_fpc *fpc, unsigned target)
330{
331        struct nvfx_relocation reloc;
332        uint32_t *hw;
333        fpc->inst_offset = fpc->fp->insn_len;
334        grow_insns(fpc, 4);
335        hw = &fpc->fp->insn[fpc->inst_offset];
336        /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
337        hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
338                NV40_FP_OP_OUT_NONE |
339                (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
340        /* Use .xxxx swizzle so that we check only src[0].x*/
341        hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
342                        (NVFX_FP_OP_COND_FL << NVFX_FP_OP_COND_SHIFT);
343        hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | else_offset */
344        hw[3] = 0; /* | endif_offset */
345        reloc.target = target;
346        reloc.location = fpc->inst_offset + 2;
347        util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
348        reloc.target = target;
349        reloc.location = fpc->inst_offset + 3;
350        util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
351}
352
353static void
354nv40_fp_brk(struct nvfx_fpc *fpc)
355{
356   uint32_t *hw;
357   fpc->inst_offset = fpc->fp->insn_len;
358   grow_insns(fpc, 4);
359   hw = &fpc->fp->insn[fpc->inst_offset];
360   /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
361   hw[0] = (NV40_FP_OP_BRA_OPCODE_BRK << NVFX_FP_OP_OPCODE_SHIFT) |
362      NV40_FP_OP_OUT_NONE;
363   /* Use .xxxx swizzle so that we check only src[0].x*/
364   hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
365         (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
366   hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH;
367   hw[3] = 0;
368}
369
370static INLINE struct nvfx_src
371tgsi_src(struct nvfx_fpc *fpc, const struct tgsi_full_src_register *fsrc)
372{
373   struct nvfx_src src;
374
375   switch (fsrc->Register.File) {
376   case TGSI_FILE_INPUT:
377      src.reg = fpc->r_input[fsrc->Register.Index];
378      break;
379   case TGSI_FILE_CONSTANT:
380      src.reg = nvfx_reg(NVFXSR_CONST, fsrc->Register.Index);
381      break;
382   case TGSI_FILE_IMMEDIATE:
383      assert(fsrc->Register.Index < fpc->nr_imm);
384      src.reg = fpc->r_imm[fsrc->Register.Index];
385      break;
386   case TGSI_FILE_TEMPORARY:
387      src.reg = fpc->r_temp[fsrc->Register.Index];
388      break;
389   /* NV40 fragprog result regs are just temps, so this is simple */
390   case TGSI_FILE_OUTPUT:
391      src.reg = fpc->r_result[fsrc->Register.Index];
392      break;
393   default:
394      NOUVEAU_ERR("bad src file\n");
395      src.reg.index = 0;
396      src.reg.type = 0;
397      break;
398   }
399
400   src.abs = fsrc->Register.Absolute;
401   src.negate = fsrc->Register.Negate;
402   src.swz[0] = fsrc->Register.SwizzleX;
403   src.swz[1] = fsrc->Register.SwizzleY;
404   src.swz[2] = fsrc->Register.SwizzleZ;
405   src.swz[3] = fsrc->Register.SwizzleW;
406   src.indirect = 0;
407   src.indirect_reg = 0;
408   src.indirect_swz = 0;
409   return src;
410}
411
412static INLINE struct nvfx_reg
413tgsi_dst(struct nvfx_fpc *fpc, const struct tgsi_full_dst_register *fdst) {
414   switch (fdst->Register.File) {
415   case TGSI_FILE_OUTPUT:
416      return fpc->r_result[fdst->Register.Index];
417   case TGSI_FILE_TEMPORARY:
418      return fpc->r_temp[fdst->Register.Index];
419   case TGSI_FILE_NULL:
420      return nvfx_reg(NVFXSR_NONE, 0);
421   default:
422      NOUVEAU_ERR("bad dst file %d\n", fdst->Register.File);
423      return nvfx_reg(NVFXSR_NONE, 0);
424   }
425}
426
427static INLINE int
428tgsi_mask(uint tgsi)
429{
430   int mask = 0;
431
432   if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_FP_MASK_X;
433   if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_FP_MASK_Y;
434   if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_FP_MASK_Z;
435   if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_FP_MASK_W;
436   return mask;
437}
438
439static boolean
440nvfx_fragprog_parse_instruction(struct nv30_context* nvfx, struct nvfx_fpc *fpc,
441            const struct tgsi_full_instruction *finst)
442{
443   const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
444   struct nvfx_insn insn;
445   struct nvfx_src src[3], tmp;
446   struct nvfx_reg dst;
447   int mask, sat, unit = 0;
448   int ai = -1, ci = -1, ii = -1;
449   int i;
450
451   if (finst->Instruction.Opcode == TGSI_OPCODE_END)
452      return TRUE;
453
454   for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
455      const struct tgsi_full_src_register *fsrc;
456
457      fsrc = &finst->Src[i];
458      if (fsrc->Register.File == TGSI_FILE_TEMPORARY) {
459         src[i] = tgsi_src(fpc, fsrc);
460      }
461   }
462
463   for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
464      const struct tgsi_full_src_register *fsrc;
465
466      fsrc = &finst->Src[i];
467
468      switch (fsrc->Register.File) {
469      case TGSI_FILE_INPUT:
470         if(fpc->fp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FOG && (0
471               || fsrc->Register.SwizzleX == PIPE_SWIZZLE_ALPHA
472               || fsrc->Register.SwizzleY == PIPE_SWIZZLE_ALPHA
473               || fsrc->Register.SwizzleZ == PIPE_SWIZZLE_ALPHA
474               || fsrc->Register.SwizzleW == PIPE_SWIZZLE_ALPHA
475               )) {
476            /* hardware puts 0 in fogcoord.w, but GL/Gallium want 1 there */
477            struct nvfx_src addend = nvfx_src(nvfx_fp_imm(fpc, 0, 0, 0, 1));
478            addend.swz[0] = fsrc->Register.SwizzleX;
479            addend.swz[1] = fsrc->Register.SwizzleY;
480            addend.swz[2] = fsrc->Register.SwizzleZ;
481            addend.swz[3] = fsrc->Register.SwizzleW;
482            src[i] = nvfx_src(temp(fpc));
483            nvfx_fp_emit(fpc, arith(0, ADD, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), addend, none));
484         } else if (ai == -1 || ai == fsrc->Register.Index) {
485            ai = fsrc->Register.Index;
486            src[i] = tgsi_src(fpc, fsrc);
487         } else {
488            src[i] = nvfx_src(temp(fpc));
489            nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
490         }
491         break;
492      case TGSI_FILE_CONSTANT:
493         if ((ci == -1 && ii == -1) ||
494             ci == fsrc->Register.Index) {
495            ci = fsrc->Register.Index;
496            src[i] = tgsi_src(fpc, fsrc);
497         } else {
498            src[i] = nvfx_src(temp(fpc));
499            nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
500         }
501         break;
502      case TGSI_FILE_IMMEDIATE:
503         if ((ci == -1 && ii == -1) ||
504             ii == fsrc->Register.Index) {
505            ii = fsrc->Register.Index;
506            src[i] = tgsi_src(fpc, fsrc);
507         } else {
508            src[i] = nvfx_src(temp(fpc));
509            nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
510         }
511         break;
512      case TGSI_FILE_TEMPORARY:
513         /* handled above */
514         break;
515      case TGSI_FILE_SAMPLER:
516         unit = fsrc->Register.Index;
517         break;
518      case TGSI_FILE_OUTPUT:
519         break;
520      default:
521         NOUVEAU_ERR("bad src file\n");
522         return FALSE;
523      }
524   }
525
526   dst  = tgsi_dst(fpc, &finst->Dst[0]);
527   mask = tgsi_mask(finst->Dst[0].Register.WriteMask);
528   sat  = (finst->Instruction.Saturate == TGSI_SAT_ZERO_ONE);
529
530   switch (finst->Instruction.Opcode) {
531   case TGSI_OPCODE_ABS:
532      nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, abs(src[0]), none, none));
533      break;
534   case TGSI_OPCODE_ADD:
535      nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], src[1], none));
536      break;
537   case TGSI_OPCODE_CEIL:
538      tmp = nvfx_src(temp(fpc));
539      nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, neg(src[0]), none, none));
540      nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, neg(tmp), none, none));
541      break;
542   case TGSI_OPCODE_CMP:
543      insn = arith(0, MOV, none.reg, mask, src[0], none, none);
544      insn.cc_update = 1;
545      nvfx_fp_emit(fpc, insn);
546
547      insn = arith(sat, MOV, dst, mask, src[2], none, none);
548      insn.cc_test = NVFX_COND_GE;
549      nvfx_fp_emit(fpc, insn);
550
551      insn = arith(sat, MOV, dst, mask, src[1], none, none);
552      insn.cc_test = NVFX_COND_LT;
553      nvfx_fp_emit(fpc, insn);
554      break;
555   case TGSI_OPCODE_COS:
556      nvfx_fp_emit(fpc, arith(sat, COS, dst, mask, src[0], none, none));
557      break;
558   case TGSI_OPCODE_DDX:
559      if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
560         tmp = nvfx_src(temp(fpc));
561         nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
562         nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
563         nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
564         nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
565      } else {
566         nvfx_fp_emit(fpc, arith(sat, DDX, dst, mask, src[0], none, none));
567      }
568      break;
569   case TGSI_OPCODE_DDY:
570      if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
571         tmp = nvfx_src(temp(fpc));
572         nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
573         nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
574         nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
575         nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
576      } else {
577         nvfx_fp_emit(fpc, arith(sat, DDY, dst, mask, src[0], none, none));
578      }
579      break;
580   case TGSI_OPCODE_DP2:
581      tmp = nvfx_src(temp(fpc));
582      nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], src[1], none));
583      nvfx_fp_emit(fpc, arith(0, ADD, dst, mask, swz(tmp, X, X, X, X), swz(tmp, Y, Y, Y, Y), none));
584      break;
585   case TGSI_OPCODE_DP3:
586      nvfx_fp_emit(fpc, arith(sat, DP3, dst, mask, src[0], src[1], none));
587      break;
588   case TGSI_OPCODE_DP4:
589      nvfx_fp_emit(fpc, arith(sat, DP4, dst, mask, src[0], src[1], none));
590      break;
591   case TGSI_OPCODE_DPH:
592      tmp = nvfx_src(temp(fpc));
593      nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_X, src[0], src[1], none));
594      nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, swz(tmp, X, X, X, X), swz(src[1], W, W, W, W), none));
595      break;
596   case TGSI_OPCODE_DST:
597      nvfx_fp_emit(fpc, arith(sat, DST, dst, mask, src[0], src[1], none));
598      break;
599   case TGSI_OPCODE_EX2:
600      nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, src[0], none, none));
601      break;
602   case TGSI_OPCODE_FLR:
603      nvfx_fp_emit(fpc, arith(sat, FLR, dst, mask, src[0], none, none));
604      break;
605   case TGSI_OPCODE_FRC:
606      nvfx_fp_emit(fpc, arith(sat, FRC, dst, mask, src[0], none, none));
607      break;
608   case TGSI_OPCODE_KILP:
609      nvfx_fp_emit(fpc, arith(0, KIL, none.reg, 0, none, none, none));
610      break;
611   case TGSI_OPCODE_KIL:
612      insn = arith(0, MOV, none.reg, NVFX_FP_MASK_ALL, src[0], none, none);
613      insn.cc_update = 1;
614      nvfx_fp_emit(fpc, insn);
615
616      insn = arith(0, KIL, none.reg, 0, none, none, none);
617      insn.cc_test = NVFX_COND_LT;
618      nvfx_fp_emit(fpc, insn);
619      break;
620   case TGSI_OPCODE_LG2:
621      nvfx_fp_emit(fpc, arith(sat, LG2, dst, mask, src[0], none, none));
622      break;
623   case TGSI_OPCODE_LIT:
624      if(!nvfx->is_nv4x)
625         nvfx_fp_emit(fpc, arith(sat, LIT_NV30, dst, mask, src[0], none, none));
626      else {
627         /* we use FLT_MIN, so that log2 never gives -infinity, and thus multiplication by
628          * specular 0 always gives 0, so that ex2 gives 1, to satisfy the 0^0 = 1 requirement
629          *
630          * NOTE: if we start using half precision, we might need an fp16 FLT_MIN here instead
631          */
632         struct nvfx_src maxs = nvfx_src(nvfx_fp_imm(fpc, 0, FLT_MIN, 0, 0));
633         tmp = nvfx_src(temp(fpc));
634         if (ci>= 0 || ii >= 0) {
635            nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, maxs, none, none));
636            maxs = tmp;
637         }
638         nvfx_fp_emit(fpc, arith(0, MAX, tmp.reg, NVFX_FP_MASK_Y | NVFX_FP_MASK_W, swz(src[0], X, X, X, Y), swz(maxs, X, X, Y, Y), none));
639         nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), none, none));
640         nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), swz(src[0], W, W, W, W), none));
641         nvfx_fp_emit(fpc, arith(sat, LITEX2_NV40, dst, mask, swz(tmp, Y, Y, W, W), none, none));
642      }
643      break;
644   case TGSI_OPCODE_LRP:
645      if(!nvfx->is_nv4x)
646         nvfx_fp_emit(fpc, arith(sat, LRP_NV30, dst, mask, src[0], src[1], src[2]));
647      else {
648         tmp = nvfx_src(temp(fpc));
649         nvfx_fp_emit(fpc, arith(0, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2]));
650         nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], tmp));
651      }
652      break;
653   case TGSI_OPCODE_MAD:
654      nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], src[2]));
655      break;
656   case TGSI_OPCODE_MAX:
657      nvfx_fp_emit(fpc, arith(sat, MAX, dst, mask, src[0], src[1], none));
658      break;
659   case TGSI_OPCODE_MIN:
660      nvfx_fp_emit(fpc, arith(sat, MIN, dst, mask, src[0], src[1], none));
661      break;
662   case TGSI_OPCODE_MOV:
663      nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, src[0], none, none));
664      break;
665   case TGSI_OPCODE_MUL:
666      nvfx_fp_emit(fpc, arith(sat, MUL, dst, mask, src[0], src[1], none));
667      break;
668   case TGSI_OPCODE_NOP:
669      break;
670   case TGSI_OPCODE_POW:
671      if(!nvfx->is_nv4x)
672         nvfx_fp_emit(fpc, arith(sat, POW_NV30, dst, mask, src[0], src[1], none));
673      else {
674         tmp = nvfx_src(temp(fpc));
675         nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
676         nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none));
677         nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, swz(tmp, X, X, X, X), none, none));
678      }
679      break;
680   case TGSI_OPCODE_RCP:
681      nvfx_fp_emit(fpc, arith(sat, RCP, dst, mask, src[0], none, none));
682      break;
683   case TGSI_OPCODE_RFL:
684      if(!nvfx->is_nv4x)
685         nvfx_fp_emit(fpc, arith(0, RFL_NV30, dst, mask, src[0], src[1], none));
686      else {
687         tmp = nvfx_src(temp(fpc));
688         nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_X, src[0], src[0], none));
689         nvfx_fp_emit(fpc, arith(0, DP3, tmp.reg, NVFX_FP_MASK_Y, src[0], src[1], none));
690         insn = arith(0, DIV, tmp.reg, NVFX_FP_MASK_Z, swz(tmp, Y, Y, Y, Y), swz(tmp, X, X, X, X), none);
691         insn.scale = NVFX_FP_OP_DST_SCALE_2X;
692         nvfx_fp_emit(fpc, insn);
693         nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, swz(tmp, Z, Z, Z, Z), src[0], neg(src[1])));
694      }
695      break;
696   case TGSI_OPCODE_RSQ:
697      if(!nvfx->is_nv4x)
698         nvfx_fp_emit(fpc, arith(sat, RSQ_NV30, dst, mask, abs(swz(src[0], X, X, X, X)), none, none));
699      else {
700         tmp = nvfx_src(temp(fpc));
701         insn = arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, abs(swz(src[0], X, X, X, X)), none, none);
702         insn.scale = NVFX_FP_OP_DST_SCALE_INV_2X;
703         nvfx_fp_emit(fpc, insn);
704         nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, neg(swz(tmp, X, X, X, X)), none, none));
705      }
706      break;
707   case TGSI_OPCODE_SCS:
708      /* avoid overwriting the source */
709      if(src[0].swz[NVFX_SWZ_X] != NVFX_SWZ_X)
710      {
711         if (mask & NVFX_FP_MASK_X)
712            nvfx_fp_emit(fpc, arith(sat, COS, dst, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
713         if (mask & NVFX_FP_MASK_Y)
714            nvfx_fp_emit(fpc, arith(sat, SIN, dst, NVFX_FP_MASK_Y, swz(src[0], X, X, X, X), none, none));
715      }
716      else
717      {
718         if (mask & NVFX_FP_MASK_Y)
719            nvfx_fp_emit(fpc, arith(sat, SIN, dst, NVFX_FP_MASK_Y, swz(src[0], X, X, X, X), none, none));
720         if (mask & NVFX_FP_MASK_X)
721            nvfx_fp_emit(fpc, arith(sat, COS, dst, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
722      }
723      break;
724   case TGSI_OPCODE_SEQ:
725      nvfx_fp_emit(fpc, arith(sat, SEQ, dst, mask, src[0], src[1], none));
726      break;
727   case TGSI_OPCODE_SFL:
728      nvfx_fp_emit(fpc, arith(sat, SFL, dst, mask, src[0], src[1], none));
729      break;
730   case TGSI_OPCODE_SGE:
731      nvfx_fp_emit(fpc, arith(sat, SGE, dst, mask, src[0], src[1], none));
732      break;
733   case TGSI_OPCODE_SGT:
734      nvfx_fp_emit(fpc, arith(sat, SGT, dst, mask, src[0], src[1], none));
735      break;
736   case TGSI_OPCODE_SIN:
737      nvfx_fp_emit(fpc, arith(sat, SIN, dst, mask, src[0], none, none));
738      break;
739   case TGSI_OPCODE_SLE:
740      nvfx_fp_emit(fpc, arith(sat, SLE, dst, mask, src[0], src[1], none));
741      break;
742   case TGSI_OPCODE_SLT:
743      nvfx_fp_emit(fpc, arith(sat, SLT, dst, mask, src[0], src[1], none));
744      break;
745   case TGSI_OPCODE_SNE:
746      nvfx_fp_emit(fpc, arith(sat, SNE, dst, mask, src[0], src[1], none));
747      break;
748   case TGSI_OPCODE_SSG:
749   {
750      struct nvfx_src minones = swz(nvfx_src(nvfx_fp_imm(fpc, -1, -1, -1, -1)), X, X, X, X);
751
752      insn = arith(sat, MOV, dst, mask, src[0], none, none);
753      insn.cc_update = 1;
754      nvfx_fp_emit(fpc, insn);
755
756      insn = arith(0, STR, dst, mask, none, none, none);
757      insn.cc_test = NVFX_COND_GT;
758      nvfx_fp_emit(fpc, insn);
759
760      if(!sat) {
761         insn = arith(0, MOV, dst, mask, minones, none, none);
762         insn.cc_test = NVFX_COND_LT;
763         nvfx_fp_emit(fpc, insn);
764      }
765      break;
766   }
767   case TGSI_OPCODE_STR:
768      nvfx_fp_emit(fpc, arith(sat, STR, dst, mask, src[0], src[1], none));
769      break;
770   case TGSI_OPCODE_SUB:
771      nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], neg(src[1]), none));
772      break;
773   case TGSI_OPCODE_TEX:
774      nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
775      break;
776        case TGSI_OPCODE_TRUNC:
777                tmp = nvfx_src(temp(fpc));
778                insn = arith(0, MOV, none.reg, mask, src[0], none, none);
779                insn.cc_update = 1;
780                nvfx_fp_emit(fpc, insn);
781
782                nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, abs(src[0]), none, none));
783                nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, tmp, none, none));
784
785                insn = arith(sat, MOV, dst, mask, neg(tmp), none, none);
786                insn.cc_test = NVFX_COND_LT;
787                nvfx_fp_emit(fpc, insn);
788                break;
789        case TGSI_OPCODE_TXB:
790                nvfx_fp_emit(fpc, tex(sat, TXB, unit, dst, mask, src[0], none, none));
791                break;
792        case TGSI_OPCODE_TXL:
793                if(nvfx->is_nv4x)
794                        nvfx_fp_emit(fpc, tex(sat, TXL_NV40, unit, dst, mask, src[0], none, none));
795                else /* unsupported on nv30, use TEX and hope they like it */
796                        nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
797                break;
798        case TGSI_OPCODE_TXP:
799                nvfx_fp_emit(fpc, tex(sat, TXP, unit, dst, mask, src[0], none, none));
800                break;
801   case TGSI_OPCODE_XPD:
802      tmp = nvfx_src(temp(fpc));
803      nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, mask, swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none));
804      nvfx_fp_emit(fpc, arith(sat, MAD, dst, (mask & ~NVFX_FP_MASK_W), swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y), neg(tmp)));
805      break;
806
807   case TGSI_OPCODE_IF:
808      // MOVRC0 R31 (TR0.xyzw), R<src>:
809      // IF (NE.xxxx) ELSE <else> END <end>
810      if(!nvfx->use_nv4x)
811         goto nv3x_cflow;
812      nv40_fp_if(fpc, src[0]);
813      break;
814
815   case TGSI_OPCODE_ELSE:
816   {
817      uint32_t *hw;
818      if(!nvfx->use_nv4x)
819         goto nv3x_cflow;
820      assert(util_dynarray_contains(&fpc->if_stack, unsigned));
821      hw = &fpc->fp->insn[util_dynarray_top(&fpc->if_stack, unsigned)];
822      hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
823      break;
824   }
825
826   case TGSI_OPCODE_ENDIF:
827   {
828      uint32_t *hw;
829      if(!nvfx->use_nv4x)
830         goto nv3x_cflow;
831      assert(util_dynarray_contains(&fpc->if_stack, unsigned));
832      hw = &fpc->fp->insn[util_dynarray_pop(&fpc->if_stack, unsigned)];
833      if(!hw[2])
834         hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
835      hw[3] = fpc->fp->insn_len;
836      break;
837   }
838
839   case TGSI_OPCODE_BRA:
840      /* This can in limited cases be implemented with an IF with the else and endif labels pointing to the target */
841      /* no state tracker uses this, so don't implement this for now */
842      assert(0);
843      nv40_fp_bra(fpc, finst->Label.Label);
844      break;
845
846   case TGSI_OPCODE_BGNSUB:
847   case TGSI_OPCODE_ENDSUB:
848      /* nothing to do here */
849      break;
850
851   case TGSI_OPCODE_CAL:
852      if(!nvfx->use_nv4x)
853         goto nv3x_cflow;
854      nv40_fp_cal(fpc, finst->Label.Label);
855      break;
856
857   case TGSI_OPCODE_RET:
858      if(!nvfx->use_nv4x)
859         goto nv3x_cflow;
860      nv40_fp_ret(fpc);
861      break;
862
863   case TGSI_OPCODE_BGNLOOP:
864      if(!nvfx->use_nv4x)
865         goto nv3x_cflow;
866      /* TODO: we should support using two nested REPs to allow a > 255 iteration count */
867      nv40_fp_rep(fpc, 255, finst->Label.Label);
868      break;
869
870   case TGSI_OPCODE_ENDLOOP:
871      break;
872
873   case TGSI_OPCODE_BRK:
874      if(!nvfx->use_nv4x)
875         goto nv3x_cflow;
876      nv40_fp_brk(fpc);
877      break;
878
879   case TGSI_OPCODE_CONT:
880   {
881      static int warned = 0;
882      if(!warned) {
883         NOUVEAU_ERR("Sorry, the continue keyword is not implemented: ignoring it.\n");
884         warned = 1;
885      }
886      break;
887   }
888
889        default:
890      NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode);
891      return FALSE;
892   }
893
894out:
895   release_temps(fpc);
896   return TRUE;
897nv3x_cflow:
898   {
899      static int warned = 0;
900      if(!warned) {
901         NOUVEAU_ERR(
902               "Sorry, control flow instructions are not supported in hardware on nv3x: ignoring them\n"
903               "If rendering is incorrect, try to disable GLSL support in the application.\n");
904         warned = 1;
905      }
906   }
907   goto out;
908}
909
910static boolean
911nvfx_fragprog_parse_decl_input(struct nv30_context *nvfx, struct nvfx_fpc *fpc,
912                               const struct tgsi_full_declaration *fdec)
913{
914   unsigned idx = fdec->Range.First;
915   unsigned hw;
916
917   switch (fdec->Semantic.Name) {
918   case TGSI_SEMANTIC_POSITION:
919      hw = NVFX_FP_OP_INPUT_SRC_POSITION;
920      break;
921   case TGSI_SEMANTIC_COLOR:
922      hw = NVFX_FP_OP_INPUT_SRC_COL0 + fdec->Semantic.Index;
923      break;
924   case TGSI_SEMANTIC_FOG:
925      hw = NVFX_FP_OP_INPUT_SRC_FOGC;
926      break;
927   case TGSI_SEMANTIC_FACE:
928      hw = NV40_FP_OP_INPUT_SRC_FACING;
929      break;
930   case TGSI_SEMANTIC_GENERIC:
931      if (fdec->Semantic.Index >= 8)
932         return TRUE;
933
934      fpc->fp->texcoord[fdec->Semantic.Index] = fdec->Semantic.Index;
935      fpc->fp->texcoords |= (1 << fdec->Semantic.Index);
936      fpc->fp->vp_or |= (0x00004000 << fdec->Semantic.Index);
937      hw = NVFX_FP_OP_INPUT_SRC_TC(fdec->Semantic.Index);
938      break;
939   default:
940      assert(0);
941      return FALSE;
942   }
943
944   fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw);
945   return TRUE;
946}
947
948static boolean
949nvfx_fragprog_assign_generic(struct nv30_context *nvfx, struct nvfx_fpc *fpc,
950                             const struct tgsi_full_declaration *fdec)
951{
952   unsigned num_texcoords = nvfx->use_nv4x ? 10 : 8;
953   unsigned idx = fdec->Range.First;
954   unsigned hw;
955
956   switch (fdec->Semantic.Name) {
957   case TGSI_SEMANTIC_GENERIC:
958      if (fdec->Semantic.Index >= 8) {
959         for (hw = 0; hw < num_texcoords; hw++) {
960            if (fpc->fp->texcoord[hw] == 0xffff) {
961               fpc->fp->texcoord[hw] = fdec->Semantic.Index;
962               if (hw <= 7) {
963                  fpc->fp->texcoords |= (0x1 << hw);
964                  fpc->fp->vp_or |= (0x00004000 << hw);
965               } else {
966                  fpc->fp->vp_or |= (0x00001000 << (hw - 8));
967               }
968               if (fdec->Semantic.Index == 9)
969                  fpc->fp->point_sprite_control |= (0x00000100 << hw);
970               hw = NVFX_FP_OP_INPUT_SRC_TC(hw);
971               fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw);
972               return TRUE;
973            }
974         }
975         return FALSE;
976      }
977      return TRUE;
978   default:
979      return TRUE;
980   }
981}
982
983static boolean
984nvfx_fragprog_parse_decl_output(struct nv30_context* nvfx, struct nvfx_fpc *fpc,
985            const struct tgsi_full_declaration *fdec)
986{
987   unsigned idx = fdec->Range.First;
988   unsigned hw;
989
990   switch (fdec->Semantic.Name) {
991   case TGSI_SEMANTIC_POSITION:
992      hw = 1;
993      break;
994   case TGSI_SEMANTIC_COLOR:
995      hw = ~0;
996      switch (fdec->Semantic.Index) {
997      case 0: hw = 0; break;
998      case 1: hw = 2; break;
999      case 2: hw = 3; break;
1000      case 3: hw = 4; break;
1001      }
1002      if(hw > ((nvfx->use_nv4x) ? 4 : 2)) {
1003         NOUVEAU_ERR("bad rcol index\n");
1004         return FALSE;
1005      }
1006      break;
1007   default:
1008      NOUVEAU_ERR("bad output semantic\n");
1009      return FALSE;
1010   }
1011
1012   fpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw);
1013   fpc->r_temps |= (1ULL << hw);
1014   return TRUE;
1015}
1016
1017static boolean
1018nvfx_fragprog_prepare(struct nv30_context* nvfx, struct nvfx_fpc *fpc)
1019{
1020   struct tgsi_parse_context p;
1021   int high_temp = -1, i;
1022
1023   fpc->r_imm = CALLOC(fpc->fp->info.immediate_count, sizeof(struct nvfx_reg));
1024
1025   tgsi_parse_init(&p, fpc->fp->pipe.tokens);
1026   while (!tgsi_parse_end_of_tokens(&p)) {
1027      const union tgsi_full_token *tok = &p.FullToken;
1028
1029      tgsi_parse_token(&p);
1030      switch(tok->Token.Type) {
1031      case TGSI_TOKEN_TYPE_DECLARATION:
1032      {
1033         const struct tgsi_full_declaration *fdec;
1034         fdec = &p.FullToken.FullDeclaration;
1035         switch (fdec->Declaration.File) {
1036         case TGSI_FILE_INPUT:
1037            if (!nvfx_fragprog_parse_decl_input(nvfx, fpc, fdec))
1038               goto out_err;
1039            break;
1040         case TGSI_FILE_OUTPUT:
1041            if (!nvfx_fragprog_parse_decl_output(nvfx, fpc, fdec))
1042               goto out_err;
1043            break;
1044         case TGSI_FILE_TEMPORARY:
1045            if (fdec->Range.Last > high_temp) {
1046               high_temp =
1047                  fdec->Range.Last;
1048            }
1049            break;
1050         default:
1051            break;
1052         }
1053      }
1054         break;
1055      case TGSI_TOKEN_TYPE_IMMEDIATE:
1056      {
1057         struct tgsi_full_immediate *imm;
1058
1059         imm = &p.FullToken.FullImmediate;
1060         assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32);
1061         assert(fpc->nr_imm < fpc->fp->info.immediate_count);
1062
1063         fpc->r_imm[fpc->nr_imm++] = nvfx_fp_imm(fpc, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float);
1064         break;
1065      }
1066      default:
1067         break;
1068      }
1069   }
1070   tgsi_parse_free(&p);
1071
1072   tgsi_parse_init(&p, fpc->fp->pipe.tokens);
1073   while (!tgsi_parse_end_of_tokens(&p)) {
1074      const struct tgsi_full_declaration *fdec;
1075      tgsi_parse_token(&p);
1076      switch(p.FullToken.Token.Type) {
1077      case TGSI_TOKEN_TYPE_DECLARATION:
1078         fdec = &p.FullToken.FullDeclaration;
1079         switch (fdec->Declaration.File) {
1080         case TGSI_FILE_INPUT:
1081            if (!nvfx_fragprog_assign_generic(nvfx, fpc, fdec))
1082               goto out_err;
1083            break;
1084         default:
1085            break;
1086         }
1087         break;
1088      default:
1089         break;
1090      }
1091   }
1092   tgsi_parse_free(&p);
1093
1094   if (++high_temp) {
1095      fpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg));
1096      for (i = 0; i < high_temp; i++)
1097         fpc->r_temp[i] = temp(fpc);
1098      fpc->r_temps_discard = 0ULL;
1099   }
1100
1101   return TRUE;
1102
1103out_err:
1104   if (fpc->r_temp) {
1105      FREE(fpc->r_temp);
1106      fpc->r_temp = NULL;
1107   }
1108   tgsi_parse_free(&p);
1109   return FALSE;
1110}
1111
1112DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_fp, "NVFX_DUMP_FP", FALSE)
1113
1114void
1115_nvfx_fragprog_translate(struct nv30_context *nvfx, struct nv30_fragprog *fp,
1116         boolean emulate_sprite_flipping)
1117{
1118   struct tgsi_parse_context parse;
1119   struct nvfx_fpc *fpc = NULL;
1120   struct util_dynarray insns;
1121
1122   fp->translated = FALSE;
1123   fp->point_sprite_control = 0;
1124   fp->vp_or = 0;
1125
1126   fpc = CALLOC_STRUCT(nvfx_fpc);
1127   if (!fpc)
1128      goto out_err;
1129
1130   fpc->max_temps = nvfx->use_nv4x ? 48 : 32;
1131   fpc->fp = fp;
1132   fpc->num_regs = 2;
1133   memset(fp->texcoord, 0xff, sizeof(fp->texcoord));
1134
1135   for (unsigned i = 0; i < fp->info.num_properties; ++i) {
1136      switch (fp->info.properties[i].name) {
1137      case TGSI_PROPERTY_FS_COORD_ORIGIN:
1138         if (fp->info.properties[i].data[0])
1139            fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_ORIGIN_INVERTED;
1140         break;
1141      case TGSI_PROPERTY_FS_COORD_PIXEL_CENTER:
1142         if (fp->info.properties[i].data[0])
1143            fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_CENTER_INTEGER;
1144         break;
1145      case TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS:
1146         if (fp->info.properties[i].data[0])
1147            fp->rt_enable |= NV30_3D_RT_ENABLE_MRT;
1148         break;
1149      default:
1150         break;
1151      }
1152   }
1153
1154   if (!nvfx_fragprog_prepare(nvfx, fpc))
1155      goto out_err;
1156
1157   tgsi_parse_init(&parse, fp->pipe.tokens);
1158   util_dynarray_init(&insns);
1159
1160   while (!tgsi_parse_end_of_tokens(&parse)) {
1161      tgsi_parse_token(&parse);
1162
1163      switch (parse.FullToken.Token.Type) {
1164      case TGSI_TOKEN_TYPE_INSTRUCTION:
1165      {
1166         const struct tgsi_full_instruction *finst;
1167
1168         util_dynarray_append(&insns, unsigned, fp->insn_len);
1169         finst = &parse.FullToken.FullInstruction;
1170         if (!nvfx_fragprog_parse_instruction(nvfx, fpc, finst))
1171            goto out_err;
1172      }
1173         break;
1174      default:
1175         break;
1176      }
1177   }
1178   util_dynarray_append(&insns, unsigned, fp->insn_len);
1179
1180   for(unsigned i = 0; i < fpc->label_relocs.size; i += sizeof(struct nvfx_relocation))
1181   {
1182      struct nvfx_relocation* label_reloc = (struct nvfx_relocation*)((char*)fpc->label_relocs.data + i);
1183      fp->insn[label_reloc->location] |= ((unsigned*)insns.data)[label_reloc->target];
1184   }
1185   util_dynarray_fini(&insns);
1186
1187   if(!nvfx->is_nv4x)
1188      fp->fp_control |= (fpc->num_regs-1)/2;
1189   else
1190      fp->fp_control |= fpc->num_regs << NV40_3D_FP_CONTROL_TEMP_COUNT__SHIFT;
1191
1192   /* Terminate final instruction */
1193   if(fp->insn)
1194      fp->insn[fpc->inst_offset] |= 0x00000001;
1195
1196   /* Append NOP + END instruction for branches to the end of the program */
1197   fpc->inst_offset = fp->insn_len;
1198   grow_insns(fpc, 4);
1199   fp->insn[fpc->inst_offset + 0] = 0x00000001;
1200   fp->insn[fpc->inst_offset + 1] = 0x00000000;
1201   fp->insn[fpc->inst_offset + 2] = 0x00000000;
1202   fp->insn[fpc->inst_offset + 3] = 0x00000000;
1203
1204   if(debug_get_option_nvfx_dump_fp())
1205   {
1206      debug_printf("\n");
1207      tgsi_dump(fp->pipe.tokens, 0);
1208
1209      debug_printf("\n%s fragment program:\n", nvfx->is_nv4x ? "nv4x" : "nv3x");
1210      for (unsigned i = 0; i < fp->insn_len; i += 4)
1211         debug_printf("%3u: %08x %08x %08x %08x\n", i >> 2, fp->insn[i], fp->insn[i + 1], fp->insn[i + 2], fp->insn[i + 3]);
1212      debug_printf("\n");
1213   }
1214
1215   fp->translated = TRUE;
1216
1217out:
1218   tgsi_parse_free(&parse);
1219   if(fpc)
1220   {
1221      if (fpc->r_temp)
1222         FREE(fpc->r_temp);
1223      util_dynarray_fini(&fpc->if_stack);
1224      util_dynarray_fini(&fpc->label_relocs);
1225      util_dynarray_fini(&fpc->imm_data);
1226      //util_dynarray_fini(&fpc->loop_stack);
1227      FREE(fpc);
1228   }
1229
1230   return;
1231
1232out_err:
1233   _debug_printf("Error: failed to compile this fragment program:\n");
1234   tgsi_dump(fp->pipe.tokens, 0);
1235   goto out;
1236}
1237
1238static inline void
1239nvfx_fp_memcpy(void* dst, const void* src, size_t len)
1240{
1241#ifndef PIPE_ARCH_BIG_ENDIAN
1242   memcpy(dst, src, len);
1243#else
1244   size_t i;
1245   for(i = 0; i < len; i += 4) {
1246      uint32_t v = *(uint32_t*)((char*)src + i);
1247      *(uint32_t*)((char*)dst + i) = (v >> 16) | (v << 16);
1248   }
1249#endif
1250}
1251