1/*
2 * Mesa 3-D graphics library
3 * Version:  6.5.3
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26#include "main/glheader.h"
27#include "main/imports.h"
28#include "main/macros.h"
29#include "main/mtypes.h"
30#include "swrast/s_aaline.h"
31#include "swrast/s_context.h"
32#include "swrast/s_span.h"
33#include "swrast/swrast.h"
34
35
36#define SUB_PIXEL 4
37
38
39/*
40 * Info about the AA line we're rendering
41 */
42struct LineInfo
43{
44   GLfloat x0, y0;        /* start */
45   GLfloat x1, y1;        /* end */
46   GLfloat dx, dy;        /* direction vector */
47   GLfloat len;           /* length */
48   GLfloat halfWidth;     /* half of line width */
49   GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
50   /* for coverage computation */
51   GLfloat qx0, qy0;      /* quad vertices */
52   GLfloat qx1, qy1;
53   GLfloat qx2, qy2;
54   GLfloat qx3, qy3;
55   GLfloat ex0, ey0;      /* quad edge vectors */
56   GLfloat ex1, ey1;
57   GLfloat ex2, ey2;
58   GLfloat ex3, ey3;
59
60   /* DO_Z */
61   GLfloat zPlane[4];
62   /* DO_RGBA - always enabled */
63   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
64   /* DO_ATTRIBS */
65   GLfloat wPlane[4];
66   GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4];
67   GLfloat lambda[FRAG_ATTRIB_MAX];
68   GLfloat texWidth[FRAG_ATTRIB_MAX];
69   GLfloat texHeight[FRAG_ATTRIB_MAX];
70
71   SWspan span;
72};
73
74
75
76/*
77 * Compute the equation of a plane used to interpolate line fragment data
78 * such as color, Z, texture coords, etc.
79 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
80 *        z0, and z1 are the end point values to interpolate.
81 * Output:  plane - the plane equation.
82 *
83 * Note: we don't really have enough parameters to specify a plane.
84 * We take the endpoints of the line and compute a plane such that
85 * the cross product of the line vector and the plane normal is
86 * parallel to the projection plane.
87 */
88static void
89compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
90              GLfloat z0, GLfloat z1, GLfloat plane[4])
91{
92#if 0
93   /* original */
94   const GLfloat px = x1 - x0;
95   const GLfloat py = y1 - y0;
96   const GLfloat pz = z1 - z0;
97   const GLfloat qx = -py;
98   const GLfloat qy = px;
99   const GLfloat qz = 0;
100   const GLfloat a = py * qz - pz * qy;
101   const GLfloat b = pz * qx - px * qz;
102   const GLfloat c = px * qy - py * qx;
103   const GLfloat d = -(a * x0 + b * y0 + c * z0);
104   plane[0] = a;
105   plane[1] = b;
106   plane[2] = c;
107   plane[3] = d;
108#else
109   /* simplified */
110   const GLfloat px = x1 - x0;
111   const GLfloat py = y1 - y0;
112   const GLfloat pz = z0 - z1;
113   const GLfloat a = pz * px;
114   const GLfloat b = pz * py;
115   const GLfloat c = px * px + py * py;
116   const GLfloat d = -(a * x0 + b * y0 + c * z0);
117   if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
118      plane[0] = 0.0;
119      plane[1] = 0.0;
120      plane[2] = 1.0;
121      plane[3] = 0.0;
122   }
123   else {
124      plane[0] = a;
125      plane[1] = b;
126      plane[2] = c;
127      plane[3] = d;
128   }
129#endif
130}
131
132
133static inline void
134constant_plane(GLfloat value, GLfloat plane[4])
135{
136   plane[0] = 0.0;
137   plane[1] = 0.0;
138   plane[2] = -1.0;
139   plane[3] = value;
140}
141
142
143static inline GLfloat
144solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
145{
146   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
147   return z;
148}
149
150#define SOLVE_PLANE(X, Y, PLANE) \
151   ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
152
153
154/*
155 * Return 1 / solve_plane().
156 */
157static inline GLfloat
158solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
159{
160   const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
161   if (denom == 0.0)
162      return 0.0;
163   else
164      return -plane[2] / denom;
165}
166
167
168/*
169 * Solve plane and return clamped GLchan value.
170 */
171static inline GLchan
172solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
173{
174   const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
175#if CHAN_TYPE == GL_FLOAT
176   return CLAMP(z, 0.0F, CHAN_MAXF);
177#else
178   if (z < 0)
179      return 0;
180   else if (z > CHAN_MAX)
181      return CHAN_MAX;
182   return (GLchan) IROUND_POS(z);
183#endif
184}
185
186
187/*
188 * Compute mipmap level of detail.
189 */
190static inline GLfloat
191compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
192               GLfloat invQ, GLfloat width, GLfloat height)
193{
194   GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
195   GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
196   GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
197   GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
198   GLfloat r1 = dudx * dudx + dudy * dudy;
199   GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
200   GLfloat rho2 = r1 + r2;
201   /* return log base 2 of rho */
202   if (rho2 == 0.0F)
203      return 0.0;
204   else
205      return (GLfloat) (LOGF(rho2) * 1.442695 * 0.5);/* 1.442695 = 1/log(2) */
206}
207
208
209
210
211/*
212 * Fill in the samples[] array with the (x,y) subpixel positions of
213 * xSamples * ySamples sample positions.
214 * Note that the four corner samples are put into the first four
215 * positions of the array.  This allows us to optimize for the common
216 * case of all samples being inside the polygon.
217 */
218static void
219make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
220{
221   const GLfloat dx = 1.0F / (GLfloat) xSamples;
222   const GLfloat dy = 1.0F / (GLfloat) ySamples;
223   GLint x, y;
224   GLint i;
225
226   i = 4;
227   for (x = 0; x < xSamples; x++) {
228      for (y = 0; y < ySamples; y++) {
229         GLint j;
230         if (x == 0 && y == 0) {
231            /* lower left */
232            j = 0;
233         }
234         else if (x == xSamples - 1 && y == 0) {
235            /* lower right */
236            j = 1;
237         }
238         else if (x == 0 && y == ySamples - 1) {
239            /* upper left */
240            j = 2;
241         }
242         else if (x == xSamples - 1 && y == ySamples - 1) {
243            /* upper right */
244            j = 3;
245         }
246         else {
247            j = i++;
248         }
249         samples[j][0] = x * dx + 0.5F * dx;
250         samples[j][1] = y * dy + 0.5F * dy;
251      }
252   }
253}
254
255
256
257/*
258 * Compute how much of the given pixel's area is inside the rectangle
259 * defined by vertices v0, v1, v2, v3.
260 * Vertices MUST be specified in counter-clockwise order.
261 * Return:  coverage in [0, 1].
262 */
263static GLfloat
264compute_coveragef(const struct LineInfo *info,
265                  GLint winx, GLint winy)
266{
267   static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
268   static GLboolean haveSamples = GL_FALSE;
269   const GLfloat x = (GLfloat) winx;
270   const GLfloat y = (GLfloat) winy;
271   GLint stop = 4, i;
272   GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
273
274   if (!haveSamples) {
275      make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
276      haveSamples = GL_TRUE;
277   }
278
279#if 0 /*DEBUG*/
280   {
281      const GLfloat area = dx0 * dy1 - dx1 * dy0;
282      assert(area >= 0.0);
283   }
284#endif
285
286   for (i = 0; i < stop; i++) {
287      const GLfloat sx = x + samples[i][0];
288      const GLfloat sy = y + samples[i][1];
289      const GLfloat fx0 = sx - info->qx0;
290      const GLfloat fy0 = sy - info->qy0;
291      const GLfloat fx1 = sx - info->qx1;
292      const GLfloat fy1 = sy - info->qy1;
293      const GLfloat fx2 = sx - info->qx2;
294      const GLfloat fy2 = sy - info->qy2;
295      const GLfloat fx3 = sx - info->qx3;
296      const GLfloat fy3 = sy - info->qy3;
297      /* cross product determines if sample is inside or outside each edge */
298      GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
299      GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
300      GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
301      GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
302      /* Check if the sample is exactly on an edge.  If so, let cross be a
303       * positive or negative value depending on the direction of the edge.
304       */
305      if (cross0 == 0.0F)
306         cross0 = info->ex0 + info->ey0;
307      if (cross1 == 0.0F)
308         cross1 = info->ex1 + info->ey1;
309      if (cross2 == 0.0F)
310         cross2 = info->ex2 + info->ey2;
311      if (cross3 == 0.0F)
312         cross3 = info->ex3 + info->ey3;
313      if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
314         /* point is outside quadrilateral */
315         insideCount -= 1.0F;
316         stop = SUB_PIXEL * SUB_PIXEL;
317      }
318   }
319   if (stop == 4)
320      return 1.0F;
321   else
322      return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
323}
324
325
326typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
327                          int ix, int iy);
328
329
330
331/*
332 * Draw an AA line segment (called many times per line when stippling)
333 */
334static void
335segment(struct gl_context *ctx,
336        struct LineInfo *line,
337        plot_func plot,
338        GLfloat t0, GLfloat t1)
339{
340   const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
341   const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
342   /* compute the actual segment's endpoints */
343   const GLfloat x0 = line->x0 + t0 * line->dx;
344   const GLfloat y0 = line->y0 + t0 * line->dy;
345   const GLfloat x1 = line->x0 + t1 * line->dx;
346   const GLfloat y1 = line->y0 + t1 * line->dy;
347
348   /* compute vertices of the line-aligned quadrilateral */
349   line->qx0 = x0 - line->yAdj;
350   line->qy0 = y0 + line->xAdj;
351   line->qx1 = x0 + line->yAdj;
352   line->qy1 = y0 - line->xAdj;
353   line->qx2 = x1 + line->yAdj;
354   line->qy2 = y1 - line->xAdj;
355   line->qx3 = x1 - line->yAdj;
356   line->qy3 = y1 + line->xAdj;
357   /* compute the quad's edge vectors (for coverage calc) */
358   line->ex0 = line->qx1 - line->qx0;
359   line->ey0 = line->qy1 - line->qy0;
360   line->ex1 = line->qx2 - line->qx1;
361   line->ey1 = line->qy2 - line->qy1;
362   line->ex2 = line->qx3 - line->qx2;
363   line->ey2 = line->qy3 - line->qy2;
364   line->ex3 = line->qx0 - line->qx3;
365   line->ey3 = line->qy0 - line->qy3;
366
367   if (absDx > absDy) {
368      /* X-major line */
369      GLfloat dydx = line->dy / line->dx;
370      GLfloat xLeft, xRight, yBot, yTop;
371      GLint ix, ixRight;
372      if (x0 < x1) {
373         xLeft = x0 - line->halfWidth;
374         xRight = x1 + line->halfWidth;
375         if (line->dy >= 0.0) {
376            yBot = y0 - 3.0F * line->halfWidth;
377            yTop = y0 + line->halfWidth;
378         }
379         else {
380            yBot = y0 - line->halfWidth;
381            yTop = y0 + 3.0F * line->halfWidth;
382         }
383      }
384      else {
385         xLeft = x1 - line->halfWidth;
386         xRight = x0 + line->halfWidth;
387         if (line->dy <= 0.0) {
388            yBot = y1 - 3.0F * line->halfWidth;
389            yTop = y1 + line->halfWidth;
390         }
391         else {
392            yBot = y1 - line->halfWidth;
393            yTop = y1 + 3.0F * line->halfWidth;
394         }
395      }
396
397      /* scan along the line, left-to-right */
398      ixRight = (GLint) (xRight + 1.0F);
399
400      /*printf("avg span height: %g\n", yTop - yBot);*/
401      for (ix = (GLint) xLeft; ix < ixRight; ix++) {
402         const GLint iyBot = (GLint) yBot;
403         const GLint iyTop = (GLint) (yTop + 1.0F);
404         GLint iy;
405         /* scan across the line, bottom-to-top */
406         for (iy = iyBot; iy < iyTop; iy++) {
407            (*plot)(ctx, line, ix, iy);
408         }
409         yBot += dydx;
410         yTop += dydx;
411      }
412   }
413   else {
414      /* Y-major line */
415      GLfloat dxdy = line->dx / line->dy;
416      GLfloat yBot, yTop, xLeft, xRight;
417      GLint iy, iyTop;
418      if (y0 < y1) {
419         yBot = y0 - line->halfWidth;
420         yTop = y1 + line->halfWidth;
421         if (line->dx >= 0.0) {
422            xLeft = x0 - 3.0F * line->halfWidth;
423            xRight = x0 + line->halfWidth;
424         }
425         else {
426            xLeft = x0 - line->halfWidth;
427            xRight = x0 + 3.0F * line->halfWidth;
428         }
429      }
430      else {
431         yBot = y1 - line->halfWidth;
432         yTop = y0 + line->halfWidth;
433         if (line->dx <= 0.0) {
434            xLeft = x1 - 3.0F * line->halfWidth;
435            xRight = x1 + line->halfWidth;
436         }
437         else {
438            xLeft = x1 - line->halfWidth;
439            xRight = x1 + 3.0F * line->halfWidth;
440         }
441      }
442
443      /* scan along the line, bottom-to-top */
444      iyTop = (GLint) (yTop + 1.0F);
445
446      /*printf("avg span width: %g\n", xRight - xLeft);*/
447      for (iy = (GLint) yBot; iy < iyTop; iy++) {
448         const GLint ixLeft = (GLint) xLeft;
449         const GLint ixRight = (GLint) (xRight + 1.0F);
450         GLint ix;
451         /* scan across the line, left-to-right */
452         for (ix = ixLeft; ix < ixRight; ix++) {
453            (*plot)(ctx, line, ix, iy);
454         }
455         xLeft += dxdy;
456         xRight += dxdy;
457      }
458   }
459}
460
461
462#define NAME(x) aa_rgba_##x
463#define DO_Z
464#include "s_aalinetemp.h"
465
466
467#define NAME(x)  aa_general_rgba_##x
468#define DO_Z
469#define DO_ATTRIBS
470#include "s_aalinetemp.h"
471
472
473
474void
475_swrast_choose_aa_line_function(struct gl_context *ctx)
476{
477   SWcontext *swrast = SWRAST_CONTEXT(ctx);
478
479   ASSERT(ctx->Line.SmoothFlag);
480
481   if (ctx->Texture._EnabledCoordUnits != 0
482       || _swrast_use_fragment_program(ctx)
483       || (ctx->Light.Enabled &&
484           ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
485       || ctx->Fog.ColorSumEnabled
486       || swrast->_FogEnabled) {
487      swrast->Line = aa_general_rgba_line;
488   }
489   else {
490      swrast->Line = aa_rgba_line;
491   }
492}
493