1/***********************************************************************
2Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3Redistribution and use in source and binary forms, with or without
4modification, are permitted provided that the following conditions
5are met:
6- Redistributions of source code must retain the above copyright notice,
7this list of conditions and the following disclaimer.
8- Redistributions in binary form must reproduce the above copyright
9notice, this list of conditions and the following disclaimer in the
10documentation and/or other materials provided with the distribution.
11- Neither the name of Internet Society, IETF or IETF Trust, nor the
12names of specific contributors, may be used to endorse or promote
13products derived from this software without specific prior written
14permission.
15THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25POSSIBILITY OF SUCH DAMAGE.
26***********************************************************************/
27
28#ifdef HAVE_CONFIG_H
29#include "config.h"
30#endif
31
32#include "main.h"
33#include "stack_alloc.h"
34
35/*********************************************/
36/* Encode quantization indices of excitation */
37/*********************************************/
38
39static OPUS_INLINE opus_int combine_and_check(    /* return ok                           */
40    opus_int         *pulses_comb,           /* O                                   */
41    const opus_int   *pulses_in,             /* I                                   */
42    opus_int         max_pulses,             /* I    max value for sum of pulses    */
43    opus_int         len                     /* I    number of output values        */
44)
45{
46    opus_int k, sum;
47
48    for( k = 0; k < len; k++ ) {
49        sum = pulses_in[ 2 * k ] + pulses_in[ 2 * k + 1 ];
50        if( sum > max_pulses ) {
51            return 1;
52        }
53        pulses_comb[ k ] = sum;
54    }
55
56    return 0;
57}
58
59/* Encode quantization indices of excitation */
60void silk_encode_pulses(
61    ec_enc                      *psRangeEnc,                    /* I/O  compressor data structure                   */
62    const opus_int              signalType,                     /* I    Signal type                                 */
63    const opus_int              quantOffsetType,                /* I    quantOffsetType                             */
64    opus_int8                   pulses[],                       /* I    quantization indices                        */
65    const opus_int              frame_length                    /* I    Frame length                                */
66)
67{
68    opus_int   i, k, j, iter, bit, nLS, scale_down, RateLevelIndex = 0;
69    opus_int32 abs_q, minSumBits_Q5, sumBits_Q5;
70    VARDECL( opus_int, abs_pulses );
71    VARDECL( opus_int, sum_pulses );
72    VARDECL( opus_int, nRshifts );
73    opus_int   pulses_comb[ 8 ];
74    opus_int   *abs_pulses_ptr;
75    const opus_int8 *pulses_ptr;
76    const opus_uint8 *cdf_ptr;
77    const opus_uint8 *nBits_ptr;
78    SAVE_STACK;
79
80    silk_memset( pulses_comb, 0, 8 * sizeof( opus_int ) ); /* Fixing Valgrind reported problem*/
81
82    /****************************/
83    /* Prepare for shell coding */
84    /****************************/
85    /* Calculate number of shell blocks */
86    silk_assert( 1 << LOG2_SHELL_CODEC_FRAME_LENGTH == SHELL_CODEC_FRAME_LENGTH );
87    iter = silk_RSHIFT( frame_length, LOG2_SHELL_CODEC_FRAME_LENGTH );
88    if( iter * SHELL_CODEC_FRAME_LENGTH < frame_length ) {
89        silk_assert( frame_length == 12 * 10 ); /* Make sure only happens for 10 ms @ 12 kHz */
90        iter++;
91        silk_memset( &pulses[ frame_length ], 0, SHELL_CODEC_FRAME_LENGTH * sizeof(opus_int8));
92    }
93
94    /* Take the absolute value of the pulses */
95    ALLOC( abs_pulses, iter * SHELL_CODEC_FRAME_LENGTH, opus_int );
96    silk_assert( !( SHELL_CODEC_FRAME_LENGTH & 3 ) );
97    for( i = 0; i < iter * SHELL_CODEC_FRAME_LENGTH; i+=4 ) {
98        abs_pulses[i+0] = ( opus_int )silk_abs( pulses[ i + 0 ] );
99        abs_pulses[i+1] = ( opus_int )silk_abs( pulses[ i + 1 ] );
100        abs_pulses[i+2] = ( opus_int )silk_abs( pulses[ i + 2 ] );
101        abs_pulses[i+3] = ( opus_int )silk_abs( pulses[ i + 3 ] );
102    }
103
104    /* Calc sum pulses per shell code frame */
105    ALLOC( sum_pulses, iter, opus_int );
106    ALLOC( nRshifts, iter, opus_int );
107    abs_pulses_ptr = abs_pulses;
108    for( i = 0; i < iter; i++ ) {
109        nRshifts[ i ] = 0;
110
111        while( 1 ) {
112            /* 1+1 -> 2 */
113            scale_down = combine_and_check( pulses_comb, abs_pulses_ptr, silk_max_pulses_table[ 0 ], 8 );
114            /* 2+2 -> 4 */
115            scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 1 ], 4 );
116            /* 4+4 -> 8 */
117            scale_down += combine_and_check( pulses_comb, pulses_comb, silk_max_pulses_table[ 2 ], 2 );
118            /* 8+8 -> 16 */
119            scale_down += combine_and_check( &sum_pulses[ i ], pulses_comb, silk_max_pulses_table[ 3 ], 1 );
120
121            if( scale_down ) {
122                /* We need to downscale the quantization signal */
123                nRshifts[ i ]++;
124                for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
125                    abs_pulses_ptr[ k ] = silk_RSHIFT( abs_pulses_ptr[ k ], 1 );
126                }
127            } else {
128                /* Jump out of while(1) loop and go to next shell coding frame */
129                break;
130            }
131        }
132        abs_pulses_ptr += SHELL_CODEC_FRAME_LENGTH;
133    }
134
135    /**************/
136    /* Rate level */
137    /**************/
138    /* find rate level that leads to fewest bits for coding of pulses per block info */
139    minSumBits_Q5 = silk_int32_MAX;
140    for( k = 0; k < N_RATE_LEVELS - 1; k++ ) {
141        nBits_ptr  = silk_pulses_per_block_BITS_Q5[ k ];
142        sumBits_Q5 = silk_rate_levels_BITS_Q5[ signalType >> 1 ][ k ];
143        for( i = 0; i < iter; i++ ) {
144            if( nRshifts[ i ] > 0 ) {
145                sumBits_Q5 += nBits_ptr[ MAX_PULSES + 1 ];
146            } else {
147                sumBits_Q5 += nBits_ptr[ sum_pulses[ i ] ];
148            }
149        }
150        if( sumBits_Q5 < minSumBits_Q5 ) {
151            minSumBits_Q5 = sumBits_Q5;
152            RateLevelIndex = k;
153        }
154    }
155    ec_enc_icdf( psRangeEnc, RateLevelIndex, silk_rate_levels_iCDF[ signalType >> 1 ], 8 );
156
157    /***************************************************/
158    /* Sum-Weighted-Pulses Encoding                    */
159    /***************************************************/
160    cdf_ptr = silk_pulses_per_block_iCDF[ RateLevelIndex ];
161    for( i = 0; i < iter; i++ ) {
162        if( nRshifts[ i ] == 0 ) {
163            ec_enc_icdf( psRangeEnc, sum_pulses[ i ], cdf_ptr, 8 );
164        } else {
165            ec_enc_icdf( psRangeEnc, MAX_PULSES + 1, cdf_ptr, 8 );
166            for( k = 0; k < nRshifts[ i ] - 1; k++ ) {
167                ec_enc_icdf( psRangeEnc, MAX_PULSES + 1, silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 );
168            }
169            ec_enc_icdf( psRangeEnc, sum_pulses[ i ], silk_pulses_per_block_iCDF[ N_RATE_LEVELS - 1 ], 8 );
170        }
171    }
172
173    /******************/
174    /* Shell Encoding */
175    /******************/
176    for( i = 0; i < iter; i++ ) {
177        if( sum_pulses[ i ] > 0 ) {
178            silk_shell_encoder( psRangeEnc, &abs_pulses[ i * SHELL_CODEC_FRAME_LENGTH ] );
179        }
180    }
181
182    /****************/
183    /* LSB Encoding */
184    /****************/
185    for( i = 0; i < iter; i++ ) {
186        if( nRshifts[ i ] > 0 ) {
187            pulses_ptr = &pulses[ i * SHELL_CODEC_FRAME_LENGTH ];
188            nLS = nRshifts[ i ] - 1;
189            for( k = 0; k < SHELL_CODEC_FRAME_LENGTH; k++ ) {
190                abs_q = (opus_int8)silk_abs( pulses_ptr[ k ] );
191                for( j = nLS; j > 0; j-- ) {
192                    bit = silk_RSHIFT( abs_q, j ) & 1;
193                    ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 );
194                }
195                bit = abs_q & 1;
196                ec_enc_icdf( psRangeEnc, bit, silk_lsb_iCDF, 8 );
197            }
198        }
199    }
200
201    /****************/
202    /* Encode signs */
203    /****************/
204    silk_encode_signs( psRangeEnc, pulses, frame_length, signalType, quantOffsetType, sum_pulses );
205    RESTORE_STACK;
206}
207