1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// http://code.google.com/p/protobuf/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: kenton@google.com (Kenton Varda)
32//  Based on original Protocol Buffers design by
33//  Sanjay Ghemawat, Jeff Dean, and others.
34//
35// Defines Message, the abstract interface implemented by non-lite
36// protocol message objects.  Although it's possible to implement this
37// interface manually, most users will use the protocol compiler to
38// generate implementations.
39//
40// Example usage:
41//
42// Say you have a message defined as:
43//
44//   message Foo {
45//     optional string text = 1;
46//     repeated int32 numbers = 2;
47//   }
48//
49// Then, if you used the protocol compiler to generate a class from the above
50// definition, you could use it like so:
51//
52//   string data;  // Will store a serialized version of the message.
53//
54//   {
55//     // Create a message and serialize it.
56//     Foo foo;
57//     foo.set_text("Hello World!");
58//     foo.add_numbers(1);
59//     foo.add_numbers(5);
60//     foo.add_numbers(42);
61//
62//     foo.SerializeToString(&data);
63//   }
64//
65//   {
66//     // Parse the serialized message and check that it contains the
67//     // correct data.
68//     Foo foo;
69//     foo.ParseFromString(data);
70//
71//     assert(foo.text() == "Hello World!");
72//     assert(foo.numbers_size() == 3);
73//     assert(foo.numbers(0) == 1);
74//     assert(foo.numbers(1) == 5);
75//     assert(foo.numbers(2) == 42);
76//   }
77//
78//   {
79//     // Same as the last block, but do it dynamically via the Message
80//     // reflection interface.
81//     Message* foo = new Foo;
82//     const Descriptor* descriptor = foo->GetDescriptor();
83//
84//     // Get the descriptors for the fields we're interested in and verify
85//     // their types.
86//     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87//     assert(text_field != NULL);
88//     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89//     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90//     const FieldDescriptor* numbers_field = descriptor->
91//                                            FindFieldByName("numbers");
92//     assert(numbers_field != NULL);
93//     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94//     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95//
96//     // Parse the message.
97//     foo->ParseFromString(data);
98//
99//     // Use the reflection interface to examine the contents.
100//     const Reflection* reflection = foo->GetReflection();
101//     assert(reflection->GetString(foo, text_field) == "Hello World!");
102//     assert(reflection->FieldSize(foo, numbers_field) == 3);
103//     assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
104//     assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
105//     assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
106//
107//     delete foo;
108//   }
109
110#ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111#define GOOGLE_PROTOBUF_MESSAGE_H__
112
113#include <vector>
114#include <string>
115
116#ifdef __DECCXX
117// HP C++'s iosfwd doesn't work.
118#include <iostream>
119#else
120#include <iosfwd>
121#endif
122
123#include <google/protobuf/message_lite.h>
124
125#include <google/protobuf/stubs/common.h>
126#include <google/protobuf/descriptor.h>
127
128
129namespace google {
130namespace protobuf {
131
132// Defined in this file.
133class Message;
134class Reflection;
135class MessageFactory;
136
137// Defined in other files.
138class UnknownFieldSet;         // unknown_field_set.h
139namespace io {
140  class ZeroCopyInputStream;   // zero_copy_stream.h
141  class ZeroCopyOutputStream;  // zero_copy_stream.h
142  class CodedInputStream;      // coded_stream.h
143  class CodedOutputStream;     // coded_stream.h
144}
145
146
147template<typename T>
148class RepeatedField;     // repeated_field.h
149
150template<typename T>
151class RepeatedPtrField;  // repeated_field.h
152
153// A container to hold message metadata.
154struct Metadata {
155  const Descriptor* descriptor;
156  const Reflection* reflection;
157};
158
159// Abstract interface for protocol messages.
160//
161// See also MessageLite, which contains most every-day operations.  Message
162// adds descriptors and reflection on top of that.
163//
164// The methods of this class that are virtual but not pure-virtual have
165// default implementations based on reflection.  Message classes which are
166// optimized for speed will want to override these with faster implementations,
167// but classes optimized for code size may be happy with keeping them.  See
168// the optimize_for option in descriptor.proto.
169class LIBPROTOBUF_EXPORT Message : public MessageLite {
170 public:
171  inline Message() {}
172  virtual ~Message();
173
174  // Basic Operations ------------------------------------------------
175
176  // Construct a new instance of the same type.  Ownership is passed to the
177  // caller.  (This is also defined in MessageLite, but is defined again here
178  // for return-type covariance.)
179  virtual Message* New() const = 0;
180
181  // Make this message into a copy of the given message.  The given message
182  // must have the same descriptor, but need not necessarily be the same class.
183  // By default this is just implemented as "Clear(); MergeFrom(from);".
184  virtual void CopyFrom(const Message& from);
185
186  // Merge the fields from the given message into this message.  Singular
187  // fields will be overwritten, except for embedded messages which will
188  // be merged.  Repeated fields will be concatenated.  The given message
189  // must be of the same type as this message (i.e. the exact same class).
190  virtual void MergeFrom(const Message& from);
191
192  // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
193  // a nice error message.
194  void CheckInitialized() const;
195
196  // Slowly build a list of all required fields that are not set.
197  // This is much, much slower than IsInitialized() as it is implemented
198  // purely via reflection.  Generally, you should not call this unless you
199  // have already determined that an error exists by calling IsInitialized().
200  void FindInitializationErrors(vector<string>* errors) const;
201
202  // Like FindInitializationErrors, but joins all the strings, delimited by
203  // commas, and returns them.
204  string InitializationErrorString() const;
205
206  // Clears all unknown fields from this message and all embedded messages.
207  // Normally, if unknown tag numbers are encountered when parsing a message,
208  // the tag and value are stored in the message's UnknownFieldSet and
209  // then written back out when the message is serialized.  This allows servers
210  // which simply route messages to other servers to pass through messages
211  // that have new field definitions which they don't yet know about.  However,
212  // this behavior can have security implications.  To avoid it, call this
213  // method after parsing.
214  //
215  // See Reflection::GetUnknownFields() for more on unknown fields.
216  virtual void DiscardUnknownFields();
217
218  // Computes (an estimate of) the total number of bytes currently used for
219  // storing the message in memory.  The default implementation calls the
220  // Reflection object's SpaceUsed() method.
221  virtual int SpaceUsed() const;
222
223  // Debugging & Testing----------------------------------------------
224
225  // Generates a human readable form of this message, useful for debugging
226  // and other purposes.
227  string DebugString() const;
228  // Like DebugString(), but with less whitespace.
229  string ShortDebugString() const;
230  // Like DebugString(), but do not escape UTF-8 byte sequences.
231  string Utf8DebugString() const;
232  // Convenience function useful in GDB.  Prints DebugString() to stdout.
233  void PrintDebugString() const;
234
235  // Heavy I/O -------------------------------------------------------
236  // Additional parsing and serialization methods not implemented by
237  // MessageLite because they are not supported by the lite library.
238
239  // Parse a protocol buffer from a file descriptor.  If successful, the entire
240  // input will be consumed.
241  bool ParseFromFileDescriptor(int file_descriptor);
242  // Like ParseFromFileDescriptor(), but accepts messages that are missing
243  // required fields.
244  bool ParsePartialFromFileDescriptor(int file_descriptor);
245  // Parse a protocol buffer from a C++ istream.  If successful, the entire
246  // input will be consumed.
247  bool ParseFromIstream(istream* input);
248  // Like ParseFromIstream(), but accepts messages that are missing
249  // required fields.
250  bool ParsePartialFromIstream(istream* input);
251
252  // Serialize the message and write it to the given file descriptor.  All
253  // required fields must be set.
254  bool SerializeToFileDescriptor(int file_descriptor) const;
255  // Like SerializeToFileDescriptor(), but allows missing required fields.
256  bool SerializePartialToFileDescriptor(int file_descriptor) const;
257  // Serialize the message and write it to the given C++ ostream.  All
258  // required fields must be set.
259  bool SerializeToOstream(ostream* output) const;
260  // Like SerializeToOstream(), but allows missing required fields.
261  bool SerializePartialToOstream(ostream* output) const;
262
263
264  // Reflection-based methods ----------------------------------------
265  // These methods are pure-virtual in MessageLite, but Message provides
266  // reflection-based default implementations.
267
268  virtual string GetTypeName() const;
269  virtual void Clear();
270  virtual bool IsInitialized() const;
271  virtual void CheckTypeAndMergeFrom(const MessageLite& other);
272  virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
273  virtual int ByteSize() const;
274  virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
275
276 private:
277  // This is called only by the default implementation of ByteSize(), to
278  // update the cached size.  If you override ByteSize(), you do not need
279  // to override this.  If you do not override ByteSize(), you MUST override
280  // this; the default implementation will crash.
281  //
282  // The method is private because subclasses should never call it; only
283  // override it.  Yes, C++ lets you do that.  Crazy, huh?
284  virtual void SetCachedSize(int size) const;
285
286 public:
287
288  // Introspection ---------------------------------------------------
289
290  // Typedef for backwards-compatibility.
291  typedef google::protobuf::Reflection Reflection;
292
293  // Get a Descriptor for this message's type.  This describes what
294  // fields the message contains, the types of those fields, etc.
295  const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
296
297  // Get the Reflection interface for this Message, which can be used to
298  // read and modify the fields of the Message dynamically (in other words,
299  // without knowing the message type at compile time).  This object remains
300  // property of the Message.
301  //
302  // This method remains virtual in case a subclass does not implement
303  // reflection and wants to override the default behavior.
304  virtual const Reflection* GetReflection() const {
305    return GetMetadata().reflection;
306  }
307
308 protected:
309  // Get a struct containing the metadata for the Message. Most subclasses only
310  // need to implement this method, rather than the GetDescriptor() and
311  // GetReflection() wrappers.
312  virtual Metadata GetMetadata() const  = 0;
313
314
315 private:
316  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
317};
318
319// This interface contains methods that can be used to dynamically access
320// and modify the fields of a protocol message.  Their semantics are
321// similar to the accessors the protocol compiler generates.
322//
323// To get the Reflection for a given Message, call Message::GetReflection().
324//
325// This interface is separate from Message only for efficiency reasons;
326// the vast majority of implementations of Message will share the same
327// implementation of Reflection (GeneratedMessageReflection,
328// defined in generated_message.h), and all Messages of a particular class
329// should share the same Reflection object (though you should not rely on
330// the latter fact).
331//
332// There are several ways that these methods can be used incorrectly.  For
333// example, any of the following conditions will lead to undefined
334// results (probably assertion failures):
335// - The FieldDescriptor is not a field of this message type.
336// - The method called is not appropriate for the field's type.  For
337//   each field type in FieldDescriptor::TYPE_*, there is only one
338//   Get*() method, one Set*() method, and one Add*() method that is
339//   valid for that type.  It should be obvious which (except maybe
340//   for TYPE_BYTES, which are represented using strings in C++).
341// - A Get*() or Set*() method for singular fields is called on a repeated
342//   field.
343// - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
344//   field.
345// - The Message object passed to any method is not of the right type for
346//   this Reflection object (i.e. message.GetReflection() != reflection).
347//
348// You might wonder why there is not any abstract representation for a field
349// of arbitrary type.  E.g., why isn't there just a "GetField()" method that
350// returns "const Field&", where "Field" is some class with accessors like
351// "GetInt32Value()".  The problem is that someone would have to deal with
352// allocating these Field objects.  For generated message classes, having to
353// allocate space for an additional object to wrap every field would at least
354// double the message's memory footprint, probably worse.  Allocating the
355// objects on-demand, on the other hand, would be expensive and prone to
356// memory leaks.  So, instead we ended up with this flat interface.
357//
358// TODO(kenton):  Create a utility class which callers can use to read and
359//   write fields from a Reflection without paying attention to the type.
360class LIBPROTOBUF_EXPORT Reflection {
361 public:
362  inline Reflection() {}
363  virtual ~Reflection();
364
365  // Get the UnknownFieldSet for the message.  This contains fields which
366  // were seen when the Message was parsed but were not recognized according
367  // to the Message's definition.
368  virtual const UnknownFieldSet& GetUnknownFields(
369      const Message& message) const = 0;
370  // Get a mutable pointer to the UnknownFieldSet for the message.  This
371  // contains fields which were seen when the Message was parsed but were not
372  // recognized according to the Message's definition.
373  virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
374
375  // Estimate the amount of memory used by the message object.
376  virtual int SpaceUsed(const Message& message) const = 0;
377
378  // Check if the given non-repeated field is set.
379  virtual bool HasField(const Message& message,
380                        const FieldDescriptor* field) const = 0;
381
382  // Get the number of elements of a repeated field.
383  virtual int FieldSize(const Message& message,
384                        const FieldDescriptor* field) const = 0;
385
386  // Clear the value of a field, so that HasField() returns false or
387  // FieldSize() returns zero.
388  virtual void ClearField(Message* message,
389                          const FieldDescriptor* field) const = 0;
390
391  // Removes the last element of a repeated field.
392  // We don't provide a way to remove any element other than the last
393  // because it invites inefficient use, such as O(n^2) filtering loops
394  // that should have been O(n).  If you want to remove an element other
395  // than the last, the best way to do it is to re-arrange the elements
396  // (using Swap()) so that the one you want removed is at the end, then
397  // call RemoveLast().
398  virtual void RemoveLast(Message* message,
399                          const FieldDescriptor* field) const = 0;
400  // Removes the last element of a repeated message field, and returns the
401  // pointer to the caller.  Caller takes ownership of the returned pointer.
402  virtual Message* ReleaseLast(Message* message,
403                               const FieldDescriptor* field) const = 0;
404
405  // Swap the complete contents of two messages.
406  virtual void Swap(Message* message1, Message* message2) const = 0;
407
408  // Swap two elements of a repeated field.
409  virtual void SwapElements(Message* message,
410                    const FieldDescriptor* field,
411                    int index1,
412                    int index2) const = 0;
413
414  // List all fields of the message which are currently set.  This includes
415  // extensions.  Singular fields will only be listed if HasField(field) would
416  // return true and repeated fields will only be listed if FieldSize(field)
417  // would return non-zero.  Fields (both normal fields and extension fields)
418  // will be listed ordered by field number.
419  virtual void ListFields(const Message& message,
420                          vector<const FieldDescriptor*>* output) const = 0;
421
422  // Singular field getters ------------------------------------------
423  // These get the value of a non-repeated field.  They return the default
424  // value for fields that aren't set.
425
426  virtual int32  GetInt32 (const Message& message,
427                           const FieldDescriptor* field) const = 0;
428  virtual int64  GetInt64 (const Message& message,
429                           const FieldDescriptor* field) const = 0;
430  virtual uint32 GetUInt32(const Message& message,
431                           const FieldDescriptor* field) const = 0;
432  virtual uint64 GetUInt64(const Message& message,
433                           const FieldDescriptor* field) const = 0;
434  virtual float  GetFloat (const Message& message,
435                           const FieldDescriptor* field) const = 0;
436  virtual double GetDouble(const Message& message,
437                           const FieldDescriptor* field) const = 0;
438  virtual bool   GetBool  (const Message& message,
439                           const FieldDescriptor* field) const = 0;
440  virtual string GetString(const Message& message,
441                           const FieldDescriptor* field) const = 0;
442  virtual const EnumValueDescriptor* GetEnum(
443      const Message& message, const FieldDescriptor* field) const = 0;
444  // See MutableMessage() for the meaning of the "factory" parameter.
445  virtual const Message& GetMessage(const Message& message,
446                                    const FieldDescriptor* field,
447                                    MessageFactory* factory = NULL) const = 0;
448
449  // Get a string value without copying, if possible.
450  //
451  // GetString() necessarily returns a copy of the string.  This can be
452  // inefficient when the string is already stored in a string object in the
453  // underlying message.  GetStringReference() will return a reference to the
454  // underlying string in this case.  Otherwise, it will copy the string into
455  // *scratch and return that.
456  //
457  // Note:  It is perfectly reasonable and useful to write code like:
458  //     str = reflection->GetStringReference(field, &str);
459  //   This line would ensure that only one copy of the string is made
460  //   regardless of the field's underlying representation.  When initializing
461  //   a newly-constructed string, though, it's just as fast and more readable
462  //   to use code like:
463  //     string str = reflection->GetString(field);
464  virtual const string& GetStringReference(const Message& message,
465                                           const FieldDescriptor* field,
466                                           string* scratch) const = 0;
467
468
469  // Singular field mutators -----------------------------------------
470  // These mutate the value of a non-repeated field.
471
472  virtual void SetInt32 (Message* message,
473                         const FieldDescriptor* field, int32  value) const = 0;
474  virtual void SetInt64 (Message* message,
475                         const FieldDescriptor* field, int64  value) const = 0;
476  virtual void SetUInt32(Message* message,
477                         const FieldDescriptor* field, uint32 value) const = 0;
478  virtual void SetUInt64(Message* message,
479                         const FieldDescriptor* field, uint64 value) const = 0;
480  virtual void SetFloat (Message* message,
481                         const FieldDescriptor* field, float  value) const = 0;
482  virtual void SetDouble(Message* message,
483                         const FieldDescriptor* field, double value) const = 0;
484  virtual void SetBool  (Message* message,
485                         const FieldDescriptor* field, bool   value) const = 0;
486  virtual void SetString(Message* message,
487                         const FieldDescriptor* field,
488                         const string& value) const = 0;
489  virtual void SetEnum  (Message* message,
490                         const FieldDescriptor* field,
491                         const EnumValueDescriptor* value) const = 0;
492  // Get a mutable pointer to a field with a message type.  If a MessageFactory
493  // is provided, it will be used to construct instances of the sub-message;
494  // otherwise, the default factory is used.  If the field is an extension that
495  // does not live in the same pool as the containing message's descriptor (e.g.
496  // it lives in an overlay pool), then a MessageFactory must be provided.
497  // If you have no idea what that meant, then you probably don't need to worry
498  // about it (don't provide a MessageFactory).  WARNING:  If the
499  // FieldDescriptor is for a compiled-in extension, then
500  // factory->GetPrototype(field->message_type() MUST return an instance of the
501  // compiled-in class for this type, NOT DynamicMessage.
502  virtual Message* MutableMessage(Message* message,
503                                  const FieldDescriptor* field,
504                                  MessageFactory* factory = NULL) const = 0;
505  // Releases the message specified by 'field' and returns the pointer,
506  // ReleaseMessage() will return the message the message object if it exists.
507  // Otherwise, it may or may not return NULL.  In any case, if the return value
508  // is non-NULL, the caller takes ownership of the pointer.
509  // If the field existed (HasField() is true), then the returned pointer will
510  // be the same as the pointer returned by MutableMessage().
511  // This function has the same effect as ClearField().
512  virtual Message* ReleaseMessage(Message* message,
513                                  const FieldDescriptor* field,
514                                  MessageFactory* factory = NULL) const = 0;
515
516
517  // Repeated field getters ------------------------------------------
518  // These get the value of one element of a repeated field.
519
520  virtual int32  GetRepeatedInt32 (const Message& message,
521                                   const FieldDescriptor* field,
522                                   int index) const = 0;
523  virtual int64  GetRepeatedInt64 (const Message& message,
524                                   const FieldDescriptor* field,
525                                   int index) const = 0;
526  virtual uint32 GetRepeatedUInt32(const Message& message,
527                                   const FieldDescriptor* field,
528                                   int index) const = 0;
529  virtual uint64 GetRepeatedUInt64(const Message& message,
530                                   const FieldDescriptor* field,
531                                   int index) const = 0;
532  virtual float  GetRepeatedFloat (const Message& message,
533                                   const FieldDescriptor* field,
534                                   int index) const = 0;
535  virtual double GetRepeatedDouble(const Message& message,
536                                   const FieldDescriptor* field,
537                                   int index) const = 0;
538  virtual bool   GetRepeatedBool  (const Message& message,
539                                   const FieldDescriptor* field,
540                                   int index) const = 0;
541  virtual string GetRepeatedString(const Message& message,
542                                   const FieldDescriptor* field,
543                                   int index) const = 0;
544  virtual const EnumValueDescriptor* GetRepeatedEnum(
545      const Message& message,
546      const FieldDescriptor* field, int index) const = 0;
547  virtual const Message& GetRepeatedMessage(
548      const Message& message,
549      const FieldDescriptor* field, int index) const = 0;
550
551  // See GetStringReference(), above.
552  virtual const string& GetRepeatedStringReference(
553      const Message& message, const FieldDescriptor* field,
554      int index, string* scratch) const = 0;
555
556
557  // Repeated field mutators -----------------------------------------
558  // These mutate the value of one element of a repeated field.
559
560  virtual void SetRepeatedInt32 (Message* message,
561                                 const FieldDescriptor* field,
562                                 int index, int32  value) const = 0;
563  virtual void SetRepeatedInt64 (Message* message,
564                                 const FieldDescriptor* field,
565                                 int index, int64  value) const = 0;
566  virtual void SetRepeatedUInt32(Message* message,
567                                 const FieldDescriptor* field,
568                                 int index, uint32 value) const = 0;
569  virtual void SetRepeatedUInt64(Message* message,
570                                 const FieldDescriptor* field,
571                                 int index, uint64 value) const = 0;
572  virtual void SetRepeatedFloat (Message* message,
573                                 const FieldDescriptor* field,
574                                 int index, float  value) const = 0;
575  virtual void SetRepeatedDouble(Message* message,
576                                 const FieldDescriptor* field,
577                                 int index, double value) const = 0;
578  virtual void SetRepeatedBool  (Message* message,
579                                 const FieldDescriptor* field,
580                                 int index, bool   value) const = 0;
581  virtual void SetRepeatedString(Message* message,
582                                 const FieldDescriptor* field,
583                                 int index, const string& value) const = 0;
584  virtual void SetRepeatedEnum(Message* message,
585                               const FieldDescriptor* field, int index,
586                               const EnumValueDescriptor* value) const = 0;
587  // Get a mutable pointer to an element of a repeated field with a message
588  // type.
589  virtual Message* MutableRepeatedMessage(
590      Message* message, const FieldDescriptor* field, int index) const = 0;
591
592
593  // Repeated field adders -------------------------------------------
594  // These add an element to a repeated field.
595
596  virtual void AddInt32 (Message* message,
597                         const FieldDescriptor* field, int32  value) const = 0;
598  virtual void AddInt64 (Message* message,
599                         const FieldDescriptor* field, int64  value) const = 0;
600  virtual void AddUInt32(Message* message,
601                         const FieldDescriptor* field, uint32 value) const = 0;
602  virtual void AddUInt64(Message* message,
603                         const FieldDescriptor* field, uint64 value) const = 0;
604  virtual void AddFloat (Message* message,
605                         const FieldDescriptor* field, float  value) const = 0;
606  virtual void AddDouble(Message* message,
607                         const FieldDescriptor* field, double value) const = 0;
608  virtual void AddBool  (Message* message,
609                         const FieldDescriptor* field, bool   value) const = 0;
610  virtual void AddString(Message* message,
611                         const FieldDescriptor* field,
612                         const string& value) const = 0;
613  virtual void AddEnum  (Message* message,
614                         const FieldDescriptor* field,
615                         const EnumValueDescriptor* value) const = 0;
616  // See MutableMessage() for comments on the "factory" parameter.
617  virtual Message* AddMessage(Message* message,
618                              const FieldDescriptor* field,
619                              MessageFactory* factory = NULL) const = 0;
620
621
622  // Repeated field accessors  -------------------------------------------------
623  // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
624  // access to the data in a RepeatedField.  The methods below provide aggregate
625  // access by exposing the RepeatedField object itself with the Message.
626  // Applying these templates to inappropriate types will lead to an undefined
627  // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
628  // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
629  //
630  // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
631
632  // for T = Cord and all protobuf scalar types except enums.
633  template<typename T>
634  const RepeatedField<T>& GetRepeatedField(
635      const Message&, const FieldDescriptor*) const;
636
637  // for T = Cord and all protobuf scalar types except enums.
638  template<typename T>
639  RepeatedField<T>* MutableRepeatedField(
640      Message*, const FieldDescriptor*) const;
641
642  // for T = string, google::protobuf::internal::StringPieceField
643  //         google::protobuf::Message & descendants.
644  template<typename T>
645  const RepeatedPtrField<T>& GetRepeatedPtrField(
646      const Message&, const FieldDescriptor*) const;
647
648  // for T = string, google::protobuf::internal::StringPieceField
649  //         google::protobuf::Message & descendants.
650  template<typename T>
651  RepeatedPtrField<T>* MutableRepeatedPtrField(
652      Message*, const FieldDescriptor*) const;
653
654  // Extensions ----------------------------------------------------------------
655
656  // Try to find an extension of this message type by fully-qualified field
657  // name.  Returns NULL if no extension is known for this name or number.
658  virtual const FieldDescriptor* FindKnownExtensionByName(
659      const string& name) const = 0;
660
661  // Try to find an extension of this message type by field number.
662  // Returns NULL if no extension is known for this name or number.
663  virtual const FieldDescriptor* FindKnownExtensionByNumber(
664      int number) const = 0;
665
666  // ---------------------------------------------------------------------------
667
668 protected:
669  // Obtain a pointer to a Repeated Field Structure and do some type checking:
670  //   on field->cpp_type(),
671  //   on field->field_option().ctype() (if ctype >= 0)
672  //   of field->message_type() (if message_type != NULL).
673  // We use 1 routine rather than 4 (const vs mutable) x (scalar vs pointer).
674  virtual void* MutableRawRepeatedField(
675      Message* message, const FieldDescriptor* field, FieldDescriptor::CppType,
676      int ctype, const Descriptor* message_type) const = 0;
677
678 private:
679  // Special version for specialized implementations of string.  We can't call
680  // MutableRawRepeatedField directly here because we don't have access to
681  // FieldOptions::* which are defined in descriptor.pb.h.  Including that
682  // file here is not possible because it would cause a circular include cycle.
683  void* MutableRawRepeatedString(
684      Message* message, const FieldDescriptor* field, bool is_string) const;
685
686  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
687};
688
689// Abstract interface for a factory for message objects.
690class LIBPROTOBUF_EXPORT MessageFactory {
691 public:
692  inline MessageFactory() {}
693  virtual ~MessageFactory();
694
695  // Given a Descriptor, gets or constructs the default (prototype) Message
696  // of that type.  You can then call that message's New() method to construct
697  // a mutable message of that type.
698  //
699  // Calling this method twice with the same Descriptor returns the same
700  // object.  The returned object remains property of the factory.  Also, any
701  // objects created by calling the prototype's New() method share some data
702  // with the prototype, so these must be destoyed before the MessageFactory
703  // is destroyed.
704  //
705  // The given descriptor must outlive the returned message, and hence must
706  // outlive the MessageFactory.
707  //
708  // Some implementations do not support all types.  GetPrototype() will
709  // return NULL if the descriptor passed in is not supported.
710  //
711  // This method may or may not be thread-safe depending on the implementation.
712  // Each implementation should document its own degree thread-safety.
713  virtual const Message* GetPrototype(const Descriptor* type) = 0;
714
715  // Gets a MessageFactory which supports all generated, compiled-in messages.
716  // In other words, for any compiled-in type FooMessage, the following is true:
717  //   MessageFactory::generated_factory()->GetPrototype(
718  //     FooMessage::descriptor()) == FooMessage::default_instance()
719  // This factory supports all types which are found in
720  // DescriptorPool::generated_pool().  If given a descriptor from any other
721  // pool, GetPrototype() will return NULL.  (You can also check if a
722  // descriptor is for a generated message by checking if
723  // descriptor->file()->pool() == DescriptorPool::generated_pool().)
724  //
725  // This factory is 100% thread-safe; calling GetPrototype() does not modify
726  // any shared data.
727  //
728  // This factory is a singleton.  The caller must not delete the object.
729  static MessageFactory* generated_factory();
730
731  // For internal use only:  Registers a .proto file at static initialization
732  // time, to be placed in generated_factory.  The first time GetPrototype()
733  // is called with a descriptor from this file, |register_messages| will be
734  // called, with the file name as the parameter.  It must call
735  // InternalRegisterGeneratedMessage() (below) to register each message type
736  // in the file.  This strange mechanism is necessary because descriptors are
737  // built lazily, so we can't register types by their descriptor until we
738  // know that the descriptor exists.  |filename| must be a permanent string.
739  static void InternalRegisterGeneratedFile(
740      const char* filename, void (*register_messages)(const string&));
741
742  // For internal use only:  Registers a message type.  Called only by the
743  // functions which are registered with InternalRegisterGeneratedFile(),
744  // above.
745  static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
746                                               const Message* prototype);
747
748
749 private:
750  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
751};
752
753#define DECLARE_GET_REPEATED_FIELD(TYPE)                         \
754template<>                                                       \
755LIBPROTOBUF_EXPORT                                               \
756const RepeatedField<TYPE>& Reflection::GetRepeatedField<TYPE>(   \
757    const Message& message, const FieldDescriptor* field) const; \
758                                                                 \
759template<>                                                       \
760LIBPROTOBUF_EXPORT                                               \
761RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>(     \
762    Message* message, const FieldDescriptor* field) const;
763
764DECLARE_GET_REPEATED_FIELD(int32)
765DECLARE_GET_REPEATED_FIELD(int64)
766DECLARE_GET_REPEATED_FIELD(uint32)
767DECLARE_GET_REPEATED_FIELD(uint64)
768DECLARE_GET_REPEATED_FIELD(float)
769DECLARE_GET_REPEATED_FIELD(double)
770DECLARE_GET_REPEATED_FIELD(bool)
771
772#undef DECLARE_GET_REPEATED_FIELD
773
774// =============================================================================
775// Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
776// specializations for <string>, <StringPieceField> and <Message> and handle
777// everything else with the default template which will match any type having
778// a method with signature "static const google::protobuf::Descriptor* descriptor()".
779// Such a type presumably is a descendant of google::protobuf::Message.
780
781template<>
782inline const RepeatedPtrField<string>& Reflection::GetRepeatedPtrField<string>(
783    const Message& message, const FieldDescriptor* field) const {
784  return *static_cast<RepeatedPtrField<string>* >(
785      MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
786}
787
788template<>
789inline RepeatedPtrField<string>* Reflection::MutableRepeatedPtrField<string>(
790    Message* message, const FieldDescriptor* field) const {
791  return static_cast<RepeatedPtrField<string>* >(
792      MutableRawRepeatedString(message, field, true));
793}
794
795
796// -----
797
798template<>
799inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
800    const Message& message, const FieldDescriptor* field) const {
801  return *static_cast<RepeatedPtrField<Message>* >(
802      MutableRawRepeatedField(const_cast<Message*>(&message), field,
803          FieldDescriptor::CPPTYPE_MESSAGE, -1,
804          NULL));
805}
806
807template<>
808inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
809    Message* message, const FieldDescriptor* field) const {
810  return static_cast<RepeatedPtrField<Message>* >(
811      MutableRawRepeatedField(message, field,
812          FieldDescriptor::CPPTYPE_MESSAGE, -1,
813          NULL));
814}
815
816template<typename PB>
817inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
818    const Message& message, const FieldDescriptor* field) const {
819  return *static_cast<RepeatedPtrField<PB>* >(
820      MutableRawRepeatedField(const_cast<Message*>(&message), field,
821          FieldDescriptor::CPPTYPE_MESSAGE, -1,
822          PB::default_instance().GetDescriptor()));
823}
824
825template<typename PB>
826inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
827    Message* message, const FieldDescriptor* field) const {
828  return static_cast<RepeatedPtrField<PB>* >(
829      MutableRawRepeatedField(message, field,
830          FieldDescriptor::CPPTYPE_MESSAGE, -1,
831          PB::default_instance().GetDescriptor()));
832}
833
834}  // namespace protobuf
835
836}  // namespace google
837#endif  // GOOGLE_PROTOBUF_MESSAGE_H__
838