1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkTypes_DEFINED
9#define SkTypes_DEFINED
10
11#include "SkPreConfig.h"
12#include "SkUserConfig.h"
13#include "SkPostConfig.h"
14#include <stdint.h>
15
16/** \file SkTypes.h
17*/
18
19/** See SkGraphics::GetVersion() to retrieve these at runtime
20 */
21#define SKIA_VERSION_MAJOR  1
22#define SKIA_VERSION_MINOR  0
23#define SKIA_VERSION_PATCH  0
24
25/*
26    memory wrappers to be implemented by the porting layer (platform)
27*/
28
29/** Called internally if we run out of memory. The platform implementation must
30    not return, but should either throw an exception or otherwise exit.
31*/
32SK_API extern void sk_out_of_memory(void);
33/** Called internally if we hit an unrecoverable error.
34    The platform implementation must not return, but should either throw
35    an exception or otherwise exit.
36*/
37SK_API extern void sk_throw(void);
38
39enum {
40    SK_MALLOC_TEMP  = 0x01, //!< hint to sk_malloc that the requested memory will be freed in the scope of the stack frame
41    SK_MALLOC_THROW = 0x02  //!< instructs sk_malloc to call sk_throw if the memory cannot be allocated.
42};
43/** Return a block of memory (at least 4-byte aligned) of at least the
44    specified size. If the requested memory cannot be returned, either
45    return null (if SK_MALLOC_TEMP bit is clear) or throw an exception
46    (if SK_MALLOC_TEMP bit is set). To free the memory, call sk_free().
47*/
48SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
49/** Same as sk_malloc(), but hard coded to pass SK_MALLOC_THROW as the flag
50*/
51SK_API extern void* sk_malloc_throw(size_t size);
52/** Same as standard realloc(), but this one never returns null on failure. It will throw
53    an exception if it fails.
54*/
55SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
56/** Free memory returned by sk_malloc(). It is safe to pass null.
57*/
58SK_API extern void sk_free(void*);
59
60/** Much like calloc: returns a pointer to at least size zero bytes, or NULL on failure.
61 */
62SK_API extern void* sk_calloc(size_t size);
63
64/** Same as sk_calloc, but throws an exception instead of returning NULL on failure.
65 */
66SK_API extern void* sk_calloc_throw(size_t size);
67
68// bzero is safer than memset, but we can't rely on it, so... sk_bzero()
69static inline void sk_bzero(void* buffer, size_t size) {
70    memset(buffer, 0, size);
71}
72
73///////////////////////////////////////////////////////////////////////////////
74
75#ifdef SK_OVERRIDE_GLOBAL_NEW
76#include <new>
77
78inline void* operator new(size_t size) {
79    return sk_malloc_throw(size);
80}
81
82inline void operator delete(void* p) {
83    sk_free(p);
84}
85#endif
86
87///////////////////////////////////////////////////////////////////////////////
88
89#define SK_INIT_TO_AVOID_WARNING    = 0
90
91#ifndef SkDebugf
92    SK_API void SkDebugf(const char format[], ...);
93#endif
94
95#ifdef SK_DEBUG
96    #define SkASSERT(cond)              SK_ALWAYSBREAK(cond)
97    #define SkDEBUGFAIL(message)        SkASSERT(false && message)
98    #define SkDEBUGCODE(code)           code
99    #define SkDECLAREPARAM(type, var)   , type var
100    #define SkPARAM(var)                , var
101//  #define SkDEBUGF(args       )       SkDebugf##args
102    #define SkDEBUGF(args       )       SkDebugf args
103    #define SkAssertResult(cond)        SkASSERT(cond)
104#else
105    #define SkASSERT(cond)
106    #define SkDEBUGFAIL(message)
107    #define SkDEBUGCODE(code)
108    #define SkDEBUGF(args)
109    #define SkDECLAREPARAM(type, var)
110    #define SkPARAM(var)
111
112    // unlike SkASSERT, this guy executes its condition in the non-debug build
113    #define SkAssertResult(cond)        cond
114#endif
115
116#define SkFAIL(message)                 SK_ALWAYSBREAK(false && message)
117
118// We want to evaluate cond only once, and inside the SkASSERT somewhere so we see its string form.
119// So we use the comma operator to make an SkDebugf that always returns false: we'll evaluate cond,
120// and if it's true the assert passes; if it's false, we'll print the message and the assert fails.
121#define SkASSERTF(cond, fmt, ...)       SkASSERT((cond) || (SkDebugf(fmt"\n", __VA_ARGS__), false))
122
123#ifdef SK_DEVELOPER
124    #define SkDEVCODE(code)             code
125#else
126    #define SkDEVCODE(code)
127#endif
128
129#ifdef SK_IGNORE_TO_STRING
130    #define SK_TO_STRING_NONVIRT()
131    #define SK_TO_STRING_VIRT()
132    #define SK_TO_STRING_PUREVIRT()
133    #define SK_TO_STRING_OVERRIDE()
134#else
135    // the 'toString' helper functions convert Sk* objects to human-readable
136    // form in developer mode
137    #define SK_TO_STRING_NONVIRT() void toString(SkString* str) const;
138    #define SK_TO_STRING_VIRT() virtual void toString(SkString* str) const;
139    #define SK_TO_STRING_PUREVIRT() virtual void toString(SkString* str) const = 0;
140    #define SK_TO_STRING_OVERRIDE() virtual void toString(SkString* str) const SK_OVERRIDE;
141#endif
142
143template <bool>
144struct SkCompileAssert {
145};
146
147// Uses static_cast<bool>(expr) instead of bool(expr) due to
148// https://connect.microsoft.com/VisualStudio/feedback/details/832915
149
150// The extra parentheses in SkCompileAssert<(...)> are a work around for
151// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57771
152// which was fixed in gcc 4.8.2.
153#define SK_COMPILE_ASSERT(expr, msg) \
154    typedef SkCompileAssert<(static_cast<bool>(expr))> \
155            msg[static_cast<bool>(expr) ? 1 : -1] SK_UNUSED
156
157/*
158 *  Usage:  SK_MACRO_CONCAT(a, b)   to construct the symbol ab
159 *
160 *  SK_MACRO_CONCAT_IMPL_PRIV just exists to make this work. Do not use directly
161 *
162 */
163#define SK_MACRO_CONCAT(X, Y)           SK_MACRO_CONCAT_IMPL_PRIV(X, Y)
164#define SK_MACRO_CONCAT_IMPL_PRIV(X, Y)  X ## Y
165
166/*
167 *  Usage: SK_MACRO_APPEND_LINE(foo)    to make foo123, where 123 is the current
168 *                                      line number. Easy way to construct
169 *                                      unique names for local functions or
170 *                                      variables.
171 */
172#define SK_MACRO_APPEND_LINE(name)  SK_MACRO_CONCAT(name, __LINE__)
173
174/**
175 * For some classes, it's almost always an error to instantiate one without a name, e.g.
176 *   {
177 *       SkAutoMutexAcquire(&mutex);
178 *       <some code>
179 *   }
180 * In this case, the writer meant to hold mutex while the rest of the code in the block runs,
181 * but instead the mutex is acquired and then immediately released.  The correct usage is
182 *   {
183 *       SkAutoMutexAcquire lock(&mutex);
184 *       <some code>
185 *   }
186 *
187 * To prevent callers from instantiating your class without a name, use SK_REQUIRE_LOCAL_VAR
188 * like this:
189 *   class classname {
190 *       <your class>
191 *   };
192 *   #define classname(...) SK_REQUIRE_LOCAL_VAR(classname)
193 *
194 * This won't work with templates, and you must inline the class' constructors and destructors.
195 * Take a look at SkAutoFree and SkAutoMalloc in this file for examples.
196 */
197#define SK_REQUIRE_LOCAL_VAR(classname) \
198    SK_COMPILE_ASSERT(false, missing_name_for_##classname)
199
200///////////////////////////////////////////////////////////////////////
201
202/**
203 *  Fast type for signed 8 bits. Use for parameter passing and local variables,
204 *  not for storage.
205 */
206typedef int S8CPU;
207
208/**
209 *  Fast type for unsigned 8 bits. Use for parameter passing and local
210 *  variables, not for storage
211 */
212typedef unsigned U8CPU;
213
214/**
215 *  Fast type for signed 16 bits. Use for parameter passing and local variables,
216 *  not for storage
217 */
218typedef int S16CPU;
219
220/**
221 *  Fast type for unsigned 16 bits. Use for parameter passing and local
222 *  variables, not for storage
223 */
224typedef unsigned U16CPU;
225
226/**
227 *  Meant to be faster than bool (doesn't promise to be 0 or 1,
228 *  just 0 or non-zero
229 */
230typedef int SkBool;
231
232/**
233 *  Meant to be a small version of bool, for storage purposes. Will be 0 or 1
234 */
235typedef uint8_t SkBool8;
236
237#ifdef SK_DEBUG
238    SK_API int8_t      SkToS8(intmax_t);
239    SK_API uint8_t     SkToU8(uintmax_t);
240    SK_API int16_t     SkToS16(intmax_t);
241    SK_API uint16_t    SkToU16(uintmax_t);
242    SK_API int32_t     SkToS32(intmax_t);
243    SK_API uint32_t    SkToU32(uintmax_t);
244    SK_API int         SkToInt(intmax_t);
245    SK_API unsigned    SkToUInt(uintmax_t);
246    SK_API size_t      SkToSizeT(uintmax_t);
247#else
248    #define SkToS8(x)   ((int8_t)(x))
249    #define SkToU8(x)   ((uint8_t)(x))
250    #define SkToS16(x)  ((int16_t)(x))
251    #define SkToU16(x)  ((uint16_t)(x))
252    #define SkToS32(x)  ((int32_t)(x))
253    #define SkToU32(x)  ((uint32_t)(x))
254    #define SkToInt(x)  ((int)(x))
255    #define SkToUInt(x) ((unsigned)(x))
256    #define SkToSizeT(x) ((size_t)(x))
257#endif
258
259/** Returns 0 or 1 based on the condition
260*/
261#define SkToBool(cond)  ((cond) != 0)
262
263#define SK_MaxS16   32767
264#define SK_MinS16   -32767
265#define SK_MaxU16   0xFFFF
266#define SK_MinU16   0
267#define SK_MaxS32   0x7FFFFFFF
268#define SK_MinS32   -SK_MaxS32
269#define SK_MaxU32   0xFFFFFFFF
270#define SK_MinU32   0
271#define SK_NaN32    (1 << 31)
272
273/** Returns true if the value can be represented with signed 16bits
274 */
275static inline bool SkIsS16(long x) {
276    return (int16_t)x == x;
277}
278
279/** Returns true if the value can be represented with unsigned 16bits
280 */
281static inline bool SkIsU16(long x) {
282    return (uint16_t)x == x;
283}
284
285//////////////////////////////////////////////////////////////////////////////
286#ifndef SK_OFFSETOF
287    #define SK_OFFSETOF(type, field)    (size_t)((char*)&(((type*)1)->field) - (char*)1)
288#endif
289
290/** Returns the number of entries in an array (not a pointer)
291*/
292#define SK_ARRAY_COUNT(array)       (sizeof(array) / sizeof(array[0]))
293
294#define SkAlign2(x)     (((x) + 1) >> 1 << 1)
295#define SkIsAlign2(x)   (0 == ((x) & 1))
296
297#define SkAlign4(x)     (((x) + 3) >> 2 << 2)
298#define SkIsAlign4(x)   (0 == ((x) & 3))
299
300#define SkAlign8(x)     (((x) + 7) >> 3 << 3)
301#define SkIsAlign8(x)   (0 == ((x) & 7))
302
303#define SkAlignPtr(x)   (sizeof(void*) == 8 ?   SkAlign8(x) :   SkAlign4(x))
304#define SkIsAlignPtr(x) (sizeof(void*) == 8 ? SkIsAlign8(x) : SkIsAlign4(x))
305
306typedef uint32_t SkFourByteTag;
307#define SkSetFourByteTag(a, b, c, d)    (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
308
309/** 32 bit integer to hold a unicode value
310*/
311typedef int32_t SkUnichar;
312/** 32 bit value to hold a millisecond count
313*/
314typedef uint32_t SkMSec;
315/** 1 second measured in milliseconds
316*/
317#define SK_MSec1 1000
318/** maximum representable milliseconds
319*/
320#define SK_MSecMax 0x7FFFFFFF
321/** Returns a < b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
322*/
323#define SkMSec_LT(a, b)     ((int32_t)(a) - (int32_t)(b) < 0)
324/** Returns a <= b for milliseconds, correctly handling wrap-around from 0xFFFFFFFF to 0
325*/
326#define SkMSec_LE(a, b)     ((int32_t)(a) - (int32_t)(b) <= 0)
327
328/** The generation IDs in Skia reserve 0 has an invalid marker.
329 */
330#define SK_InvalidGenID     0
331/** The unique IDs in Skia reserve 0 has an invalid marker.
332 */
333#define SK_InvalidUniqueID  0
334
335/****************************************************************************
336    The rest of these only build with C++
337*/
338#ifdef __cplusplus
339
340/** Faster than SkToBool for integral conditions. Returns 0 or 1
341*/
342static inline int Sk32ToBool(uint32_t n) {
343    return (n | (0-n)) >> 31;
344}
345
346/** Generic swap function. Classes with efficient swaps should specialize this function to take
347    their fast path. This function is used by SkTSort. */
348template <typename T> inline void SkTSwap(T& a, T& b) {
349    T c(a);
350    a = b;
351    b = c;
352}
353
354static inline int32_t SkAbs32(int32_t value) {
355    if (value < 0) {
356        value = -value;
357    }
358    return value;
359}
360
361template <typename T> inline T SkTAbs(T value) {
362    if (value < 0) {
363        value = -value;
364    }
365    return value;
366}
367
368static inline int32_t SkMax32(int32_t a, int32_t b) {
369    if (a < b)
370        a = b;
371    return a;
372}
373
374static inline int32_t SkMin32(int32_t a, int32_t b) {
375    if (a > b)
376        a = b;
377    return a;
378}
379
380template <typename T> const T& SkTMin(const T& a, const T& b) {
381    return (a < b) ? a : b;
382}
383
384template <typename T> const T& SkTMax(const T& a, const T& b) {
385    return (b < a) ? a : b;
386}
387
388static inline int32_t SkSign32(int32_t a) {
389    return (a >> 31) | ((unsigned) -a >> 31);
390}
391
392static inline int32_t SkFastMin32(int32_t value, int32_t max) {
393    if (value > max) {
394        value = max;
395    }
396    return value;
397}
398
399/** Returns signed 32 bit value pinned between min and max, inclusively
400*/
401static inline int32_t SkPin32(int32_t value, int32_t min, int32_t max) {
402    if (value < min) {
403        value = min;
404    }
405    if (value > max) {
406        value = max;
407    }
408    return value;
409}
410
411static inline uint32_t SkSetClearShift(uint32_t bits, bool cond,
412                                       unsigned shift) {
413    SkASSERT((int)cond == 0 || (int)cond == 1);
414    return (bits & ~(1 << shift)) | ((int)cond << shift);
415}
416
417static inline uint32_t SkSetClearMask(uint32_t bits, bool cond,
418                                      uint32_t mask) {
419    return cond ? bits | mask : bits & ~mask;
420}
421
422///////////////////////////////////////////////////////////////////////////////
423
424/** Use to combine multiple bits in a bitmask in a type safe way.
425 */
426template <typename T>
427T SkTBitOr(T a, T b) {
428    return (T)(a | b);
429}
430
431/**
432 *  Use to cast a pointer to a different type, and maintaining strict-aliasing
433 */
434template <typename Dst> Dst SkTCast(const void* ptr) {
435    union {
436        const void* src;
437        Dst dst;
438    } data;
439    data.src = ptr;
440    return data.dst;
441}
442
443//////////////////////////////////////////////////////////////////////////////
444
445/** \class SkNoncopyable
446
447SkNoncopyable is the base class for objects that may do not want to
448be copied. It hides its copy-constructor and its assignment-operator.
449*/
450class SK_API SkNoncopyable {
451public:
452    SkNoncopyable() {}
453
454private:
455    SkNoncopyable(const SkNoncopyable&);
456    SkNoncopyable& operator=(const SkNoncopyable&);
457};
458
459class SkAutoFree : SkNoncopyable {
460public:
461    SkAutoFree() : fPtr(NULL) {}
462    explicit SkAutoFree(void* ptr) : fPtr(ptr) {}
463    ~SkAutoFree() { sk_free(fPtr); }
464
465    /** Return the currently allocate buffer, or null
466    */
467    void* get() const { return fPtr; }
468
469    /** Assign a new ptr allocated with sk_malloc (or null), and return the
470        previous ptr. Note it is the caller's responsibility to sk_free the
471        returned ptr.
472    */
473    void* set(void* ptr) {
474        void* prev = fPtr;
475        fPtr = ptr;
476        return prev;
477    }
478
479    /** Transfer ownership of the current ptr to the caller, setting the
480        internal reference to null. Note the caller is reponsible for calling
481        sk_free on the returned address.
482    */
483    void* detach() { return this->set(NULL); }
484
485    /** Free the current buffer, and set the internal reference to NULL. Same
486        as calling sk_free(detach())
487    */
488    void free() {
489        sk_free(fPtr);
490        fPtr = NULL;
491    }
492
493private:
494    void* fPtr;
495    // illegal
496    SkAutoFree(const SkAutoFree&);
497    SkAutoFree& operator=(const SkAutoFree&);
498};
499#define SkAutoFree(...) SK_REQUIRE_LOCAL_VAR(SkAutoFree)
500
501/**
502 *  Manage an allocated block of heap memory. This object is the sole manager of
503 *  the lifetime of the block, so the caller must not call sk_free() or delete
504 *  on the block, unless detach() was called.
505 */
506class SkAutoMalloc : SkNoncopyable {
507public:
508    explicit SkAutoMalloc(size_t size = 0) {
509        fPtr = size ? sk_malloc_throw(size) : NULL;
510        fSize = size;
511    }
512
513    ~SkAutoMalloc() {
514        sk_free(fPtr);
515    }
516
517    /**
518     *  Passed to reset to specify what happens if the requested size is smaller
519     *  than the current size (and the current block was dynamically allocated).
520     */
521    enum OnShrink {
522        /**
523         *  If the requested size is smaller than the current size, and the
524         *  current block is dynamically allocated, free the old block and
525         *  malloc a new block of the smaller size.
526         */
527        kAlloc_OnShrink,
528
529        /**
530         *  If the requested size is smaller than the current size, and the
531         *  current block is dynamically allocated, just return the old
532         *  block.
533         */
534        kReuse_OnShrink
535    };
536
537    /**
538     *  Reallocates the block to a new size. The ptr may or may not change.
539     */
540    void* reset(size_t size, OnShrink shrink = kAlloc_OnShrink,  bool* didChangeAlloc = NULL) {
541        if (size == fSize || (kReuse_OnShrink == shrink && size < fSize)) {
542            if (didChangeAlloc) {
543                *didChangeAlloc = false;
544            }
545            return fPtr;
546        }
547
548        sk_free(fPtr);
549        fPtr = size ? sk_malloc_throw(size) : NULL;
550        fSize = size;
551        if (didChangeAlloc) {
552            *didChangeAlloc = true;
553        }
554
555        return fPtr;
556    }
557
558    /**
559     *  Releases the block back to the heap
560     */
561    void free() {
562        this->reset(0);
563    }
564
565    /**
566     *  Return the allocated block.
567     */
568    void* get() { return fPtr; }
569    const void* get() const { return fPtr; }
570
571   /** Transfer ownership of the current ptr to the caller, setting the
572       internal reference to null. Note the caller is reponsible for calling
573       sk_free on the returned address.
574    */
575    void* detach() {
576        void* ptr = fPtr;
577        fPtr = NULL;
578        fSize = 0;
579        return ptr;
580    }
581
582private:
583    void*   fPtr;
584    size_t  fSize;  // can be larger than the requested size (see kReuse)
585};
586#define SkAutoMalloc(...) SK_REQUIRE_LOCAL_VAR(SkAutoMalloc)
587
588/**
589 *  Manage an allocated block of memory. If the requested size is <= kSize, then
590 *  the allocation will come from the stack rather than the heap. This object
591 *  is the sole manager of the lifetime of the block, so the caller must not
592 *  call sk_free() or delete on the block.
593 */
594template <size_t kSize> class SkAutoSMalloc : SkNoncopyable {
595public:
596    /**
597     *  Creates initially empty storage. get() returns a ptr, but it is to
598     *  a zero-byte allocation. Must call reset(size) to return an allocated
599     *  block.
600     */
601    SkAutoSMalloc() {
602        fPtr = fStorage;
603        fSize = kSize;
604    }
605
606    /**
607     *  Allocate a block of the specified size. If size <= kSize, then the
608     *  allocation will come from the stack, otherwise it will be dynamically
609     *  allocated.
610     */
611    explicit SkAutoSMalloc(size_t size) {
612        fPtr = fStorage;
613        fSize = kSize;
614        this->reset(size);
615    }
616
617    /**
618     *  Free the allocated block (if any). If the block was small enought to
619     *  have been allocated on the stack (size <= kSize) then this does nothing.
620     */
621    ~SkAutoSMalloc() {
622        if (fPtr != (void*)fStorage) {
623            sk_free(fPtr);
624        }
625    }
626
627    /**
628     *  Return the allocated block. May return non-null even if the block is
629     *  of zero size. Since this may be on the stack or dynamically allocated,
630     *  the caller must not call sk_free() on it, but must rely on SkAutoSMalloc
631     *  to manage it.
632     */
633    void* get() const { return fPtr; }
634
635    /**
636     *  Return a new block of the requested size, freeing (as necessary) any
637     *  previously allocated block. As with the constructor, if size <= kSize
638     *  then the return block may be allocated locally, rather than from the
639     *  heap.
640     */
641    void* reset(size_t size,
642                SkAutoMalloc::OnShrink shrink = SkAutoMalloc::kAlloc_OnShrink,
643                bool* didChangeAlloc = NULL) {
644        size = (size < kSize) ? kSize : size;
645        bool alloc = size != fSize && (SkAutoMalloc::kAlloc_OnShrink == shrink || size > fSize);
646        if (didChangeAlloc) {
647            *didChangeAlloc = alloc;
648        }
649        if (alloc) {
650            if (fPtr != (void*)fStorage) {
651                sk_free(fPtr);
652            }
653
654            if (size == kSize) {
655                SkASSERT(fPtr != fStorage); // otherwise we lied when setting didChangeAlloc.
656                fPtr = fStorage;
657            } else {
658                fPtr = sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_TEMP);
659            }
660
661            fSize = size;
662        }
663        SkASSERT(fSize >= size && fSize >= kSize);
664        SkASSERT((fPtr == fStorage) || fSize > kSize);
665        return fPtr;
666    }
667
668private:
669    void*       fPtr;
670    size_t      fSize;  // can be larger than the requested size (see kReuse)
671    uint32_t    fStorage[(kSize + 3) >> 2];
672};
673// Can't guard the constructor because it's a template class.
674
675#endif /* C++ */
676
677#endif
678