1/*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkTextureCompressor_Blitter_DEFINED
9#define SkTextureCompressor_Blitter_DEFINED
10
11#include "SkTypes.h"
12#include "SkBlitter.h"
13
14namespace SkTextureCompressor {
15
16// Ostensibly, SkBlitter::BlitRect is supposed to set a rect of pixels to full
17// alpha. This becomes problematic when using compressed texture blitters, since
18// the rect rarely falls along block boundaries. The proper way to handle this is
19// to update the compressed encoding of a block by resetting the proper parameters
20// (and even recompressing the block) where a rect falls inbetween block boundaries.
21// PEDANTIC_BLIT_RECT attempts to do this by requiring the struct passed to
22// SkTCompressedAlphaBlitter to implement an UpdateBlock function call.
23//
24// However, the way that BlitRect gets used almost exclusively is to bracket inverse
25// fills for paths. In other words, the top few rows and bottom few rows of a path
26// that's getting inverse filled are called using blitRect. The rest are called using
27// the standard blitAntiH. As a result, we can just call  blitAntiH with a faux RLE
28// of full alpha values, and then check in our flush() call that we don't run off the
29// edge of the buffer. This is why we do not need this flag to be turned on.
30//
31// NOTE: This code is unfinished, but is inteded as a starting point if an when
32// bugs are introduced from the existing code.
33#define PEDANTIC_BLIT_RECT 0
34
35// This class implements a blitter that blits directly into a buffer that will
36// be used as an compressed alpha texture. We compute this buffer by
37// buffering scan lines and then outputting them all at once. The number of
38// scan lines buffered is controlled by kBlockSize
39//
40// The CompressorType is a struct with a bunch of static methods that provides
41// the specialized compression functionality of the blitter. A complete CompressorType
42// will implement the following static functions;
43//
44// struct CompressorType {
45//     // The function used to compress an A8 block. The layout of the
46//     // block is also expected to be in column-major order.
47//     static void CompressA8Vertical(uint8_t* dst, const uint8_t block[]);
48//
49//     // The function used to compress an A8 block. The layout of the
50//     // block is also expected to be in row-major order.
51//     static void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, int srcRowBytes);
52//
53#if PEDANTIC_BLIT_RECT
54//     // The function used to update an already compressed block. This will
55//     // most likely be implementation dependent. The mask variable will have
56//     // 0xFF in positions where the block should be updated and 0 in positions
57//     // where it shouldn't. src contains an uncompressed buffer of pixels.
58//     static void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes,
59//                             const uint8_t* mask);
60#endif
61// };
62template<int BlockDim, int EncodedBlockSize, typename CompressorType>
63class SkTCompressedAlphaBlitter : public SkBlitter {
64public:
65    SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer)
66        // 0x7FFE is one minus the largest positive 16-bit int. We use it for
67        // debugging to make sure that we're properly setting the nextX distance
68        // in flushRuns().
69#ifdef SK_DEBUG
70        : fCalledOnceWithNonzeroY(false)
71        , fBlitMaskCalled(false),
72#else
73        :
74#endif
75        kLongestRun(0x7FFE), kZeroAlpha(0)
76        , fNextRun(0)
77        , fWidth(width)
78        , fHeight(height)
79        , fBuffer(compressedBuffer)
80        {
81            SkASSERT((width % BlockDim) == 0);
82            SkASSERT((height % BlockDim) == 0);
83        }
84
85    virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); }
86
87    // Blit a horizontal run of one or more pixels.
88    virtual void blitH(int x, int y, int width) SK_OVERRIDE {
89        // This function is intended to be called from any standard RGB
90        // buffer, so we should never encounter it. However, if some code
91        // path does end up here, then this needs to be investigated.
92        SkFAIL("Not implemented!");
93    }
94
95    // Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
96    // zero-terminated run-length encoding of spans of constant alpha values.
97    virtual void blitAntiH(int x, int y,
98                           const SkAlpha antialias[],
99                           const int16_t runs[]) SK_OVERRIDE {
100        SkASSERT(0 == x);
101
102        // Make sure that the new row to blit is either the first
103        // row that we're blitting, or it's exactly the next scan row
104        // since the last row that we blit. This is to ensure that when
105        // we go to flush the runs, that they are all the same four
106        // runs.
107        if (fNextRun > 0 &&
108            ((x != fBufferedRuns[fNextRun-1].fX) ||
109             (y-1 != fBufferedRuns[fNextRun-1].fY))) {
110            this->flushRuns();
111        }
112
113        // Align the rows to a block boundary. If we receive rows that
114        // are not on a block boundary, then fill in the preceding runs
115        // with zeros. We do this by producing a single RLE that says
116        // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
117        const int row = BlockDim * (y / BlockDim);
118        while ((row + fNextRun) < y) {
119            fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
120            fBufferedRuns[fNextRun].fRuns = &kLongestRun;
121            fBufferedRuns[fNextRun].fX = 0;
122            fBufferedRuns[fNextRun].fY = row + fNextRun;
123            ++fNextRun;
124        }
125
126        // Make sure that our assumptions aren't violated...
127        SkASSERT(fNextRun == (y % BlockDim));
128        SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
129
130        // Set the values of the next run
131        fBufferedRuns[fNextRun].fAlphas = antialias;
132        fBufferedRuns[fNextRun].fRuns = runs;
133        fBufferedRuns[fNextRun].fX = x;
134        fBufferedRuns[fNextRun].fY = y;
135
136        // If we've output a block of scanlines in a row that don't violate our
137        // assumptions, then it's time to flush them...
138        if (BlockDim == ++fNextRun) {
139            this->flushRuns();
140        }
141    }
142
143    // Blit a vertical run of pixels with a constant alpha value.
144    virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
145        // This function is currently not implemented. It is not explicitly
146        // required by the contract, but if at some time a code path runs into
147        // this function (which is entirely possible), it needs to be implemented.
148        //
149        // TODO (krajcevski):
150        // This function will be most easily implemented in one of two ways:
151        // 1. Buffer each vertical column value and then construct a list
152        //    of alpha values and output all of the blocks at once. This only
153        //    requires a write to the compressed buffer
154        // 2. Replace the indices of each block with the proper indices based
155        //    on the alpha value. This requires a read and write of the compressed
156        //    buffer, but much less overhead.
157        SkFAIL("Not implemented!");
158    }
159
160    // Blit a solid rectangle one or more pixels wide. It's assumed that blitRect
161    // is called as a way to bracket blitAntiH where above and below the path the
162    // called path just needs a solid rectangle to fill in the mask.
163#ifdef SK_DEBUG
164    bool fCalledOnceWithNonzeroY;
165#endif
166    virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
167
168        // Assumptions:
169        SkASSERT(0 == x);
170        SkASSERT(width <= fWidth);
171
172        // Make sure that we're only ever bracketing calls to blitAntiH.
173        SkASSERT((0 == y) || (!fCalledOnceWithNonzeroY && (fCalledOnceWithNonzeroY = true)));
174
175#if !(PEDANTIC_BLIT_RECT)
176        for (int i = 0; i < height; ++i) {
177            const SkAlpha kFullAlpha = 0xFF;
178            this->blitAntiH(x, y+i, &kFullAlpha, &kLongestRun);
179        }
180#else
181        const int startBlockX = (x / BlockDim) * BlockDim;
182        const int startBlockY = (y / BlockDim) * BlockDim;
183
184        const int endBlockX = ((x + width) / BlockDim) * BlockDim;
185        const int endBlockY = ((y + height) / BlockDim) * BlockDim;
186
187        // If start and end are the same, then we only need to update a single block...
188        if (startBlockY == endBlockY && startBlockX == endBlockX) {
189            uint8_t mask[BlockDim*BlockDim];
190            memset(mask, 0, sizeof(mask));
191
192            const int xoff = x - startBlockX;
193            SkASSERT((xoff + width) <= BlockDim);
194
195            const int yoff = y - startBlockY;
196            SkASSERT((yoff + height) <= BlockDim);
197
198            for (int j = 0; j < height; ++j) {
199                memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, width);
200            }
201
202            uint8_t* dst = this->getBlock(startBlockX, startBlockY);
203            CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
204
205        // If start and end are the same in the y dimension, then we can freely update an
206        // entire row of blocks...
207        } else if (startBlockY == endBlockY) {
208
209            this->updateBlockRow(x, y, width, height, startBlockY, startBlockX, endBlockX);
210
211        // Similarly, if the start and end are in the same column, then we can just update
212        // an entire column of blocks...
213        } else if (startBlockX == endBlockX) {
214
215            this->updateBlockCol(x, y, width, height, startBlockX, startBlockY, endBlockY);
216
217        // Otherwise, the rect spans a non-trivial region of blocks, and we have to construct
218        // a kind of 9-patch to update each of the pieces of the rect. The top and bottom
219        // rows are updated using updateBlockRow, and the left and right columns are updated
220        // using updateBlockColumn. Anything in the middle is simply memset to an opaque block
221        // encoding.
222        } else {
223
224            const int innerStartBlockX = startBlockX + BlockDim;
225            const int innerStartBlockY = startBlockY + BlockDim;
226
227            // Blit top row
228            const int topRowHeight = innerStartBlockY - y;
229            this->updateBlockRow(x, y, width, topRowHeight, startBlockY,
230                                 startBlockX, endBlockX);
231
232            // Advance y
233            y += topRowHeight;
234            height -= topRowHeight;
235
236            // Blit middle
237            if (endBlockY > innerStartBlockY) {
238
239                // Update left row
240                this->updateBlockCol(x, y, innerStartBlockX - x, endBlockY, startBlockY,
241                                     startBlockX, innerStartBlockX);
242
243                // Update the middle with an opaque encoding...
244                uint8_t mask[BlockDim*BlockDim];
245                memset(mask, 0xFF, sizeof(mask));
246
247                uint8_t opaqueEncoding[EncodedBlockSize];
248                CompressorType::CompressA8Horizontal(opaqueEncoding, mask, BlockDim);
249
250                for (int j = innerStartBlockY; j < endBlockY; j += BlockDim) {
251                    uint8_t* opaqueDst = this->getBlock(innerStartBlockX, j);
252                    for (int i = innerStartBlockX; i < endBlockX; i += BlockDim) {
253                        memcpy(opaqueDst, opaqueEncoding, EncodedBlockSize);
254                        opaqueDst += EncodedBlockSize;
255                    }
256                }
257
258                // If we need to update the right column, do that too
259                if (x + width > endBlockX) {
260                    this->updateBlockCol(endBlockX, y, x + width - endBlockX, endBlockY,
261                                         endBlockX, innerStartBlockY, endBlockY);
262                }
263
264                // Advance y
265                height = y + height - endBlockY;
266                y = endBlockY;
267            }
268
269            // If we need to update the last row, then do that, too.
270            if (height > 0) {
271                this->updateBlockRow(x, y, width, height, endBlockY,
272                                     startBlockX, endBlockX);
273            }
274        }
275#endif
276    }
277
278    // Blit a rectangle with one alpha-blended column on the left,
279    // width (zero or more) opaque pixels, and one alpha-blended column
280    // on the right. The result will always be at least two pixels wide.
281    virtual void blitAntiRect(int x, int y, int width, int height,
282                              SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
283        // This function is currently not implemented. It is not explicitly
284        // required by the contract, but if at some time a code path runs into
285        // this function (which is entirely possible), it needs to be implemented.
286        //
287        // TODO (krajcevski):
288        // This function will be most easily implemented as follows:
289        // 1. If width/height are smaller than a block, then update the
290        //    indices of the affected blocks.
291        // 2. If width/height are larger than a block, then construct a 9-patch
292        //    of block encodings that represent the rectangle, and write them
293        //    to the compressed buffer as necessary. Whether or not the blocks
294        //    are overwritten by zeros or just their indices are updated is up
295        //    to debate.
296        SkFAIL("Not implemented!");
297    }
298
299    // Blit a pattern of pixels defined by a rectangle-clipped mask; We make an
300    // assumption here that if this function gets called, then it will replace all
301    // of the compressed texture blocks that it touches. Hence, two separate calls
302    // to blitMask that have clips next to one another will cause artifacts. Most
303    // of the time, however, this function gets called because constructing the mask
304    // was faster than constructing the RLE for blitAntiH, and this function will
305    // only be called once.
306#ifdef SK_DEBUG
307    bool fBlitMaskCalled;
308#endif
309    virtual void blitMask(const SkMask& mask, const SkIRect& clip) SK_OVERRIDE {
310
311        // Assumptions:
312        SkASSERT(!fBlitMaskCalled && (fBlitMaskCalled = true));
313        SkASSERT(SkMask::kA8_Format == mask.fFormat);
314        SkASSERT(mask.fBounds.contains(clip));
315
316        // Start from largest block boundary less than the clip boundaries.
317        const int startI = BlockDim * (clip.left() / BlockDim);
318        const int startJ = BlockDim * (clip.top() / BlockDim);
319
320        for (int j = startJ; j < clip.bottom(); j += BlockDim) {
321
322            // Get the destination for this block row
323            uint8_t* dst = this->getBlock(startI, j);
324            for (int i = startI; i < clip.right(); i += BlockDim) {
325
326                // At this point, the block should intersect the clip.
327                SkASSERT(SkIRect::IntersectsNoEmptyCheck(
328                             SkIRect::MakeXYWH(i, j, BlockDim, BlockDim), clip));
329
330                // Do we need to pad it?
331                if (i < clip.left() || j < clip.top() ||
332                    i + BlockDim > clip.right() || j + BlockDim > clip.bottom()) {
333
334                    uint8_t block[BlockDim*BlockDim];
335                    memset(block, 0, sizeof(block));
336
337                    const int startX = SkMax32(i, clip.left());
338                    const int startY = SkMax32(j, clip.top());
339
340                    const int endX = SkMin32(i + BlockDim, clip.right());
341                    const int endY = SkMin32(j + BlockDim, clip.bottom());
342
343                    for (int y = startY; y < endY; ++y) {
344                        const int col = startX - i;
345                        const int row = y - j;
346                        const int valsWide = endX - startX;
347                        SkASSERT(valsWide <= BlockDim);
348                        SkASSERT(0 <= col && col < BlockDim);
349                        SkASSERT(0 <= row && row < BlockDim);
350                        memcpy(block + row*BlockDim + col,
351                               mask.getAddr8(startX, j + row), valsWide);
352                    }
353
354                    CompressorType::CompressA8Horizontal(dst, block, BlockDim);
355                } else {
356                    // Otherwise, just compress it.
357                    uint8_t*const src = mask.getAddr8(i, j);
358                    const uint32_t rb = mask.fRowBytes;
359                    CompressorType::CompressA8Horizontal(dst, src, rb);
360                }
361
362                dst += EncodedBlockSize;
363            }
364        }
365    }
366
367    // If the blitter just sets a single value for each pixel, return the
368    // bitmap it draws into, and assign value. If not, return NULL and ignore
369    // the value parameter.
370    virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
371        return NULL;
372    }
373
374    /**
375     * Compressed texture blitters only really work correctly if they get
376     * BlockDim rows at a time. That being said, this blitter tries it's best
377     * to preserve semantics if blitAntiH doesn't get called in too many
378     * weird ways...
379     */
380    virtual int requestRowsPreserved() const { return BlockDim; }
381
382private:
383    static const int kPixelsPerBlock = BlockDim * BlockDim;
384
385    // The longest possible run of pixels that this blitter will receive.
386    // This is initialized in the constructor to 0x7FFE, which is one less
387    // than the largest positive 16-bit integer. We make sure that it's one
388    // less for debugging purposes. We also don't make this variable static
389    // in order to make sure that we can construct a valid pointer to it.
390    const int16_t kLongestRun;
391
392    // Usually used in conjunction with kLongestRun. This is initialized to
393    // zero.
394    const SkAlpha kZeroAlpha;
395
396    // This is the information that we buffer whenever we're asked to blit
397    // a row with this blitter.
398    struct BufferedRun {
399        const SkAlpha* fAlphas;
400        const int16_t* fRuns;
401        int fX, fY;
402    } fBufferedRuns[BlockDim];
403
404    // The next row [0, BlockDim) that we need to blit.
405    int fNextRun;
406
407    // The width and height of the image that we're blitting
408    const int fWidth;
409    const int fHeight;
410
411    // The compressed buffer that we're blitting into. It is assumed that the buffer
412    // is large enough to store a compressed image of size fWidth*fHeight.
413    void* const fBuffer;
414
415    // Various utility functions
416    int blocksWide() const { return fWidth / BlockDim; }
417    int blocksTall() const { return fHeight / BlockDim; }
418    int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
419
420    // Returns the block index for the block containing pixel (x, y). Block
421    // indices start at zero and proceed in raster order.
422    int getBlockOffset(int x, int y) const {
423        SkASSERT(x < fWidth);
424        SkASSERT(y < fHeight);
425        const int blockCol = x / BlockDim;
426        const int blockRow = y / BlockDim;
427        return blockRow * this->blocksWide() + blockCol;
428    }
429
430    // Returns a pointer to the block containing pixel (x, y)
431    uint8_t *getBlock(int x, int y) const {
432        uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer);
433        return ptr + EncodedBlockSize*this->getBlockOffset(x, y);
434    }
435
436    // Updates the block whose columns are stored in block. curAlphai is expected
437    // to store the alpha values that will be placed within each of the columns in
438    // the range [col, col+colsLeft).
439    typedef uint32_t Column[BlockDim/4];
440    typedef uint32_t Block[BlockDim][BlockDim/4];
441    inline void updateBlockColumns(Block block, const int col,
442                                   const int colsLeft, const Column curAlphai) {
443        SkASSERT(block);
444        SkASSERT(col + colsLeft <= BlockDim);
445
446        for (int i = col; i < (col + colsLeft); ++i) {
447            memcpy(block[i], curAlphai, sizeof(Column));
448        }
449    }
450
451    // The following function writes the buffered runs to compressed blocks.
452    // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with
453    // the constant zero buffer.
454    void flushRuns() {
455        // If we don't have any runs, then just return.
456        if (0 == fNextRun) {
457            return;
458        }
459
460#ifndef NDEBUG
461        // Make sure that if we have any runs, they all match
462        for (int i = 1; i < fNextRun; ++i) {
463            SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
464            SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
465        }
466#endif
467
468        // If we don't have as many runs as we have rows, fill in the remaining
469        // runs with constant zeros.
470        for (int i = fNextRun; i < BlockDim; ++i) {
471            fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
472            fBufferedRuns[i].fX = fBufferedRuns[0].fX;
473            fBufferedRuns[i].fAlphas = &kZeroAlpha;
474            fBufferedRuns[i].fRuns = &kLongestRun;
475        }
476
477        // Make sure that our assumptions aren't violated.
478        SkASSERT(fNextRun > 0 && fNextRun <= BlockDim);
479        SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0);
480
481        // The following logic walks BlockDim rows at a time and outputs compressed
482        // blocks to the buffer passed into the constructor.
483        // We do the following:
484        //
485        //      c1 c2 c3 c4
486        // -----------------------------------------------------------------------
487        // ... |  |  |  |  |  ----> fBufferedRuns[0]
488        // -----------------------------------------------------------------------
489        // ... |  |  |  |  |  ----> fBufferedRuns[1]
490        // -----------------------------------------------------------------------
491        // ... |  |  |  |  |  ----> fBufferedRuns[2]
492        // -----------------------------------------------------------------------
493        // ... |  |  |  |  |  ----> fBufferedRuns[3]
494        // -----------------------------------------------------------------------
495        //
496        // curX -- the macro X value that we've gotten to.
497        // c[BlockDim] -- the buffers that represent the columns of the current block
498        //                  that we're operating on
499        // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns.
500        // nextX -- for each run, the next point at which we need to update curAlphaColumn
501        //          after the value of curX.
502        // finalX -- the minimum of all the nextX values.
503        //
504        // curX advances to finalX outputting any blocks that it passes along
505        // the way. Since finalX will not change when we reach the end of a
506        // run, the termination criteria will be whenever curX == finalX at the
507        // end of a loop.
508
509        // Setup:
510        Block block;
511        sk_bzero(block, sizeof(block));
512
513        Column curAlphaColumn;
514        sk_bzero(curAlphaColumn, sizeof(curAlphaColumn));
515
516        SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
517
518        int nextX[BlockDim];
519        for (int i = 0; i < BlockDim; ++i) {
520            nextX[i] = 0x7FFFFF;
521        }
522
523        uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
524
525        // Populate the first set of runs and figure out how far we need to
526        // advance on the first step
527        int curX = 0;
528        int finalX = 0xFFFFF;
529        for (int i = 0; i < BlockDim; ++i) {
530            nextX[i] = *(fBufferedRuns[i].fRuns);
531            curAlpha[i] = *(fBufferedRuns[i].fAlphas);
532
533            finalX = SkMin32(nextX[i], finalX);
534        }
535
536        // Make sure that we have a valid right-bound X value
537        SkASSERT(finalX < 0xFFFFF);
538
539        // If the finalX is the longest run, then just blit until we have
540        // width...
541        if (kLongestRun == finalX) {
542            finalX = fWidth;
543        }
544
545        // Run the blitter...
546        while (curX != finalX) {
547            SkASSERT(finalX >= curX);
548
549            // Do we need to populate the rest of the block?
550            if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) {
551                const int col = curX % BlockDim;
552                const int colsLeft = BlockDim - col;
553                SkASSERT(curX + colsLeft <= finalX);
554
555                this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
556
557                // Write this block
558                CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
559                outPtr += EncodedBlockSize;
560                curX += colsLeft;
561            }
562
563            // If we can advance even further, then just keep memsetting the block
564            if ((finalX - curX) >= BlockDim) {
565                SkASSERT((curX % BlockDim) == 0);
566
567                const int col = 0;
568                const int colsLeft = BlockDim;
569
570                this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
571
572                // While we can keep advancing, just keep writing the block.
573                uint8_t lastBlock[EncodedBlockSize];
574                CompressorType::CompressA8Vertical(lastBlock, reinterpret_cast<uint8_t*>(block));
575                while((finalX - curX) >= BlockDim) {
576                    memcpy(outPtr, lastBlock, EncodedBlockSize);
577                    outPtr += EncodedBlockSize;
578                    curX += BlockDim;
579                }
580            }
581
582            // If we haven't advanced within the block then do so.
583            if (curX < finalX) {
584                const int col = curX % BlockDim;
585                const int colsLeft = finalX - curX;
586
587                this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
588                curX += colsLeft;
589            }
590
591            SkASSERT(curX == finalX);
592
593            // Figure out what the next advancement is...
594            if (finalX < fWidth) {
595                for (int i = 0; i < BlockDim; ++i) {
596                    if (nextX[i] == finalX) {
597                        const int16_t run = *(fBufferedRuns[i].fRuns);
598                        fBufferedRuns[i].fRuns += run;
599                        fBufferedRuns[i].fAlphas += run;
600                        curAlpha[i] = *(fBufferedRuns[i].fAlphas);
601                        nextX[i] += *(fBufferedRuns[i].fRuns);
602                    }
603                }
604
605                finalX = 0xFFFFF;
606                for (int i = 0; i < BlockDim; ++i) {
607                    finalX = SkMin32(nextX[i], finalX);
608                }
609            } else {
610                curX = finalX;
611            }
612        }
613
614        // If we didn't land on a block boundary, output the block...
615        if ((curX % BlockDim) > 0) {
616#ifdef SK_DEBUG
617            for (int i = 0; i < BlockDim; ++i) {
618                SkASSERT(nextX[i] == kLongestRun || nextX[i] == curX);
619            }
620#endif
621            const int col = curX % BlockDim;
622            const int colsLeft = BlockDim - col;
623
624            memset(curAlphaColumn, 0, sizeof(curAlphaColumn));
625            this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
626
627            CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
628        }
629
630        fNextRun = 0;
631    }
632
633#if PEDANTIC_BLIT_RECT
634    void updateBlockRow(int x, int y, int width, int height,
635                        int blockRow, int startBlockX, int endBlockX) {
636        if (0 == width || 0 == height || startBlockX == endBlockX) {
637            return;
638        }
639
640        uint8_t* dst = this->getBlock(startBlockX, BlockDim * (y / BlockDim));
641
642        // One horizontal strip to update
643        uint8_t mask[BlockDim*BlockDim];
644        memset(mask, 0, sizeof(mask));
645
646        // Update the left cap
647        int blockX = startBlockX;
648        const int yoff = y - blockRow;
649        for (int j = 0; j < height; ++j) {
650            const int xoff = x - blockX;
651            memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, BlockDim - xoff);
652        }
653        CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
654        dst += EncodedBlockSize;
655        blockX += BlockDim;
656
657        // Update the middle
658        if (blockX < endBlockX) {
659            for (int j = 0; j < height; ++j) {
660                memset(mask + (j + yoff)*BlockDim, 0xFF, BlockDim);
661            }
662            while (blockX < endBlockX) {
663                CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
664                dst += EncodedBlockSize;
665                blockX += BlockDim;
666            }
667        }
668
669        SkASSERT(endBlockX == blockX);
670
671        // Update the right cap (if we need to)
672        if (x + width > endBlockX) {
673            memset(mask, 0, sizeof(mask));
674            for (int j = 0; j < height; ++j) {
675                const int xoff = (x+width-blockX);
676                memset(mask + (j+yoff)*BlockDim, 0xFF, xoff);
677            }
678            CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
679        }
680    }
681
682    void updateBlockCol(int x, int y, int width, int height,
683                        int blockCol, int startBlockY, int endBlockY) {
684        if (0 == width || 0 == height || startBlockY == endBlockY) {
685            return;
686        }
687
688        // One vertical strip to update
689        uint8_t mask[BlockDim*BlockDim];
690        memset(mask, 0, sizeof(mask));
691        const int maskX0 = x - blockCol;
692        const int maskWidth = maskX0 + width;
693        SkASSERT(maskWidth <= BlockDim);
694
695        // Update the top cap
696        int blockY = startBlockY;
697        for (int j = (y - blockY); j < BlockDim; ++j) {
698            memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
699        }
700        CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), mask, BlockDim, mask);
701        blockY += BlockDim;
702
703        // Update middle
704        if (blockY < endBlockY) {
705            for (int j = 0; j < BlockDim; ++j) {
706                memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
707            }
708            while (blockY < endBlockY) {
709                CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
710                                            mask, BlockDim, mask);
711                blockY += BlockDim;
712            }
713        }
714
715        SkASSERT(endBlockY == blockY);
716
717        // Update bottom
718        if (y + height > endBlockY) {
719            for (int j = y+height; j < endBlockY + BlockDim; ++j) {
720                memset(mask + (j-endBlockY)*BlockDim, 0, BlockDim);
721            }
722            CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
723                                        mask, BlockDim, mask);
724        }
725    }
726#endif  // PEDANTIC_BLIT_RECT
727
728};
729
730}  // namespace SkTextureCompressor
731
732#endif  // SkTextureCompressor_Blitter_DEFINED
733