1/*
2** 2007 October 14
3**
4** The author disclaims copyright to this source code.  In place of
5** a legal notice, here is a blessing:
6**
7**    May you do good and not evil.
8**    May you find forgiveness for yourself and forgive others.
9**    May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains the C functions that implement a memory
13** allocation subsystem for use by SQLite.
14**
15** This version of the memory allocation subsystem omits all
16** use of malloc(). The SQLite user supplies a block of memory
17** before calling sqlite3_initialize() from which allocations
18** are made and returned by the xMalloc() and xRealloc()
19** implementations. Once sqlite3_initialize() has been called,
20** the amount of memory available to SQLite is fixed and cannot
21** be changed.
22**
23** This version of the memory allocation subsystem is included
24** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
25*/
26#include "sqliteInt.h"
27
28/*
29** This version of the memory allocator is only built into the library
30** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
31** mean that the library will use a memory-pool by default, just that
32** it is available. The mempool allocator is activated by calling
33** sqlite3_config().
34*/
35#ifdef SQLITE_ENABLE_MEMSYS3
36
37/*
38** Maximum size (in Mem3Blocks) of a "small" chunk.
39*/
40#define MX_SMALL 10
41
42
43/*
44** Number of freelist hash slots
45*/
46#define N_HASH  61
47
48/*
49** A memory allocation (also called a "chunk") consists of two or
50** more blocks where each block is 8 bytes.  The first 8 bytes are
51** a header that is not returned to the user.
52**
53** A chunk is two or more blocks that is either checked out or
54** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
55** size of the allocation in blocks if the allocation is free.
56** The u.hdr.size4x&1 bit is true if the chunk is checked out and
57** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
58** is true if the previous chunk is checked out and false if the
59** previous chunk is free.  The u.hdr.prevSize field is the size of
60** the previous chunk in blocks if the previous chunk is on the
61** freelist. If the previous chunk is checked out, then
62** u.hdr.prevSize can be part of the data for that chunk and should
63** not be read or written.
64**
65** We often identify a chunk by its index in mem3.aPool[].  When
66** this is done, the chunk index refers to the second block of
67** the chunk.  In this way, the first chunk has an index of 1.
68** A chunk index of 0 means "no such chunk" and is the equivalent
69** of a NULL pointer.
70**
71** The second block of free chunks is of the form u.list.  The
72** two fields form a double-linked list of chunks of related sizes.
73** Pointers to the head of the list are stored in mem3.aiSmall[]
74** for smaller chunks and mem3.aiHash[] for larger chunks.
75**
76** The second block of a chunk is user data if the chunk is checked
77** out.  If a chunk is checked out, the user data may extend into
78** the u.hdr.prevSize value of the following chunk.
79*/
80typedef struct Mem3Block Mem3Block;
81struct Mem3Block {
82  union {
83    struct {
84      u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
85      u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
86    } hdr;
87    struct {
88      u32 next;       /* Index in mem3.aPool[] of next free chunk */
89      u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
90    } list;
91  } u;
92};
93
94/*
95** All of the static variables used by this module are collected
96** into a single structure named "mem3".  This is to keep the
97** static variables organized and to reduce namespace pollution
98** when this module is combined with other in the amalgamation.
99*/
100static SQLITE_WSD struct Mem3Global {
101  /*
102  ** Memory available for allocation. nPool is the size of the array
103  ** (in Mem3Blocks) pointed to by aPool less 2.
104  */
105  u32 nPool;
106  Mem3Block *aPool;
107
108  /*
109  ** True if we are evaluating an out-of-memory callback.
110  */
111  int alarmBusy;
112
113  /*
114  ** Mutex to control access to the memory allocation subsystem.
115  */
116  sqlite3_mutex *mutex;
117
118  /*
119  ** The minimum amount of free space that we have seen.
120  */
121  u32 mnMaster;
122
123  /*
124  ** iMaster is the index of the master chunk.  Most new allocations
125  ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
126  ** of the current master.  iMaster is 0 if there is not master chunk.
127  ** The master chunk is not in either the aiHash[] or aiSmall[].
128  */
129  u32 iMaster;
130  u32 szMaster;
131
132  /*
133  ** Array of lists of free blocks according to the block size
134  ** for smaller chunks, or a hash on the block size for larger
135  ** chunks.
136  */
137  u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
138  u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
139} mem3 = { 97535575 };
140
141#define mem3 GLOBAL(struct Mem3Global, mem3)
142
143/*
144** Unlink the chunk at mem3.aPool[i] from list it is currently
145** on.  *pRoot is the list that i is a member of.
146*/
147static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
148  u32 next = mem3.aPool[i].u.list.next;
149  u32 prev = mem3.aPool[i].u.list.prev;
150  assert( sqlite3_mutex_held(mem3.mutex) );
151  if( prev==0 ){
152    *pRoot = next;
153  }else{
154    mem3.aPool[prev].u.list.next = next;
155  }
156  if( next ){
157    mem3.aPool[next].u.list.prev = prev;
158  }
159  mem3.aPool[i].u.list.next = 0;
160  mem3.aPool[i].u.list.prev = 0;
161}
162
163/*
164** Unlink the chunk at index i from
165** whatever list is currently a member of.
166*/
167static void memsys3Unlink(u32 i){
168  u32 size, hash;
169  assert( sqlite3_mutex_held(mem3.mutex) );
170  assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
171  assert( i>=1 );
172  size = mem3.aPool[i-1].u.hdr.size4x/4;
173  assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
174  assert( size>=2 );
175  if( size <= MX_SMALL ){
176    memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
177  }else{
178    hash = size % N_HASH;
179    memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
180  }
181}
182
183/*
184** Link the chunk at mem3.aPool[i] so that is on the list rooted
185** at *pRoot.
186*/
187static void memsys3LinkIntoList(u32 i, u32 *pRoot){
188  assert( sqlite3_mutex_held(mem3.mutex) );
189  mem3.aPool[i].u.list.next = *pRoot;
190  mem3.aPool[i].u.list.prev = 0;
191  if( *pRoot ){
192    mem3.aPool[*pRoot].u.list.prev = i;
193  }
194  *pRoot = i;
195}
196
197/*
198** Link the chunk at index i into either the appropriate
199** small chunk list, or into the large chunk hash table.
200*/
201static void memsys3Link(u32 i){
202  u32 size, hash;
203  assert( sqlite3_mutex_held(mem3.mutex) );
204  assert( i>=1 );
205  assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
206  size = mem3.aPool[i-1].u.hdr.size4x/4;
207  assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
208  assert( size>=2 );
209  if( size <= MX_SMALL ){
210    memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
211  }else{
212    hash = size % N_HASH;
213    memsys3LinkIntoList(i, &mem3.aiHash[hash]);
214  }
215}
216
217/*
218** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
219** will already be held (obtained by code in malloc.c) if
220** sqlite3GlobalConfig.bMemStat is true.
221*/
222static void memsys3Enter(void){
223  if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
224    mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
225  }
226  sqlite3_mutex_enter(mem3.mutex);
227}
228static void memsys3Leave(void){
229  sqlite3_mutex_leave(mem3.mutex);
230}
231
232/*
233** Called when we are unable to satisfy an allocation of nBytes.
234*/
235static void memsys3OutOfMemory(int nByte){
236  if( !mem3.alarmBusy ){
237    mem3.alarmBusy = 1;
238    assert( sqlite3_mutex_held(mem3.mutex) );
239    sqlite3_mutex_leave(mem3.mutex);
240    sqlite3_release_memory(nByte);
241    sqlite3_mutex_enter(mem3.mutex);
242    mem3.alarmBusy = 0;
243  }
244}
245
246
247/*
248** Chunk i is a free chunk that has been unlinked.  Adjust its
249** size parameters for check-out and return a pointer to the
250** user portion of the chunk.
251*/
252static void *memsys3Checkout(u32 i, u32 nBlock){
253  u32 x;
254  assert( sqlite3_mutex_held(mem3.mutex) );
255  assert( i>=1 );
256  assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
257  assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
258  x = mem3.aPool[i-1].u.hdr.size4x;
259  mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
260  mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
261  mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
262  return &mem3.aPool[i];
263}
264
265/*
266** Carve a piece off of the end of the mem3.iMaster free chunk.
267** Return a pointer to the new allocation.  Or, if the master chunk
268** is not large enough, return 0.
269*/
270static void *memsys3FromMaster(u32 nBlock){
271  assert( sqlite3_mutex_held(mem3.mutex) );
272  assert( mem3.szMaster>=nBlock );
273  if( nBlock>=mem3.szMaster-1 ){
274    /* Use the entire master */
275    void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
276    mem3.iMaster = 0;
277    mem3.szMaster = 0;
278    mem3.mnMaster = 0;
279    return p;
280  }else{
281    /* Split the master block.  Return the tail. */
282    u32 newi, x;
283    newi = mem3.iMaster + mem3.szMaster - nBlock;
284    assert( newi > mem3.iMaster+1 );
285    mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
286    mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
287    mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
288    mem3.szMaster -= nBlock;
289    mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
290    x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
291    mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
292    if( mem3.szMaster < mem3.mnMaster ){
293      mem3.mnMaster = mem3.szMaster;
294    }
295    return (void*)&mem3.aPool[newi];
296  }
297}
298
299/*
300** *pRoot is the head of a list of free chunks of the same size
301** or same size hash.  In other words, *pRoot is an entry in either
302** mem3.aiSmall[] or mem3.aiHash[].
303**
304** This routine examines all entries on the given list and tries
305** to coalesce each entries with adjacent free chunks.
306**
307** If it sees a chunk that is larger than mem3.iMaster, it replaces
308** the current mem3.iMaster with the new larger chunk.  In order for
309** this mem3.iMaster replacement to work, the master chunk must be
310** linked into the hash tables.  That is not the normal state of
311** affairs, of course.  The calling routine must link the master
312** chunk before invoking this routine, then must unlink the (possibly
313** changed) master chunk once this routine has finished.
314*/
315static void memsys3Merge(u32 *pRoot){
316  u32 iNext, prev, size, i, x;
317
318  assert( sqlite3_mutex_held(mem3.mutex) );
319  for(i=*pRoot; i>0; i=iNext){
320    iNext = mem3.aPool[i].u.list.next;
321    size = mem3.aPool[i-1].u.hdr.size4x;
322    assert( (size&1)==0 );
323    if( (size&2)==0 ){
324      memsys3UnlinkFromList(i, pRoot);
325      assert( i > mem3.aPool[i-1].u.hdr.prevSize );
326      prev = i - mem3.aPool[i-1].u.hdr.prevSize;
327      if( prev==iNext ){
328        iNext = mem3.aPool[prev].u.list.next;
329      }
330      memsys3Unlink(prev);
331      size = i + size/4 - prev;
332      x = mem3.aPool[prev-1].u.hdr.size4x & 2;
333      mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
334      mem3.aPool[prev+size-1].u.hdr.prevSize = size;
335      memsys3Link(prev);
336      i = prev;
337    }else{
338      size /= 4;
339    }
340    if( size>mem3.szMaster ){
341      mem3.iMaster = i;
342      mem3.szMaster = size;
343    }
344  }
345}
346
347/*
348** Return a block of memory of at least nBytes in size.
349** Return NULL if unable.
350**
351** This function assumes that the necessary mutexes, if any, are
352** already held by the caller. Hence "Unsafe".
353*/
354static void *memsys3MallocUnsafe(int nByte){
355  u32 i;
356  u32 nBlock;
357  u32 toFree;
358
359  assert( sqlite3_mutex_held(mem3.mutex) );
360  assert( sizeof(Mem3Block)==8 );
361  if( nByte<=12 ){
362    nBlock = 2;
363  }else{
364    nBlock = (nByte + 11)/8;
365  }
366  assert( nBlock>=2 );
367
368  /* STEP 1:
369  ** Look for an entry of the correct size in either the small
370  ** chunk table or in the large chunk hash table.  This is
371  ** successful most of the time (about 9 times out of 10).
372  */
373  if( nBlock <= MX_SMALL ){
374    i = mem3.aiSmall[nBlock-2];
375    if( i>0 ){
376      memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
377      return memsys3Checkout(i, nBlock);
378    }
379  }else{
380    int hash = nBlock % N_HASH;
381    for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
382      if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
383        memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
384        return memsys3Checkout(i, nBlock);
385      }
386    }
387  }
388
389  /* STEP 2:
390  ** Try to satisfy the allocation by carving a piece off of the end
391  ** of the master chunk.  This step usually works if step 1 fails.
392  */
393  if( mem3.szMaster>=nBlock ){
394    return memsys3FromMaster(nBlock);
395  }
396
397
398  /* STEP 3:
399  ** Loop through the entire memory pool.  Coalesce adjacent free
400  ** chunks.  Recompute the master chunk as the largest free chunk.
401  ** Then try again to satisfy the allocation by carving a piece off
402  ** of the end of the master chunk.  This step happens very
403  ** rarely (we hope!)
404  */
405  for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
406    memsys3OutOfMemory(toFree);
407    if( mem3.iMaster ){
408      memsys3Link(mem3.iMaster);
409      mem3.iMaster = 0;
410      mem3.szMaster = 0;
411    }
412    for(i=0; i<N_HASH; i++){
413      memsys3Merge(&mem3.aiHash[i]);
414    }
415    for(i=0; i<MX_SMALL-1; i++){
416      memsys3Merge(&mem3.aiSmall[i]);
417    }
418    if( mem3.szMaster ){
419      memsys3Unlink(mem3.iMaster);
420      if( mem3.szMaster>=nBlock ){
421        return memsys3FromMaster(nBlock);
422      }
423    }
424  }
425
426  /* If none of the above worked, then we fail. */
427  return 0;
428}
429
430/*
431** Free an outstanding memory allocation.
432**
433** This function assumes that the necessary mutexes, if any, are
434** already held by the caller. Hence "Unsafe".
435*/
436void memsys3FreeUnsafe(void *pOld){
437  Mem3Block *p = (Mem3Block*)pOld;
438  int i;
439  u32 size, x;
440  assert( sqlite3_mutex_held(mem3.mutex) );
441  assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
442  i = p - mem3.aPool;
443  assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
444  size = mem3.aPool[i-1].u.hdr.size4x/4;
445  assert( i+size<=mem3.nPool+1 );
446  mem3.aPool[i-1].u.hdr.size4x &= ~1;
447  mem3.aPool[i+size-1].u.hdr.prevSize = size;
448  mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
449  memsys3Link(i);
450
451  /* Try to expand the master using the newly freed chunk */
452  if( mem3.iMaster ){
453    while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
454      size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
455      mem3.iMaster -= size;
456      mem3.szMaster += size;
457      memsys3Unlink(mem3.iMaster);
458      x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
459      mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
460      mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
461    }
462    x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
463    while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
464      memsys3Unlink(mem3.iMaster+mem3.szMaster);
465      mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
466      mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
467      mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
468    }
469  }
470}
471
472/*
473** Return the size of an outstanding allocation, in bytes.  The
474** size returned omits the 8-byte header overhead.  This only
475** works for chunks that are currently checked out.
476*/
477static int memsys3Size(void *p){
478  Mem3Block *pBlock;
479  if( p==0 ) return 0;
480  pBlock = (Mem3Block*)p;
481  assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
482  return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
483}
484
485/*
486** Round up a request size to the next valid allocation size.
487*/
488static int memsys3Roundup(int n){
489  if( n<=12 ){
490    return 12;
491  }else{
492    return ((n+11)&~7) - 4;
493  }
494}
495
496/*
497** Allocate nBytes of memory.
498*/
499static void *memsys3Malloc(int nBytes){
500  sqlite3_int64 *p;
501  assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
502  memsys3Enter();
503  p = memsys3MallocUnsafe(nBytes);
504  memsys3Leave();
505  return (void*)p;
506}
507
508/*
509** Free memory.
510*/
511void memsys3Free(void *pPrior){
512  assert( pPrior );
513  memsys3Enter();
514  memsys3FreeUnsafe(pPrior);
515  memsys3Leave();
516}
517
518/*
519** Change the size of an existing memory allocation
520*/
521void *memsys3Realloc(void *pPrior, int nBytes){
522  int nOld;
523  void *p;
524  if( pPrior==0 ){
525    return sqlite3_malloc(nBytes);
526  }
527  if( nBytes<=0 ){
528    sqlite3_free(pPrior);
529    return 0;
530  }
531  nOld = memsys3Size(pPrior);
532  if( nBytes<=nOld && nBytes>=nOld-128 ){
533    return pPrior;
534  }
535  memsys3Enter();
536  p = memsys3MallocUnsafe(nBytes);
537  if( p ){
538    if( nOld<nBytes ){
539      memcpy(p, pPrior, nOld);
540    }else{
541      memcpy(p, pPrior, nBytes);
542    }
543    memsys3FreeUnsafe(pPrior);
544  }
545  memsys3Leave();
546  return p;
547}
548
549/*
550** Initialize this module.
551*/
552static int memsys3Init(void *NotUsed){
553  UNUSED_PARAMETER(NotUsed);
554  if( !sqlite3GlobalConfig.pHeap ){
555    return SQLITE_ERROR;
556  }
557
558  /* Store a pointer to the memory block in global structure mem3. */
559  assert( sizeof(Mem3Block)==8 );
560  mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
561  mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
562
563  /* Initialize the master block. */
564  mem3.szMaster = mem3.nPool;
565  mem3.mnMaster = mem3.szMaster;
566  mem3.iMaster = 1;
567  mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
568  mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
569  mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
570
571  return SQLITE_OK;
572}
573
574/*
575** Deinitialize this module.
576*/
577static void memsys3Shutdown(void *NotUsed){
578  UNUSED_PARAMETER(NotUsed);
579  mem3.mutex = 0;
580  return;
581}
582
583
584
585/*
586** Open the file indicated and write a log of all unfreed memory
587** allocations into that log.
588*/
589void sqlite3Memsys3Dump(const char *zFilename){
590#ifdef SQLITE_DEBUG
591  FILE *out;
592  u32 i, j;
593  u32 size;
594  if( zFilename==0 || zFilename[0]==0 ){
595    out = stdout;
596  }else{
597    out = fopen(zFilename, "w");
598    if( out==0 ){
599      fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
600                      zFilename);
601      return;
602    }
603  }
604  memsys3Enter();
605  fprintf(out, "CHUNKS:\n");
606  for(i=1; i<=mem3.nPool; i+=size/4){
607    size = mem3.aPool[i-1].u.hdr.size4x;
608    if( size/4<=1 ){
609      fprintf(out, "%p size error\n", &mem3.aPool[i]);
610      assert( 0 );
611      break;
612    }
613    if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
614      fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
615      assert( 0 );
616      break;
617    }
618    if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
619      fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
620      assert( 0 );
621      break;
622    }
623    if( size&1 ){
624      fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
625    }else{
626      fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
627                  i==mem3.iMaster ? " **master**" : "");
628    }
629  }
630  for(i=0; i<MX_SMALL-1; i++){
631    if( mem3.aiSmall[i]==0 ) continue;
632    fprintf(out, "small(%2d):", i);
633    for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
634      fprintf(out, " %p(%d)", &mem3.aPool[j],
635              (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
636    }
637    fprintf(out, "\n");
638  }
639  for(i=0; i<N_HASH; i++){
640    if( mem3.aiHash[i]==0 ) continue;
641    fprintf(out, "hash(%2d):", i);
642    for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
643      fprintf(out, " %p(%d)", &mem3.aPool[j],
644              (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
645    }
646    fprintf(out, "\n");
647  }
648  fprintf(out, "master=%d\n", mem3.iMaster);
649  fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
650  fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
651  sqlite3_mutex_leave(mem3.mutex);
652  if( out==stdout ){
653    fflush(stdout);
654  }else{
655    fclose(out);
656  }
657#else
658  UNUSED_PARAMETER(zFilename);
659#endif
660}
661
662/*
663** This routine is the only routine in this file with external
664** linkage.
665**
666** Populate the low-level memory allocation function pointers in
667** sqlite3GlobalConfig.m with pointers to the routines in this file. The
668** arguments specify the block of memory to manage.
669**
670** This routine is only called by sqlite3_config(), and therefore
671** is not required to be threadsafe (it is not).
672*/
673const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
674  static const sqlite3_mem_methods mempoolMethods = {
675     memsys3Malloc,
676     memsys3Free,
677     memsys3Realloc,
678     memsys3Size,
679     memsys3Roundup,
680     memsys3Init,
681     memsys3Shutdown,
682     0
683  };
684  return &mempoolMethods;
685}
686
687#endif /* SQLITE_ENABLE_MEMSYS3 */
688