1/*
2** 2008 November 05
3**
4** The author disclaims copyright to this source code.  In place of
5** a legal notice, here is a blessing:
6**
7**    May you do good and not evil.
8**    May you find forgiveness for yourself and forgive others.
9**    May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file implements the default page cache implementation (the
14** sqlite3_pcache interface). It also contains part of the implementation
15** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16** If the default page cache implementation is overriden, then neither of
17** these two features are available.
18*/
19
20#include "sqliteInt.h"
21
22typedef struct PCache1 PCache1;
23typedef struct PgHdr1 PgHdr1;
24typedef struct PgFreeslot PgFreeslot;
25typedef struct PGroup PGroup;
26
27/* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set
28** of one or more PCaches that are able to recycle each others unpinned
29** pages when they are under memory pressure.  A PGroup is an instance of
30** the following object.
31**
32** This page cache implementation works in one of two modes:
33**
34**   (1)  Every PCache is the sole member of its own PGroup.  There is
35**        one PGroup per PCache.
36**
37**   (2)  There is a single global PGroup that all PCaches are a member
38**        of.
39**
40** Mode 1 uses more memory (since PCache instances are not able to rob
41** unused pages from other PCaches) but it also operates without a mutex,
42** and is therefore often faster.  Mode 2 requires a mutex in order to be
43** threadsafe, but is able recycle pages more efficient.
44**
45** For mode (1), PGroup.mutex is NULL.  For mode (2) there is only a single
46** PGroup which is the pcache1.grp global variable and its mutex is
47** SQLITE_MUTEX_STATIC_LRU.
48*/
49struct PGroup {
50  sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
51  int nMaxPage;                  /* Sum of nMax for purgeable caches */
52  int nMinPage;                  /* Sum of nMin for purgeable caches */
53  int mxPinned;                  /* nMaxpage + 10 - nMinPage */
54  int nCurrentPage;              /* Number of purgeable pages allocated */
55  PgHdr1 *pLruHead, *pLruTail;   /* LRU list of unpinned pages */
56};
57
58/* Each page cache is an instance of the following object.  Every
59** open database file (including each in-memory database and each
60** temporary or transient database) has a single page cache which
61** is an instance of this object.
62**
63** Pointers to structures of this type are cast and returned as
64** opaque sqlite3_pcache* handles.
65*/
66struct PCache1 {
67  /* Cache configuration parameters. Page size (szPage) and the purgeable
68  ** flag (bPurgeable) are set when the cache is created. nMax may be
69  ** modified at any time by a call to the pcache1CacheSize() method.
70  ** The PGroup mutex must be held when accessing nMax.
71  */
72  PGroup *pGroup;                     /* PGroup this cache belongs to */
73  int szPage;                         /* Size of allocated pages in bytes */
74  int bPurgeable;                     /* True if cache is purgeable */
75  unsigned int nMin;                  /* Minimum number of pages reserved */
76  unsigned int nMax;                  /* Configured "cache_size" value */
77  unsigned int n90pct;                /* nMax*9/10 */
78
79  /* Hash table of all pages. The following variables may only be accessed
80  ** when the accessor is holding the PGroup mutex.
81  */
82  unsigned int nRecyclable;           /* Number of pages in the LRU list */
83  unsigned int nPage;                 /* Total number of pages in apHash */
84  unsigned int nHash;                 /* Number of slots in apHash[] */
85  PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
86
87  unsigned int iMaxKey;               /* Largest key seen since xTruncate() */
88};
89
90/*
91** Each cache entry is represented by an instance of the following
92** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
93** directly before this structure in memory (see the PGHDR1_TO_PAGE()
94** macro below).
95*/
96struct PgHdr1 {
97  unsigned int iKey;             /* Key value (page number) */
98  PgHdr1 *pNext;                 /* Next in hash table chain */
99  PCache1 *pCache;               /* Cache that currently owns this page */
100  PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
101  PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
102};
103
104/*
105** Free slots in the allocator used to divide up the buffer provided using
106** the SQLITE_CONFIG_PAGECACHE mechanism.
107*/
108struct PgFreeslot {
109  PgFreeslot *pNext;  /* Next free slot */
110};
111
112/*
113** Global data used by this cache.
114*/
115static SQLITE_WSD struct PCacheGlobal {
116  PGroup grp;                    /* The global PGroup for mode (2) */
117
118  /* Variables related to SQLITE_CONFIG_PAGECACHE settings.  The
119  ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
120  ** fixed at sqlite3_initialize() time and do not require mutex protection.
121  ** The nFreeSlot and pFree values do require mutex protection.
122  */
123  int isInit;                    /* True if initialized */
124  int szSlot;                    /* Size of each free slot */
125  int nSlot;                     /* The number of pcache slots */
126  int nReserve;                  /* Try to keep nFreeSlot above this */
127  void *pStart, *pEnd;           /* Bounds of pagecache malloc range */
128  /* Above requires no mutex.  Use mutex below for variable that follow. */
129  sqlite3_mutex *mutex;          /* Mutex for accessing the following: */
130  int nFreeSlot;                 /* Number of unused pcache slots */
131  PgFreeslot *pFree;             /* Free page blocks */
132  /* The following value requires a mutex to change.  We skip the mutex on
133  ** reading because (1) most platforms read a 32-bit integer atomically and
134  ** (2) even if an incorrect value is read, no great harm is done since this
135  ** is really just an optimization. */
136  int bUnderPressure;            /* True if low on PAGECACHE memory */
137} pcache1_g;
138
139/*
140** All code in this file should access the global structure above via the
141** alias "pcache1". This ensures that the WSD emulation is used when
142** compiling for systems that do not support real WSD.
143*/
144#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
145
146/*
147** When a PgHdr1 structure is allocated, the associated PCache1.szPage
148** bytes of data are located directly before it in memory (i.e. the total
149** size of the allocation is sizeof(PgHdr1)+PCache1.szPage byte). The
150** PGHDR1_TO_PAGE() macro takes a pointer to a PgHdr1 structure as
151** an argument and returns a pointer to the associated block of szPage
152** bytes. The PAGE_TO_PGHDR1() macro does the opposite: its argument is
153** a pointer to a block of szPage bytes of data and the return value is
154** a pointer to the associated PgHdr1 structure.
155**
156**   assert( PGHDR1_TO_PAGE(PAGE_TO_PGHDR1(pCache, X))==X );
157*/
158#define PGHDR1_TO_PAGE(p)    (void*)(((char*)p) - p->pCache->szPage)
159#define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage)
160
161/*
162** Macros to enter and leave the PCache LRU mutex.
163*/
164#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
165#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
166
167/******************************************************************************/
168/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
169
170/*
171** This function is called during initialization if a static buffer is
172** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
173** verb to sqlite3_config(). Parameter pBuf points to an allocation large
174** enough to contain 'n' buffers of 'sz' bytes each.
175**
176** This routine is called from sqlite3_initialize() and so it is guaranteed
177** to be serialized already.  There is no need for further mutexing.
178*/
179void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
180  if( pcache1.isInit ){
181    PgFreeslot *p;
182    sz = ROUNDDOWN8(sz);
183    pcache1.szSlot = sz;
184    pcache1.nSlot = pcache1.nFreeSlot = n;
185    pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
186    pcache1.pStart = pBuf;
187    pcache1.pFree = 0;
188    pcache1.bUnderPressure = 0;
189    while( n-- ){
190      p = (PgFreeslot*)pBuf;
191      p->pNext = pcache1.pFree;
192      pcache1.pFree = p;
193      pBuf = (void*)&((char*)pBuf)[sz];
194    }
195    pcache1.pEnd = pBuf;
196  }
197}
198
199/*
200** Malloc function used within this file to allocate space from the buffer
201** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
202** such buffer exists or there is no space left in it, this function falls
203** back to sqlite3Malloc().
204**
205** Multiple threads can run this routine at the same time.  Global variables
206** in pcache1 need to be protected via mutex.
207*/
208static void *pcache1Alloc(int nByte){
209  void *p = 0;
210  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
211  sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
212  if( nByte<=pcache1.szSlot ){
213    sqlite3_mutex_enter(pcache1.mutex);
214    p = (PgHdr1 *)pcache1.pFree;
215    if( p ){
216      pcache1.pFree = pcache1.pFree->pNext;
217      pcache1.nFreeSlot--;
218      pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
219      assert( pcache1.nFreeSlot>=0 );
220      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
221    }
222    sqlite3_mutex_leave(pcache1.mutex);
223  }
224  if( p==0 ){
225    /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
226    ** it from sqlite3Malloc instead.
227    */
228    p = sqlite3Malloc(nByte);
229    if( p ){
230      int sz = sqlite3MallocSize(p);
231      sqlite3_mutex_enter(pcache1.mutex);
232      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
233      sqlite3_mutex_leave(pcache1.mutex);
234    }
235    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
236  }
237  return p;
238}
239
240/*
241** Free an allocated buffer obtained from pcache1Alloc().
242*/
243static void pcache1Free(void *p){
244  if( p==0 ) return;
245  if( p>=pcache1.pStart && p<pcache1.pEnd ){
246    PgFreeslot *pSlot;
247    sqlite3_mutex_enter(pcache1.mutex);
248    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
249    pSlot = (PgFreeslot*)p;
250    pSlot->pNext = pcache1.pFree;
251    pcache1.pFree = pSlot;
252    pcache1.nFreeSlot++;
253    pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
254    assert( pcache1.nFreeSlot<=pcache1.nSlot );
255    sqlite3_mutex_leave(pcache1.mutex);
256  }else{
257    int iSize;
258    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
259    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
260    iSize = sqlite3MallocSize(p);
261    sqlite3_mutex_enter(pcache1.mutex);
262    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
263    sqlite3_mutex_leave(pcache1.mutex);
264    sqlite3_free(p);
265  }
266}
267
268#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
269/*
270** Return the size of a pcache allocation
271*/
272static int pcache1MemSize(void *p){
273  if( p>=pcache1.pStart && p<pcache1.pEnd ){
274    return pcache1.szSlot;
275  }else{
276    int iSize;
277    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
278    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
279    iSize = sqlite3MallocSize(p);
280    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
281    return iSize;
282  }
283}
284#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
285
286/*
287** Allocate a new page object initially associated with cache pCache.
288*/
289static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
290  int nByte = sizeof(PgHdr1) + pCache->szPage;
291  void *pPg = pcache1Alloc(nByte);
292  PgHdr1 *p;
293  if( pPg ){
294    p = PAGE_TO_PGHDR1(pCache, pPg);
295    if( pCache->bPurgeable ){
296      pCache->pGroup->nCurrentPage++;
297    }
298  }else{
299    p = 0;
300  }
301  return p;
302}
303
304/*
305** Free a page object allocated by pcache1AllocPage().
306**
307** The pointer is allowed to be NULL, which is prudent.  But it turns out
308** that the current implementation happens to never call this routine
309** with a NULL pointer, so we mark the NULL test with ALWAYS().
310*/
311static void pcache1FreePage(PgHdr1 *p){
312  if( ALWAYS(p) ){
313    PCache1 *pCache = p->pCache;
314    if( pCache->bPurgeable ){
315      pCache->pGroup->nCurrentPage--;
316    }
317    pcache1Free(PGHDR1_TO_PAGE(p));
318  }
319}
320
321/*
322** Malloc function used by SQLite to obtain space from the buffer configured
323** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
324** exists, this function falls back to sqlite3Malloc().
325*/
326void *sqlite3PageMalloc(int sz){
327  return pcache1Alloc(sz);
328}
329
330/*
331** Free an allocated buffer obtained from sqlite3PageMalloc().
332*/
333void sqlite3PageFree(void *p){
334  pcache1Free(p);
335}
336
337
338/*
339** Return true if it desirable to avoid allocating a new page cache
340** entry.
341**
342** If memory was allocated specifically to the page cache using
343** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
344** it is desirable to avoid allocating a new page cache entry because
345** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
346** for all page cache needs and we should not need to spill the
347** allocation onto the heap.
348**
349** Or, the heap is used for all page cache memory put the heap is
350** under memory pressure, then again it is desirable to avoid
351** allocating a new page cache entry in order to avoid stressing
352** the heap even further.
353*/
354static int pcache1UnderMemoryPressure(PCache1 *pCache){
355  if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){
356    return pcache1.bUnderPressure;
357  }else{
358    return sqlite3HeapNearlyFull();
359  }
360}
361
362/******************************************************************************/
363/******** General Implementation Functions ************************************/
364
365/*
366** This function is used to resize the hash table used by the cache passed
367** as the first argument.
368**
369** The PCache mutex must be held when this function is called.
370*/
371static int pcache1ResizeHash(PCache1 *p){
372  PgHdr1 **apNew;
373  unsigned int nNew;
374  unsigned int i;
375
376  assert( sqlite3_mutex_held(p->pGroup->mutex) );
377
378  nNew = p->nHash*2;
379  if( nNew<256 ){
380    nNew = 256;
381  }
382
383  pcache1LeaveMutex(p->pGroup);
384  if( p->nHash ){ sqlite3BeginBenignMalloc(); }
385  apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
386  if( p->nHash ){ sqlite3EndBenignMalloc(); }
387  pcache1EnterMutex(p->pGroup);
388  if( apNew ){
389    memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
390    for(i=0; i<p->nHash; i++){
391      PgHdr1 *pPage;
392      PgHdr1 *pNext = p->apHash[i];
393      while( (pPage = pNext)!=0 ){
394        unsigned int h = pPage->iKey % nNew;
395        pNext = pPage->pNext;
396        pPage->pNext = apNew[h];
397        apNew[h] = pPage;
398      }
399    }
400    sqlite3_free(p->apHash);
401    p->apHash = apNew;
402    p->nHash = nNew;
403  }
404
405  return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
406}
407
408/*
409** This function is used internally to remove the page pPage from the
410** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
411** LRU list, then this function is a no-op.
412**
413** The PGroup mutex must be held when this function is called.
414**
415** If pPage is NULL then this routine is a no-op.
416*/
417static void pcache1PinPage(PgHdr1 *pPage){
418  PCache1 *pCache;
419  PGroup *pGroup;
420
421  if( pPage==0 ) return;
422  pCache = pPage->pCache;
423  pGroup = pCache->pGroup;
424  assert( sqlite3_mutex_held(pGroup->mutex) );
425  if( pPage->pLruNext || pPage==pGroup->pLruTail ){
426    if( pPage->pLruPrev ){
427      pPage->pLruPrev->pLruNext = pPage->pLruNext;
428    }
429    if( pPage->pLruNext ){
430      pPage->pLruNext->pLruPrev = pPage->pLruPrev;
431    }
432    if( pGroup->pLruHead==pPage ){
433      pGroup->pLruHead = pPage->pLruNext;
434    }
435    if( pGroup->pLruTail==pPage ){
436      pGroup->pLruTail = pPage->pLruPrev;
437    }
438    pPage->pLruNext = 0;
439    pPage->pLruPrev = 0;
440    pPage->pCache->nRecyclable--;
441  }
442}
443
444
445/*
446** Remove the page supplied as an argument from the hash table
447** (PCache1.apHash structure) that it is currently stored in.
448**
449** The PGroup mutex must be held when this function is called.
450*/
451static void pcache1RemoveFromHash(PgHdr1 *pPage){
452  unsigned int h;
453  PCache1 *pCache = pPage->pCache;
454  PgHdr1 **pp;
455
456  assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
457  h = pPage->iKey % pCache->nHash;
458  for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
459  *pp = (*pp)->pNext;
460
461  pCache->nPage--;
462}
463
464/*
465** If there are currently more than nMaxPage pages allocated, try
466** to recycle pages to reduce the number allocated to nMaxPage.
467*/
468static void pcache1EnforceMaxPage(PGroup *pGroup){
469  assert( sqlite3_mutex_held(pGroup->mutex) );
470  while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
471    PgHdr1 *p = pGroup->pLruTail;
472    assert( p->pCache->pGroup==pGroup );
473    pcache1PinPage(p);
474    pcache1RemoveFromHash(p);
475    pcache1FreePage(p);
476  }
477}
478
479/*
480** Discard all pages from cache pCache with a page number (key value)
481** greater than or equal to iLimit. Any pinned pages that meet this
482** criteria are unpinned before they are discarded.
483**
484** The PCache mutex must be held when this function is called.
485*/
486static void pcache1TruncateUnsafe(
487  PCache1 *pCache,             /* The cache to truncate */
488  unsigned int iLimit          /* Drop pages with this pgno or larger */
489){
490  TESTONLY( unsigned int nPage = 0; )  /* To assert pCache->nPage is correct */
491  unsigned int h;
492  assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
493  for(h=0; h<pCache->nHash; h++){
494    PgHdr1 **pp = &pCache->apHash[h];
495    PgHdr1 *pPage;
496    while( (pPage = *pp)!=0 ){
497      if( pPage->iKey>=iLimit ){
498        pCache->nPage--;
499        *pp = pPage->pNext;
500        pcache1PinPage(pPage);
501        pcache1FreePage(pPage);
502      }else{
503        pp = &pPage->pNext;
504        TESTONLY( nPage++; )
505      }
506    }
507  }
508  assert( pCache->nPage==nPage );
509}
510
511/******************************************************************************/
512/******** sqlite3_pcache Methods **********************************************/
513
514/*
515** Implementation of the sqlite3_pcache.xInit method.
516*/
517static int pcache1Init(void *NotUsed){
518  UNUSED_PARAMETER(NotUsed);
519  assert( pcache1.isInit==0 );
520  memset(&pcache1, 0, sizeof(pcache1));
521  if( sqlite3GlobalConfig.bCoreMutex ){
522    pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
523    pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
524  }
525  pcache1.grp.mxPinned = 10;
526  pcache1.isInit = 1;
527  return SQLITE_OK;
528}
529
530/*
531** Implementation of the sqlite3_pcache.xShutdown method.
532** Note that the static mutex allocated in xInit does
533** not need to be freed.
534*/
535static void pcache1Shutdown(void *NotUsed){
536  UNUSED_PARAMETER(NotUsed);
537  assert( pcache1.isInit!=0 );
538  memset(&pcache1, 0, sizeof(pcache1));
539}
540
541/*
542** Implementation of the sqlite3_pcache.xCreate method.
543**
544** Allocate a new cache.
545*/
546static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
547  PCache1 *pCache;      /* The newly created page cache */
548  PGroup *pGroup;       /* The group the new page cache will belong to */
549  int sz;               /* Bytes of memory required to allocate the new cache */
550
551  /*
552  ** The separateCache variable is true if each PCache has its own private
553  ** PGroup.  In other words, separateCache is true for mode (1) where no
554  ** mutexing is required.
555  **
556  **   *  Always use separate caches (mode-1) if SQLITE_SEPARATE_CACHE_POOLS
557  **
558  **   *  Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
559  **
560  **   *  Always use a unified cache in single-threaded applications
561  **
562  **   *  Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
563  **      use separate caches (mode-1)
564  */
565#ifdef SQLITE_SEPARATE_CACHE_POOLS
566  const int separateCache = 1;
567#elif defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
568  const int separateCache = 0;
569#else
570  int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
571#endif
572
573  sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
574  pCache = (PCache1 *)sqlite3_malloc(sz);
575  if( pCache ){
576    memset(pCache, 0, sz);
577    if( separateCache ){
578      pGroup = (PGroup*)&pCache[1];
579      pGroup->mxPinned = 10;
580    }else{
581      pGroup = &pcache1_g.grp;
582    }
583    pCache->pGroup = pGroup;
584    pCache->szPage = szPage;
585    pCache->bPurgeable = (bPurgeable ? 1 : 0);
586    if( bPurgeable ){
587      pCache->nMin = 10;
588      pcache1EnterMutex(pGroup);
589      pGroup->nMinPage += pCache->nMin;
590      pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
591      pcache1LeaveMutex(pGroup);
592    }
593  }
594  return (sqlite3_pcache *)pCache;
595}
596
597/*
598** Implementation of the sqlite3_pcache.xCachesize method.
599**
600** Configure the cache_size limit for a cache.
601*/
602static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
603  PCache1 *pCache = (PCache1 *)p;
604  if( pCache->bPurgeable ){
605    PGroup *pGroup = pCache->pGroup;
606    pcache1EnterMutex(pGroup);
607    pGroup->nMaxPage += (nMax - pCache->nMax);
608    pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
609    pCache->nMax = nMax;
610    pCache->n90pct = pCache->nMax*9/10;
611    pcache1EnforceMaxPage(pGroup);
612    pcache1LeaveMutex(pGroup);
613  }
614}
615
616/*
617** Implementation of the sqlite3_pcache.xPagecount method.
618*/
619static int pcache1Pagecount(sqlite3_pcache *p){
620  int n;
621  PCache1 *pCache = (PCache1*)p;
622  pcache1EnterMutex(pCache->pGroup);
623  n = pCache->nPage;
624  pcache1LeaveMutex(pCache->pGroup);
625  return n;
626}
627
628/*
629** Implementation of the sqlite3_pcache.xFetch method.
630**
631** Fetch a page by key value.
632**
633** Whether or not a new page may be allocated by this function depends on
634** the value of the createFlag argument.  0 means do not allocate a new
635** page.  1 means allocate a new page if space is easily available.  2
636** means to try really hard to allocate a new page.
637**
638** For a non-purgeable cache (a cache used as the storage for an in-memory
639** database) there is really no difference between createFlag 1 and 2.  So
640** the calling function (pcache.c) will never have a createFlag of 1 on
641** a non-purgable cache.
642**
643** There are three different approaches to obtaining space for a page,
644** depending on the value of parameter createFlag (which may be 0, 1 or 2).
645**
646**   1. Regardless of the value of createFlag, the cache is searched for a
647**      copy of the requested page. If one is found, it is returned.
648**
649**   2. If createFlag==0 and the page is not already in the cache, NULL is
650**      returned.
651**
652**   3. If createFlag is 1, and the page is not already in the cache, then
653**      return NULL (do not allocate a new page) if any of the following
654**      conditions are true:
655**
656**       (a) the number of pages pinned by the cache is greater than
657**           PCache1.nMax, or
658**
659**       (b) the number of pages pinned by the cache is greater than
660**           the sum of nMax for all purgeable caches, less the sum of
661**           nMin for all other purgeable caches, or
662**
663**   4. If none of the first three conditions apply and the cache is marked
664**      as purgeable, and if one of the following is true:
665**
666**       (a) The number of pages allocated for the cache is already
667**           PCache1.nMax, or
668**
669**       (b) The number of pages allocated for all purgeable caches is
670**           already equal to or greater than the sum of nMax for all
671**           purgeable caches,
672**
673**       (c) The system is under memory pressure and wants to avoid
674**           unnecessary pages cache entry allocations
675**
676**      then attempt to recycle a page from the LRU list. If it is the right
677**      size, return the recycled buffer. Otherwise, free the buffer and
678**      proceed to step 5.
679**
680**   5. Otherwise, allocate and return a new page buffer.
681*/
682static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
683  int nPinned;
684  PCache1 *pCache = (PCache1 *)p;
685  PGroup *pGroup;
686  PgHdr1 *pPage = 0;
687
688  assert( pCache->bPurgeable || createFlag!=1 );
689  assert( pCache->bPurgeable || pCache->nMin==0 );
690  assert( pCache->bPurgeable==0 || pCache->nMin==10 );
691  assert( pCache->nMin==0 || pCache->bPurgeable );
692  pcache1EnterMutex(pGroup = pCache->pGroup);
693
694  /* Step 1: Search the hash table for an existing entry. */
695  if( pCache->nHash>0 ){
696    unsigned int h = iKey % pCache->nHash;
697    for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
698  }
699
700  /* Step 2: Abort if no existing page is found and createFlag is 0 */
701  if( pPage || createFlag==0 ){
702    pcache1PinPage(pPage);
703    goto fetch_out;
704  }
705
706  /* The pGroup local variable will normally be initialized by the
707  ** pcache1EnterMutex() macro above.  But if SQLITE_MUTEX_OMIT is defined,
708  ** then pcache1EnterMutex() is a no-op, so we have to initialize the
709  ** local variable here.  Delaying the initialization of pGroup is an
710  ** optimization:  The common case is to exit the module before reaching
711  ** this point.
712  */
713#ifdef SQLITE_MUTEX_OMIT
714  pGroup = pCache->pGroup;
715#endif
716
717
718  /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
719  nPinned = pCache->nPage - pCache->nRecyclable;
720  assert( nPinned>=0 );
721  assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
722  assert( pCache->n90pct == pCache->nMax*9/10 );
723  if( createFlag==1 && (
724        nPinned>=pGroup->mxPinned
725     || nPinned>=(int)pCache->n90pct
726     || pcache1UnderMemoryPressure(pCache)
727  )){
728    goto fetch_out;
729  }
730
731  if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
732    goto fetch_out;
733  }
734
735  /* Step 4. Try to recycle a page. */
736  if( pCache->bPurgeable && pGroup->pLruTail && (
737         (pCache->nPage+1>=pCache->nMax)
738      || pGroup->nCurrentPage>=pGroup->nMaxPage
739      || pcache1UnderMemoryPressure(pCache)
740  )){
741    PCache1 *pOtherCache;
742    pPage = pGroup->pLruTail;
743    pcache1RemoveFromHash(pPage);
744    pcache1PinPage(pPage);
745    if( (pOtherCache = pPage->pCache)->szPage!=pCache->szPage ){
746      pcache1FreePage(pPage);
747      pPage = 0;
748    }else{
749      pGroup->nCurrentPage -=
750               (pOtherCache->bPurgeable - pCache->bPurgeable);
751    }
752  }
753
754  /* Step 5. If a usable page buffer has still not been found,
755  ** attempt to allocate a new one.
756  */
757  if( !pPage ){
758    if( createFlag==1 ) sqlite3BeginBenignMalloc();
759    pcache1LeaveMutex(pGroup);
760    pPage = pcache1AllocPage(pCache);
761    pcache1EnterMutex(pGroup);
762    if( createFlag==1 ) sqlite3EndBenignMalloc();
763  }
764
765  if( pPage ){
766    unsigned int h = iKey % pCache->nHash;
767    pCache->nPage++;
768    pPage->iKey = iKey;
769    pPage->pNext = pCache->apHash[h];
770    pPage->pCache = pCache;
771    pPage->pLruPrev = 0;
772    pPage->pLruNext = 0;
773    *(void **)(PGHDR1_TO_PAGE(pPage)) = 0;
774    pCache->apHash[h] = pPage;
775  }
776
777fetch_out:
778  if( pPage && iKey>pCache->iMaxKey ){
779    pCache->iMaxKey = iKey;
780  }
781  pcache1LeaveMutex(pGroup);
782  return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
783}
784
785
786/*
787** Implementation of the sqlite3_pcache.xUnpin method.
788**
789** Mark a page as unpinned (eligible for asynchronous recycling).
790*/
791static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
792  PCache1 *pCache = (PCache1 *)p;
793  PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
794  PGroup *pGroup = pCache->pGroup;
795
796  assert( pPage->pCache==pCache );
797  pcache1EnterMutex(pGroup);
798
799  /* It is an error to call this function if the page is already
800  ** part of the PGroup LRU list.
801  */
802  assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
803  assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
804
805  if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
806    pcache1RemoveFromHash(pPage);
807    pcache1FreePage(pPage);
808  }else{
809    /* Add the page to the PGroup LRU list. */
810    if( pGroup->pLruHead ){
811      pGroup->pLruHead->pLruPrev = pPage;
812      pPage->pLruNext = pGroup->pLruHead;
813      pGroup->pLruHead = pPage;
814    }else{
815      pGroup->pLruTail = pPage;
816      pGroup->pLruHead = pPage;
817    }
818    pCache->nRecyclable++;
819  }
820
821  pcache1LeaveMutex(pCache->pGroup);
822}
823
824/*
825** Implementation of the sqlite3_pcache.xRekey method.
826*/
827static void pcache1Rekey(
828  sqlite3_pcache *p,
829  void *pPg,
830  unsigned int iOld,
831  unsigned int iNew
832){
833  PCache1 *pCache = (PCache1 *)p;
834  PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
835  PgHdr1 **pp;
836  unsigned int h;
837  assert( pPage->iKey==iOld );
838  assert( pPage->pCache==pCache );
839
840  pcache1EnterMutex(pCache->pGroup);
841
842  h = iOld%pCache->nHash;
843  pp = &pCache->apHash[h];
844  while( (*pp)!=pPage ){
845    pp = &(*pp)->pNext;
846  }
847  *pp = pPage->pNext;
848
849  h = iNew%pCache->nHash;
850  pPage->iKey = iNew;
851  pPage->pNext = pCache->apHash[h];
852  pCache->apHash[h] = pPage;
853  if( iNew>pCache->iMaxKey ){
854    pCache->iMaxKey = iNew;
855  }
856
857  pcache1LeaveMutex(pCache->pGroup);
858}
859
860/*
861** Implementation of the sqlite3_pcache.xTruncate method.
862**
863** Discard all unpinned pages in the cache with a page number equal to
864** or greater than parameter iLimit. Any pinned pages with a page number
865** equal to or greater than iLimit are implicitly unpinned.
866*/
867static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
868  PCache1 *pCache = (PCache1 *)p;
869  pcache1EnterMutex(pCache->pGroup);
870  if( iLimit<=pCache->iMaxKey ){
871    pcache1TruncateUnsafe(pCache, iLimit);
872    pCache->iMaxKey = iLimit-1;
873  }
874  pcache1LeaveMutex(pCache->pGroup);
875}
876
877/*
878** Implementation of the sqlite3_pcache.xDestroy method.
879**
880** Destroy a cache allocated using pcache1Create().
881*/
882static void pcache1Destroy(sqlite3_pcache *p){
883  PCache1 *pCache = (PCache1 *)p;
884  PGroup *pGroup = pCache->pGroup;
885  assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
886  pcache1EnterMutex(pGroup);
887  pcache1TruncateUnsafe(pCache, 0);
888  pGroup->nMaxPage -= pCache->nMax;
889  pGroup->nMinPage -= pCache->nMin;
890  pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
891  pcache1EnforceMaxPage(pGroup);
892  pcache1LeaveMutex(pGroup);
893  sqlite3_free(pCache->apHash);
894  sqlite3_free(pCache);
895}
896
897/*
898** This function is called during initialization (sqlite3_initialize()) to
899** install the default pluggable cache module, assuming the user has not
900** already provided an alternative.
901*/
902void sqlite3PCacheSetDefault(void){
903  static const sqlite3_pcache_methods defaultMethods = {
904    0,                       /* pArg */
905    pcache1Init,             /* xInit */
906    pcache1Shutdown,         /* xShutdown */
907    pcache1Create,           /* xCreate */
908    pcache1Cachesize,        /* xCachesize */
909    pcache1Pagecount,        /* xPagecount */
910    pcache1Fetch,            /* xFetch */
911    pcache1Unpin,            /* xUnpin */
912    pcache1Rekey,            /* xRekey */
913    pcache1Truncate,         /* xTruncate */
914    pcache1Destroy           /* xDestroy */
915  };
916  sqlite3_config(SQLITE_CONFIG_PCACHE, &defaultMethods);
917}
918
919#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
920/*
921** This function is called to free superfluous dynamically allocated memory
922** held by the pager system. Memory in use by any SQLite pager allocated
923** by the current thread may be sqlite3_free()ed.
924**
925** nReq is the number of bytes of memory required. Once this much has
926** been released, the function returns. The return value is the total number
927** of bytes of memory released.
928*/
929int sqlite3PcacheReleaseMemory(int nReq){
930  int nFree = 0;
931  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
932  assert( sqlite3_mutex_notheld(pcache1.mutex) );
933  if( pcache1.pStart==0 ){
934    PgHdr1 *p;
935    pcache1EnterMutex(&pcache1.grp);
936    while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
937      nFree += pcache1MemSize(PGHDR1_TO_PAGE(p));
938      pcache1PinPage(p);
939      pcache1RemoveFromHash(p);
940      pcache1FreePage(p);
941    }
942    pcache1LeaveMutex(&pcache1.grp);
943  }
944  return nFree;
945}
946#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
947
948#ifdef SQLITE_TEST
949/*
950** This function is used by test procedures to inspect the internal state
951** of the global cache.
952*/
953void sqlite3PcacheStats(
954  int *pnCurrent,      /* OUT: Total number of pages cached */
955  int *pnMax,          /* OUT: Global maximum cache size */
956  int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
957  int *pnRecyclable    /* OUT: Total number of pages available for recycling */
958){
959  PgHdr1 *p;
960  int nRecyclable = 0;
961  for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
962    nRecyclable++;
963  }
964  *pnCurrent = pcache1.grp.nCurrentPage;
965  *pnMax = pcache1.grp.nMaxPage;
966  *pnMin = pcache1.grp.nMinPage;
967  *pnRecyclable = nRecyclable;
968}
969#endif
970