1/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code.  In place of
5** a legal notice, here is a blessing:
6**
7**    May you do good and not evil.
8**    May you find forgiveness for yourself and forgive others.
9**    May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
13** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
14** to version 2.8.7, all this code was combined into the vdbe.c source file.
15** But that file was getting too big so this subroutines were split out.
16*/
17#include "sqliteInt.h"
18#include "vdbeInt.h"
19
20
21
22/*
23** When debugging the code generator in a symbolic debugger, one can
24** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
25** as they are added to the instruction stream.
26*/
27#ifdef SQLITE_DEBUG
28int sqlite3VdbeAddopTrace = 0;
29#endif
30
31
32/*
33** Create a new virtual database engine.
34*/
35Vdbe *sqlite3VdbeCreate(sqlite3 *db){
36  Vdbe *p;
37  p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
38  if( p==0 ) return 0;
39  p->db = db;
40  if( db->pVdbe ){
41    db->pVdbe->pPrev = p;
42  }
43  p->pNext = db->pVdbe;
44  p->pPrev = 0;
45  db->pVdbe = p;
46  p->magic = VDBE_MAGIC_INIT;
47  return p;
48}
49
50/*
51** Remember the SQL string for a prepared statement.
52*/
53void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
54  assert( isPrepareV2==1 || isPrepareV2==0 );
55  if( p==0 ) return;
56#ifdef SQLITE_OMIT_TRACE
57  if( !isPrepareV2 ) return;
58#endif
59  assert( p->zSql==0 );
60  p->zSql = sqlite3DbStrNDup(p->db, z, n);
61  p->isPrepareV2 = (u8)isPrepareV2;
62}
63
64/*
65** Return the SQL associated with a prepared statement
66*/
67const char *sqlite3_sql(sqlite3_stmt *pStmt){
68  Vdbe *p = (Vdbe *)pStmt;
69  return (p && p->isPrepareV2) ? p->zSql : 0;
70}
71
72/*
73** Swap all content between two VDBE structures.
74*/
75void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
76  Vdbe tmp, *pTmp;
77  char *zTmp;
78  tmp = *pA;
79  *pA = *pB;
80  *pB = tmp;
81  pTmp = pA->pNext;
82  pA->pNext = pB->pNext;
83  pB->pNext = pTmp;
84  pTmp = pA->pPrev;
85  pA->pPrev = pB->pPrev;
86  pB->pPrev = pTmp;
87  zTmp = pA->zSql;
88  pA->zSql = pB->zSql;
89  pB->zSql = zTmp;
90  pB->isPrepareV2 = pA->isPrepareV2;
91}
92
93#ifdef SQLITE_DEBUG
94/*
95** Turn tracing on or off
96*/
97void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
98  p->trace = trace;
99}
100#endif
101
102/*
103** Resize the Vdbe.aOp array so that it is at least one op larger than
104** it was.
105**
106** If an out-of-memory error occurs while resizing the array, return
107** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
108** unchanged (this is so that any opcodes already allocated can be
109** correctly deallocated along with the rest of the Vdbe).
110*/
111static int growOpArray(Vdbe *p){
112  VdbeOp *pNew;
113  int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
114  pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
115  if( pNew ){
116    p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
117    p->aOp = pNew;
118  }
119  return (pNew ? SQLITE_OK : SQLITE_NOMEM);
120}
121
122/*
123** Add a new instruction to the list of instructions current in the
124** VDBE.  Return the address of the new instruction.
125**
126** Parameters:
127**
128**    p               Pointer to the VDBE
129**
130**    op              The opcode for this instruction
131**
132**    p1, p2, p3      Operands
133**
134** Use the sqlite3VdbeResolveLabel() function to fix an address and
135** the sqlite3VdbeChangeP4() function to change the value of the P4
136** operand.
137*/
138int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
139  int i;
140  VdbeOp *pOp;
141
142  i = p->nOp;
143  assert( p->magic==VDBE_MAGIC_INIT );
144  assert( op>0 && op<0xff );
145  if( p->nOpAlloc<=i ){
146    if( growOpArray(p) ){
147      return 1;
148    }
149  }
150  p->nOp++;
151  pOp = &p->aOp[i];
152  pOp->opcode = (u8)op;
153  pOp->p5 = 0;
154  pOp->p1 = p1;
155  pOp->p2 = p2;
156  pOp->p3 = p3;
157  pOp->p4.p = 0;
158  pOp->p4type = P4_NOTUSED;
159  p->expired = 0;
160  if( op==OP_ParseSchema ){
161    /* Any program that uses the OP_ParseSchema opcode needs to lock
162    ** all btrees. */
163    int j;
164    for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
165  }
166#ifdef SQLITE_DEBUG
167  pOp->zComment = 0;
168  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
169#endif
170#ifdef VDBE_PROFILE
171  pOp->cycles = 0;
172  pOp->cnt = 0;
173#endif
174  return i;
175}
176int sqlite3VdbeAddOp0(Vdbe *p, int op){
177  return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
178}
179int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
180  return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
181}
182int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
183  return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
184}
185
186
187/*
188** Add an opcode that includes the p4 value as a pointer.
189*/
190int sqlite3VdbeAddOp4(
191  Vdbe *p,            /* Add the opcode to this VM */
192  int op,             /* The new opcode */
193  int p1,             /* The P1 operand */
194  int p2,             /* The P2 operand */
195  int p3,             /* The P3 operand */
196  const char *zP4,    /* The P4 operand */
197  int p4type          /* P4 operand type */
198){
199  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
200  sqlite3VdbeChangeP4(p, addr, zP4, p4type);
201  return addr;
202}
203
204/*
205** Add an opcode that includes the p4 value as an integer.
206*/
207int sqlite3VdbeAddOp4Int(
208  Vdbe *p,            /* Add the opcode to this VM */
209  int op,             /* The new opcode */
210  int p1,             /* The P1 operand */
211  int p2,             /* The P2 operand */
212  int p3,             /* The P3 operand */
213  int p4              /* The P4 operand as an integer */
214){
215  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
216  sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
217  return addr;
218}
219
220/*
221** Create a new symbolic label for an instruction that has yet to be
222** coded.  The symbolic label is really just a negative number.  The
223** label can be used as the P2 value of an operation.  Later, when
224** the label is resolved to a specific address, the VDBE will scan
225** through its operation list and change all values of P2 which match
226** the label into the resolved address.
227**
228** The VDBE knows that a P2 value is a label because labels are
229** always negative and P2 values are suppose to be non-negative.
230** Hence, a negative P2 value is a label that has yet to be resolved.
231**
232** Zero is returned if a malloc() fails.
233*/
234int sqlite3VdbeMakeLabel(Vdbe *p){
235  int i;
236  i = p->nLabel++;
237  assert( p->magic==VDBE_MAGIC_INIT );
238  if( i>=p->nLabelAlloc ){
239    int n = p->nLabelAlloc*2 + 5;
240    p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
241                                       n*sizeof(p->aLabel[0]));
242    p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
243  }
244  if( p->aLabel ){
245    p->aLabel[i] = -1;
246  }
247  return -1-i;
248}
249
250/*
251** Resolve label "x" to be the address of the next instruction to
252** be inserted.  The parameter "x" must have been obtained from
253** a prior call to sqlite3VdbeMakeLabel().
254*/
255void sqlite3VdbeResolveLabel(Vdbe *p, int x){
256  int j = -1-x;
257  assert( p->magic==VDBE_MAGIC_INIT );
258  assert( j>=0 && j<p->nLabel );
259  if( p->aLabel ){
260    p->aLabel[j] = p->nOp;
261  }
262}
263
264/*
265** Mark the VDBE as one that can only be run one time.
266*/
267void sqlite3VdbeRunOnlyOnce(Vdbe *p){
268  p->runOnlyOnce = 1;
269}
270
271#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
272
273/*
274** The following type and function are used to iterate through all opcodes
275** in a Vdbe main program and each of the sub-programs (triggers) it may
276** invoke directly or indirectly. It should be used as follows:
277**
278**   Op *pOp;
279**   VdbeOpIter sIter;
280**
281**   memset(&sIter, 0, sizeof(sIter));
282**   sIter.v = v;                            // v is of type Vdbe*
283**   while( (pOp = opIterNext(&sIter)) ){
284**     // Do something with pOp
285**   }
286**   sqlite3DbFree(v->db, sIter.apSub);
287**
288*/
289typedef struct VdbeOpIter VdbeOpIter;
290struct VdbeOpIter {
291  Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
292  SubProgram **apSub;        /* Array of subprograms */
293  int nSub;                  /* Number of entries in apSub */
294  int iAddr;                 /* Address of next instruction to return */
295  int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
296};
297static Op *opIterNext(VdbeOpIter *p){
298  Vdbe *v = p->v;
299  Op *pRet = 0;
300  Op *aOp;
301  int nOp;
302
303  if( p->iSub<=p->nSub ){
304
305    if( p->iSub==0 ){
306      aOp = v->aOp;
307      nOp = v->nOp;
308    }else{
309      aOp = p->apSub[p->iSub-1]->aOp;
310      nOp = p->apSub[p->iSub-1]->nOp;
311    }
312    assert( p->iAddr<nOp );
313
314    pRet = &aOp[p->iAddr];
315    p->iAddr++;
316    if( p->iAddr==nOp ){
317      p->iSub++;
318      p->iAddr = 0;
319    }
320
321    if( pRet->p4type==P4_SUBPROGRAM ){
322      int nByte = (p->nSub+1)*sizeof(SubProgram*);
323      int j;
324      for(j=0; j<p->nSub; j++){
325        if( p->apSub[j]==pRet->p4.pProgram ) break;
326      }
327      if( j==p->nSub ){
328        p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
329        if( !p->apSub ){
330          pRet = 0;
331        }else{
332          p->apSub[p->nSub++] = pRet->p4.pProgram;
333        }
334      }
335    }
336  }
337
338  return pRet;
339}
340
341/*
342** Check if the program stored in the VM associated with pParse may
343** throw an ABORT exception (causing the statement, but not entire transaction
344** to be rolled back). This condition is true if the main program or any
345** sub-programs contains any of the following:
346**
347**   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
348**   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
349**   *  OP_Destroy
350**   *  OP_VUpdate
351**   *  OP_VRename
352**   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
353**
354** Then check that the value of Parse.mayAbort is true if an
355** ABORT may be thrown, or false otherwise. Return true if it does
356** match, or false otherwise. This function is intended to be used as
357** part of an assert statement in the compiler. Similar to:
358**
359**   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
360*/
361int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
362  int hasAbort = 0;
363  Op *pOp;
364  VdbeOpIter sIter;
365  memset(&sIter, 0, sizeof(sIter));
366  sIter.v = v;
367
368  while( (pOp = opIterNext(&sIter))!=0 ){
369    int opcode = pOp->opcode;
370    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
371#ifndef SQLITE_OMIT_FOREIGN_KEY
372     || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
373#endif
374     || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
375      && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
376    ){
377      hasAbort = 1;
378      break;
379    }
380  }
381  sqlite3DbFree(v->db, sIter.apSub);
382
383  /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
384  ** If malloc failed, then the while() loop above may not have iterated
385  ** through all opcodes and hasAbort may be set incorrectly. Return
386  ** true for this case to prevent the assert() in the callers frame
387  ** from failing.  */
388  return ( v->db->mallocFailed || hasAbort==mayAbort );
389}
390#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
391
392/*
393** Loop through the program looking for P2 values that are negative
394** on jump instructions.  Each such value is a label.  Resolve the
395** label by setting the P2 value to its correct non-zero value.
396**
397** This routine is called once after all opcodes have been inserted.
398**
399** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
400** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
401** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
402**
403** The Op.opflags field is set on all opcodes.
404*/
405static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
406  int i;
407  int nMaxArgs = *pMaxFuncArgs;
408  Op *pOp;
409  int *aLabel = p->aLabel;
410  p->readOnly = 1;
411  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
412    u8 opcode = pOp->opcode;
413
414    pOp->opflags = sqlite3OpcodeProperty[opcode];
415    if( opcode==OP_Function || opcode==OP_AggStep ){
416      if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
417    }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
418      p->readOnly = 0;
419#ifndef SQLITE_OMIT_VIRTUALTABLE
420    }else if( opcode==OP_VUpdate ){
421      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
422    }else if( opcode==OP_VFilter ){
423      int n;
424      assert( p->nOp - i >= 3 );
425      assert( pOp[-1].opcode==OP_Integer );
426      n = pOp[-1].p1;
427      if( n>nMaxArgs ) nMaxArgs = n;
428#endif
429    }
430
431    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
432      assert( -1-pOp->p2<p->nLabel );
433      pOp->p2 = aLabel[-1-pOp->p2];
434    }
435  }
436  sqlite3DbFree(p->db, p->aLabel);
437  p->aLabel = 0;
438
439  *pMaxFuncArgs = nMaxArgs;
440}
441
442/*
443** Return the address of the next instruction to be inserted.
444*/
445int sqlite3VdbeCurrentAddr(Vdbe *p){
446  assert( p->magic==VDBE_MAGIC_INIT );
447  return p->nOp;
448}
449
450/*
451** This function returns a pointer to the array of opcodes associated with
452** the Vdbe passed as the first argument. It is the callers responsibility
453** to arrange for the returned array to be eventually freed using the
454** vdbeFreeOpArray() function.
455**
456** Before returning, *pnOp is set to the number of entries in the returned
457** array. Also, *pnMaxArg is set to the larger of its current value and
458** the number of entries in the Vdbe.apArg[] array required to execute the
459** returned program.
460*/
461VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
462  VdbeOp *aOp = p->aOp;
463  assert( aOp && !p->db->mallocFailed );
464
465  /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
466  assert( p->btreeMask==0 );
467
468  resolveP2Values(p, pnMaxArg);
469  *pnOp = p->nOp;
470  p->aOp = 0;
471  return aOp;
472}
473
474/*
475** Add a whole list of operations to the operation stack.  Return the
476** address of the first operation added.
477*/
478int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
479  int addr;
480  assert( p->magic==VDBE_MAGIC_INIT );
481  if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
482    return 0;
483  }
484  addr = p->nOp;
485  if( ALWAYS(nOp>0) ){
486    int i;
487    VdbeOpList const *pIn = aOp;
488    for(i=0; i<nOp; i++, pIn++){
489      int p2 = pIn->p2;
490      VdbeOp *pOut = &p->aOp[i+addr];
491      pOut->opcode = pIn->opcode;
492      pOut->p1 = pIn->p1;
493      if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
494        pOut->p2 = addr + ADDR(p2);
495      }else{
496        pOut->p2 = p2;
497      }
498      pOut->p3 = pIn->p3;
499      pOut->p4type = P4_NOTUSED;
500      pOut->p4.p = 0;
501      pOut->p5 = 0;
502#ifdef SQLITE_DEBUG
503      pOut->zComment = 0;
504      if( sqlite3VdbeAddopTrace ){
505        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
506      }
507#endif
508    }
509    p->nOp += nOp;
510  }
511  return addr;
512}
513
514/*
515** Change the value of the P1 operand for a specific instruction.
516** This routine is useful when a large program is loaded from a
517** static array using sqlite3VdbeAddOpList but we want to make a
518** few minor changes to the program.
519*/
520void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
521  assert( p!=0 );
522  assert( addr>=0 );
523  if( p->nOp>addr ){
524    p->aOp[addr].p1 = val;
525  }
526}
527
528/*
529** Change the value of the P2 operand for a specific instruction.
530** This routine is useful for setting a jump destination.
531*/
532void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
533  assert( p!=0 );
534  assert( addr>=0 );
535  if( p->nOp>addr ){
536    p->aOp[addr].p2 = val;
537  }
538}
539
540/*
541** Change the value of the P3 operand for a specific instruction.
542*/
543void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
544  assert( p!=0 );
545  assert( addr>=0 );
546  if( p->nOp>addr ){
547    p->aOp[addr].p3 = val;
548  }
549}
550
551/*
552** Change the value of the P5 operand for the most recently
553** added operation.
554*/
555void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
556  assert( p!=0 );
557  if( p->aOp ){
558    assert( p->nOp>0 );
559    p->aOp[p->nOp-1].p5 = val;
560  }
561}
562
563/*
564** Change the P2 operand of instruction addr so that it points to
565** the address of the next instruction to be coded.
566*/
567void sqlite3VdbeJumpHere(Vdbe *p, int addr){
568  assert( addr>=0 );
569  sqlite3VdbeChangeP2(p, addr, p->nOp);
570}
571
572
573/*
574** If the input FuncDef structure is ephemeral, then free it.  If
575** the FuncDef is not ephermal, then do nothing.
576*/
577static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
578  if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
579    sqlite3DbFree(db, pDef);
580  }
581}
582
583static void vdbeFreeOpArray(sqlite3 *, Op *, int);
584
585/*
586** Delete a P4 value if necessary.
587*/
588static void freeP4(sqlite3 *db, int p4type, void *p4){
589  if( p4 ){
590    assert( db );
591    switch( p4type ){
592      case P4_REAL:
593      case P4_INT64:
594      case P4_DYNAMIC:
595      case P4_KEYINFO:
596      case P4_INTARRAY:
597      case P4_KEYINFO_HANDOFF: {
598        sqlite3DbFree(db, p4);
599        break;
600      }
601      case P4_MPRINTF: {
602        if( db->pnBytesFreed==0 ) sqlite3_free(p4);
603        break;
604      }
605      case P4_VDBEFUNC: {
606        VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
607        freeEphemeralFunction(db, pVdbeFunc->pFunc);
608        if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
609        sqlite3DbFree(db, pVdbeFunc);
610        break;
611      }
612      case P4_FUNCDEF: {
613        freeEphemeralFunction(db, (FuncDef*)p4);
614        break;
615      }
616      case P4_MEM: {
617        if( db->pnBytesFreed==0 ){
618          sqlite3ValueFree((sqlite3_value*)p4);
619        }else{
620          Mem *p = (Mem*)p4;
621          sqlite3DbFree(db, p->zMalloc);
622          sqlite3DbFree(db, p);
623        }
624        break;
625      }
626      case P4_VTAB : {
627        if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
628        break;
629      }
630    }
631  }
632}
633
634/*
635** Free the space allocated for aOp and any p4 values allocated for the
636** opcodes contained within. If aOp is not NULL it is assumed to contain
637** nOp entries.
638*/
639static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
640  if( aOp ){
641    Op *pOp;
642    for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
643      freeP4(db, pOp->p4type, pOp->p4.p);
644#ifdef SQLITE_DEBUG
645      sqlite3DbFree(db, pOp->zComment);
646#endif
647    }
648  }
649  sqlite3DbFree(db, aOp);
650}
651
652/*
653** Link the SubProgram object passed as the second argument into the linked
654** list at Vdbe.pSubProgram. This list is used to delete all sub-program
655** objects when the VM is no longer required.
656*/
657void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
658  p->pNext = pVdbe->pProgram;
659  pVdbe->pProgram = p;
660}
661
662/*
663** Change N opcodes starting at addr to No-ops.
664*/
665void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
666  if( p->aOp ){
667    VdbeOp *pOp = &p->aOp[addr];
668    sqlite3 *db = p->db;
669    while( N-- ){
670      freeP4(db, pOp->p4type, pOp->p4.p);
671      memset(pOp, 0, sizeof(pOp[0]));
672      pOp->opcode = OP_Noop;
673      pOp++;
674    }
675  }
676}
677
678/*
679** Change the value of the P4 operand for a specific instruction.
680** This routine is useful when a large program is loaded from a
681** static array using sqlite3VdbeAddOpList but we want to make a
682** few minor changes to the program.
683**
684** If n>=0 then the P4 operand is dynamic, meaning that a copy of
685** the string is made into memory obtained from sqlite3_malloc().
686** A value of n==0 means copy bytes of zP4 up to and including the
687** first null byte.  If n>0 then copy n+1 bytes of zP4.
688**
689** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
690** A copy is made of the KeyInfo structure into memory obtained from
691** sqlite3_malloc, to be freed when the Vdbe is finalized.
692** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
693** stored in memory that the caller has obtained from sqlite3_malloc. The
694** caller should not free the allocation, it will be freed when the Vdbe is
695** finalized.
696**
697** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
698** to a string or structure that is guaranteed to exist for the lifetime of
699** the Vdbe. In these cases we can just copy the pointer.
700**
701** If addr<0 then change P4 on the most recently inserted instruction.
702*/
703void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
704  Op *pOp;
705  sqlite3 *db;
706  assert( p!=0 );
707  db = p->db;
708  assert( p->magic==VDBE_MAGIC_INIT );
709  if( p->aOp==0 || db->mallocFailed ){
710    if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
711      freeP4(db, n, (void*)*(char**)&zP4);
712    }
713    return;
714  }
715  assert( p->nOp>0 );
716  assert( addr<p->nOp );
717  if( addr<0 ){
718    addr = p->nOp - 1;
719  }
720  pOp = &p->aOp[addr];
721  freeP4(db, pOp->p4type, pOp->p4.p);
722  pOp->p4.p = 0;
723  if( n==P4_INT32 ){
724    /* Note: this cast is safe, because the origin data point was an int
725    ** that was cast to a (const char *). */
726    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
727    pOp->p4type = P4_INT32;
728  }else if( zP4==0 ){
729    pOp->p4.p = 0;
730    pOp->p4type = P4_NOTUSED;
731  }else if( n==P4_KEYINFO ){
732    KeyInfo *pKeyInfo;
733    int nField, nByte;
734
735    nField = ((KeyInfo*)zP4)->nField;
736    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
737    pKeyInfo = sqlite3DbMallocRaw(0, nByte);
738    pOp->p4.pKeyInfo = pKeyInfo;
739    if( pKeyInfo ){
740      u8 *aSortOrder;
741      memcpy((char*)pKeyInfo, zP4, nByte - nField);
742      aSortOrder = pKeyInfo->aSortOrder;
743      if( aSortOrder ){
744        pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
745        memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
746      }
747      pOp->p4type = P4_KEYINFO;
748    }else{
749      p->db->mallocFailed = 1;
750      pOp->p4type = P4_NOTUSED;
751    }
752  }else if( n==P4_KEYINFO_HANDOFF ){
753    pOp->p4.p = (void*)zP4;
754    pOp->p4type = P4_KEYINFO;
755  }else if( n==P4_VTAB ){
756    pOp->p4.p = (void*)zP4;
757    pOp->p4type = P4_VTAB;
758    sqlite3VtabLock((VTable *)zP4);
759    assert( ((VTable *)zP4)->db==p->db );
760  }else if( n<0 ){
761    pOp->p4.p = (void*)zP4;
762    pOp->p4type = (signed char)n;
763  }else{
764    if( n==0 ) n = sqlite3Strlen30(zP4);
765    pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
766    pOp->p4type = P4_DYNAMIC;
767  }
768}
769
770#ifndef NDEBUG
771/*
772** Change the comment on the the most recently coded instruction.  Or
773** insert a No-op and add the comment to that new instruction.  This
774** makes the code easier to read during debugging.  None of this happens
775** in a production build.
776*/
777void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
778  va_list ap;
779  if( !p ) return;
780  assert( p->nOp>0 || p->aOp==0 );
781  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
782  if( p->nOp ){
783    char **pz = &p->aOp[p->nOp-1].zComment;
784    va_start(ap, zFormat);
785    sqlite3DbFree(p->db, *pz);
786    *pz = sqlite3VMPrintf(p->db, zFormat, ap);
787    va_end(ap);
788  }
789}
790void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
791  va_list ap;
792  if( !p ) return;
793  sqlite3VdbeAddOp0(p, OP_Noop);
794  assert( p->nOp>0 || p->aOp==0 );
795  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
796  if( p->nOp ){
797    char **pz = &p->aOp[p->nOp-1].zComment;
798    va_start(ap, zFormat);
799    sqlite3DbFree(p->db, *pz);
800    *pz = sqlite3VMPrintf(p->db, zFormat, ap);
801    va_end(ap);
802  }
803}
804#endif  /* NDEBUG */
805
806/*
807** Return the opcode for a given address.  If the address is -1, then
808** return the most recently inserted opcode.
809**
810** If a memory allocation error has occurred prior to the calling of this
811** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
812** is readable but not writable, though it is cast to a writable value.
813** The return of a dummy opcode allows the call to continue functioning
814** after a OOM fault without having to check to see if the return from
815** this routine is a valid pointer.  But because the dummy.opcode is 0,
816** dummy will never be written to.  This is verified by code inspection and
817** by running with Valgrind.
818**
819** About the #ifdef SQLITE_OMIT_TRACE:  Normally, this routine is never called
820** unless p->nOp>0.  This is because in the absense of SQLITE_OMIT_TRACE,
821** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
822** a new VDBE is created.  So we are free to set addr to p->nOp-1 without
823** having to double-check to make sure that the result is non-negative. But
824** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
825** check the value of p->nOp-1 before continuing.
826*/
827VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
828  /* C89 specifies that the constant "dummy" will be initialized to all
829  ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
830  static const VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
831  assert( p->magic==VDBE_MAGIC_INIT );
832  if( addr<0 ){
833#ifdef SQLITE_OMIT_TRACE
834    if( p->nOp==0 ) return (VdbeOp*)&dummy;
835#endif
836    addr = p->nOp - 1;
837  }
838  assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
839  if( p->db->mallocFailed ){
840    return (VdbeOp*)&dummy;
841  }else{
842    return &p->aOp[addr];
843  }
844}
845
846#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
847     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
848/*
849** Compute a string that describes the P4 parameter for an opcode.
850** Use zTemp for any required temporary buffer space.
851*/
852static char *displayP4(Op *pOp, char *zTemp, int nTemp){
853  char *zP4 = zTemp;
854  assert( nTemp>=20 );
855  switch( pOp->p4type ){
856    case P4_KEYINFO_STATIC:
857    case P4_KEYINFO: {
858      int i, j;
859      KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
860      sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
861      i = sqlite3Strlen30(zTemp);
862      for(j=0; j<pKeyInfo->nField; j++){
863        CollSeq *pColl = pKeyInfo->aColl[j];
864        if( pColl ){
865          int n = sqlite3Strlen30(pColl->zName);
866          if( i+n>nTemp-6 ){
867            memcpy(&zTemp[i],",...",4);
868            break;
869          }
870          zTemp[i++] = ',';
871          if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
872            zTemp[i++] = '-';
873          }
874          memcpy(&zTemp[i], pColl->zName,n+1);
875          i += n;
876        }else if( i+4<nTemp-6 ){
877          memcpy(&zTemp[i],",nil",4);
878          i += 4;
879        }
880      }
881      zTemp[i++] = ')';
882      zTemp[i] = 0;
883      assert( i<nTemp );
884      break;
885    }
886    case P4_COLLSEQ: {
887      CollSeq *pColl = pOp->p4.pColl;
888      sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
889      break;
890    }
891    case P4_FUNCDEF: {
892      FuncDef *pDef = pOp->p4.pFunc;
893      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
894      break;
895    }
896    case P4_INT64: {
897      sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
898      break;
899    }
900    case P4_INT32: {
901      sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
902      break;
903    }
904    case P4_REAL: {
905      sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
906      break;
907    }
908    case P4_MEM: {
909      Mem *pMem = pOp->p4.pMem;
910      assert( (pMem->flags & MEM_Null)==0 );
911      if( pMem->flags & MEM_Str ){
912        zP4 = pMem->z;
913      }else if( pMem->flags & MEM_Int ){
914        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
915      }else if( pMem->flags & MEM_Real ){
916        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
917      }else{
918        assert( pMem->flags & MEM_Blob );
919        zP4 = "(blob)";
920      }
921      break;
922    }
923#ifndef SQLITE_OMIT_VIRTUALTABLE
924    case P4_VTAB: {
925      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
926      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
927      break;
928    }
929#endif
930    case P4_INTARRAY: {
931      sqlite3_snprintf(nTemp, zTemp, "intarray");
932      break;
933    }
934    case P4_SUBPROGRAM: {
935      sqlite3_snprintf(nTemp, zTemp, "program");
936      break;
937    }
938    default: {
939      zP4 = pOp->p4.z;
940      if( zP4==0 ){
941        zP4 = zTemp;
942        zTemp[0] = 0;
943      }
944    }
945  }
946  assert( zP4!=0 );
947  return zP4;
948}
949#endif
950
951/*
952** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
953**
954** The prepared statements need to know in advance the complete set of
955** attached databases that they will be using.  A mask of these databases
956** is maintained in p->btreeMask and is used for locking and other purposes.
957*/
958void sqlite3VdbeUsesBtree(Vdbe *p, int i){
959  assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
960  assert( i<(int)sizeof(p->btreeMask)*8 );
961  p->btreeMask |= ((yDbMask)1)<<i;
962  if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
963    p->lockMask |= ((yDbMask)1)<<i;
964  }
965}
966
967#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
968/*
969** If SQLite is compiled to support shared-cache mode and to be threadsafe,
970** this routine obtains the mutex associated with each BtShared structure
971** that may be accessed by the VM passed as an argument. In doing so it also
972** sets the BtShared.db member of each of the BtShared structures, ensuring
973** that the correct busy-handler callback is invoked if required.
974**
975** If SQLite is not threadsafe but does support shared-cache mode, then
976** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
977** of all of BtShared structures accessible via the database handle
978** associated with the VM.
979**
980** If SQLite is not threadsafe and does not support shared-cache mode, this
981** function is a no-op.
982**
983** The p->btreeMask field is a bitmask of all btrees that the prepared
984** statement p will ever use.  Let N be the number of bits in p->btreeMask
985** corresponding to btrees that use shared cache.  Then the runtime of
986** this routine is N*N.  But as N is rarely more than 1, this should not
987** be a problem.
988*/
989void sqlite3VdbeEnter(Vdbe *p){
990  int i;
991  yDbMask mask;
992  sqlite3 *db;
993  Db *aDb;
994  int nDb;
995  if( p->lockMask==0 ) return;  /* The common case */
996  db = p->db;
997  aDb = db->aDb;
998  nDb = db->nDb;
999  for(i=0, mask=1; i<nDb; i++, mask += mask){
1000    if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
1001      sqlite3BtreeEnter(aDb[i].pBt);
1002    }
1003  }
1004}
1005#endif
1006
1007#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1008/*
1009** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1010*/
1011void sqlite3VdbeLeave(Vdbe *p){
1012  int i;
1013  yDbMask mask;
1014  sqlite3 *db;
1015  Db *aDb;
1016  int nDb;
1017  if( p->lockMask==0 ) return;  /* The common case */
1018  db = p->db;
1019  aDb = db->aDb;
1020  nDb = db->nDb;
1021  for(i=0, mask=1; i<nDb; i++, mask += mask){
1022    if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
1023      sqlite3BtreeLeave(aDb[i].pBt);
1024    }
1025  }
1026}
1027#endif
1028
1029#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1030/*
1031** Print a single opcode.  This routine is used for debugging only.
1032*/
1033void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1034  char *zP4;
1035  char zPtr[50];
1036  static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
1037  if( pOut==0 ) pOut = stdout;
1038  zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1039  fprintf(pOut, zFormat1, pc,
1040      sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1041#ifdef SQLITE_DEBUG
1042      pOp->zComment ? pOp->zComment : ""
1043#else
1044      ""
1045#endif
1046  );
1047  fflush(pOut);
1048}
1049#endif
1050
1051/*
1052** Release an array of N Mem elements
1053*/
1054static void releaseMemArray(Mem *p, int N){
1055  if( p && N ){
1056    Mem *pEnd;
1057    sqlite3 *db = p->db;
1058    u8 malloc_failed = db->mallocFailed;
1059    if( db->pnBytesFreed ){
1060      for(pEnd=&p[N]; p<pEnd; p++){
1061        sqlite3DbFree(db, p->zMalloc);
1062      }
1063      return;
1064    }
1065    for(pEnd=&p[N]; p<pEnd; p++){
1066      assert( (&p[1])==pEnd || p[0].db==p[1].db );
1067
1068      /* This block is really an inlined version of sqlite3VdbeMemRelease()
1069      ** that takes advantage of the fact that the memory cell value is
1070      ** being set to NULL after releasing any dynamic resources.
1071      **
1072      ** The justification for duplicating code is that according to
1073      ** callgrind, this causes a certain test case to hit the CPU 4.7
1074      ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1075      ** sqlite3MemRelease() were called from here. With -O2, this jumps
1076      ** to 6.6 percent. The test case is inserting 1000 rows into a table
1077      ** with no indexes using a single prepared INSERT statement, bind()
1078      ** and reset(). Inserts are grouped into a transaction.
1079      */
1080      if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1081        sqlite3VdbeMemRelease(p);
1082      }else if( p->zMalloc ){
1083        sqlite3DbFree(db, p->zMalloc);
1084        p->zMalloc = 0;
1085      }
1086
1087      p->flags = MEM_Null;
1088    }
1089    db->mallocFailed = malloc_failed;
1090  }
1091}
1092
1093/*
1094** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1095** allocated by the OP_Program opcode in sqlite3VdbeExec().
1096*/
1097void sqlite3VdbeFrameDelete(VdbeFrame *p){
1098  int i;
1099  Mem *aMem = VdbeFrameMem(p);
1100  VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1101  for(i=0; i<p->nChildCsr; i++){
1102    sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1103  }
1104  releaseMemArray(aMem, p->nChildMem);
1105  sqlite3DbFree(p->v->db, p);
1106}
1107
1108#ifndef SQLITE_OMIT_EXPLAIN
1109/*
1110** Give a listing of the program in the virtual machine.
1111**
1112** The interface is the same as sqlite3VdbeExec().  But instead of
1113** running the code, it invokes the callback once for each instruction.
1114** This feature is used to implement "EXPLAIN".
1115**
1116** When p->explain==1, each instruction is listed.  When
1117** p->explain==2, only OP_Explain instructions are listed and these
1118** are shown in a different format.  p->explain==2 is used to implement
1119** EXPLAIN QUERY PLAN.
1120**
1121** When p->explain==1, first the main program is listed, then each of
1122** the trigger subprograms are listed one by one.
1123*/
1124int sqlite3VdbeList(
1125  Vdbe *p                   /* The VDBE */
1126){
1127  int nRow;                            /* Stop when row count reaches this */
1128  int nSub = 0;                        /* Number of sub-vdbes seen so far */
1129  SubProgram **apSub = 0;              /* Array of sub-vdbes */
1130  Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
1131  sqlite3 *db = p->db;                 /* The database connection */
1132  int i;                               /* Loop counter */
1133  int rc = SQLITE_OK;                  /* Return code */
1134  Mem *pMem = p->pResultSet = &p->aMem[1];  /* First Mem of result set */
1135
1136  assert( p->explain );
1137  assert( p->magic==VDBE_MAGIC_RUN );
1138  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1139
1140  /* Even though this opcode does not use dynamic strings for
1141  ** the result, result columns may become dynamic if the user calls
1142  ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1143  */
1144  releaseMemArray(pMem, 8);
1145
1146  if( p->rc==SQLITE_NOMEM ){
1147    /* This happens if a malloc() inside a call to sqlite3_column_text() or
1148    ** sqlite3_column_text16() failed.  */
1149    db->mallocFailed = 1;
1150    return SQLITE_ERROR;
1151  }
1152
1153  /* When the number of output rows reaches nRow, that means the
1154  ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1155  ** nRow is the sum of the number of rows in the main program, plus
1156  ** the sum of the number of rows in all trigger subprograms encountered
1157  ** so far.  The nRow value will increase as new trigger subprograms are
1158  ** encountered, but p->pc will eventually catch up to nRow.
1159  */
1160  nRow = p->nOp;
1161  if( p->explain==1 ){
1162    /* The first 8 memory cells are used for the result set.  So we will
1163    ** commandeer the 9th cell to use as storage for an array of pointers
1164    ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
1165    ** cells.  */
1166    assert( p->nMem>9 );
1167    pSub = &p->aMem[9];
1168    if( pSub->flags&MEM_Blob ){
1169      /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
1170      ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1171      nSub = pSub->n/sizeof(Vdbe*);
1172      apSub = (SubProgram **)pSub->z;
1173    }
1174    for(i=0; i<nSub; i++){
1175      nRow += apSub[i]->nOp;
1176    }
1177  }
1178
1179  do{
1180    i = p->pc++;
1181  }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1182  if( i>=nRow ){
1183    p->rc = SQLITE_OK;
1184    rc = SQLITE_DONE;
1185  }else if( db->u1.isInterrupted ){
1186    p->rc = SQLITE_INTERRUPT;
1187    rc = SQLITE_ERROR;
1188    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
1189  }else{
1190    char *z;
1191    Op *pOp;
1192    if( i<p->nOp ){
1193      /* The output line number is small enough that we are still in the
1194      ** main program. */
1195      pOp = &p->aOp[i];
1196    }else{
1197      /* We are currently listing subprograms.  Figure out which one and
1198      ** pick up the appropriate opcode. */
1199      int j;
1200      i -= p->nOp;
1201      for(j=0; i>=apSub[j]->nOp; j++){
1202        i -= apSub[j]->nOp;
1203      }
1204      pOp = &apSub[j]->aOp[i];
1205    }
1206    if( p->explain==1 ){
1207      pMem->flags = MEM_Int;
1208      pMem->type = SQLITE_INTEGER;
1209      pMem->u.i = i;                                /* Program counter */
1210      pMem++;
1211
1212      pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1213      pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
1214      assert( pMem->z!=0 );
1215      pMem->n = sqlite3Strlen30(pMem->z);
1216      pMem->type = SQLITE_TEXT;
1217      pMem->enc = SQLITE_UTF8;
1218      pMem++;
1219
1220      /* When an OP_Program opcode is encounter (the only opcode that has
1221      ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1222      ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1223      ** has not already been seen.
1224      */
1225      if( pOp->p4type==P4_SUBPROGRAM ){
1226        int nByte = (nSub+1)*sizeof(SubProgram*);
1227        int j;
1228        for(j=0; j<nSub; j++){
1229          if( apSub[j]==pOp->p4.pProgram ) break;
1230        }
1231        if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
1232          apSub = (SubProgram **)pSub->z;
1233          apSub[nSub++] = pOp->p4.pProgram;
1234          pSub->flags |= MEM_Blob;
1235          pSub->n = nSub*sizeof(SubProgram*);
1236        }
1237      }
1238    }
1239
1240    pMem->flags = MEM_Int;
1241    pMem->u.i = pOp->p1;                          /* P1 */
1242    pMem->type = SQLITE_INTEGER;
1243    pMem++;
1244
1245    pMem->flags = MEM_Int;
1246    pMem->u.i = pOp->p2;                          /* P2 */
1247    pMem->type = SQLITE_INTEGER;
1248    pMem++;
1249
1250    pMem->flags = MEM_Int;
1251    pMem->u.i = pOp->p3;                          /* P3 */
1252    pMem->type = SQLITE_INTEGER;
1253    pMem++;
1254
1255    if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
1256      assert( p->db->mallocFailed );
1257      return SQLITE_ERROR;
1258    }
1259    pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1260    z = displayP4(pOp, pMem->z, 32);
1261    if( z!=pMem->z ){
1262      sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
1263    }else{
1264      assert( pMem->z!=0 );
1265      pMem->n = sqlite3Strlen30(pMem->z);
1266      pMem->enc = SQLITE_UTF8;
1267    }
1268    pMem->type = SQLITE_TEXT;
1269    pMem++;
1270
1271    if( p->explain==1 ){
1272      if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
1273        assert( p->db->mallocFailed );
1274        return SQLITE_ERROR;
1275      }
1276      pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1277      pMem->n = 2;
1278      sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
1279      pMem->type = SQLITE_TEXT;
1280      pMem->enc = SQLITE_UTF8;
1281      pMem++;
1282
1283#ifdef SQLITE_DEBUG
1284      if( pOp->zComment ){
1285        pMem->flags = MEM_Str|MEM_Term;
1286        pMem->z = pOp->zComment;
1287        pMem->n = sqlite3Strlen30(pMem->z);
1288        pMem->enc = SQLITE_UTF8;
1289        pMem->type = SQLITE_TEXT;
1290      }else
1291#endif
1292      {
1293        pMem->flags = MEM_Null;                       /* Comment */
1294        pMem->type = SQLITE_NULL;
1295      }
1296    }
1297
1298    p->nResColumn = 8 - 4*(p->explain-1);
1299    p->rc = SQLITE_OK;
1300    rc = SQLITE_ROW;
1301  }
1302  return rc;
1303}
1304#endif /* SQLITE_OMIT_EXPLAIN */
1305
1306#ifdef SQLITE_DEBUG
1307/*
1308** Print the SQL that was used to generate a VDBE program.
1309*/
1310void sqlite3VdbePrintSql(Vdbe *p){
1311  int nOp = p->nOp;
1312  VdbeOp *pOp;
1313  if( nOp<1 ) return;
1314  pOp = &p->aOp[0];
1315  if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1316    const char *z = pOp->p4.z;
1317    while( sqlite3Isspace(*z) ) z++;
1318    printf("SQL: [%s]\n", z);
1319  }
1320}
1321#endif
1322
1323#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1324/*
1325** Print an IOTRACE message showing SQL content.
1326*/
1327void sqlite3VdbeIOTraceSql(Vdbe *p){
1328  int nOp = p->nOp;
1329  VdbeOp *pOp;
1330  if( sqlite3IoTrace==0 ) return;
1331  if( nOp<1 ) return;
1332  pOp = &p->aOp[0];
1333  if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1334    int i, j;
1335    char z[1000];
1336    sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1337    for(i=0; sqlite3Isspace(z[i]); i++){}
1338    for(j=0; z[i]; i++){
1339      if( sqlite3Isspace(z[i]) ){
1340        if( z[i-1]!=' ' ){
1341          z[j++] = ' ';
1342        }
1343      }else{
1344        z[j++] = z[i];
1345      }
1346    }
1347    z[j] = 0;
1348    sqlite3IoTrace("SQL %s\n", z);
1349  }
1350}
1351#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1352
1353/*
1354** Allocate space from a fixed size buffer and return a pointer to
1355** that space.  If insufficient space is available, return NULL.
1356**
1357** The pBuf parameter is the initial value of a pointer which will
1358** receive the new memory.  pBuf is normally NULL.  If pBuf is not
1359** NULL, it means that memory space has already been allocated and that
1360** this routine should not allocate any new memory.  When pBuf is not
1361** NULL simply return pBuf.  Only allocate new memory space when pBuf
1362** is NULL.
1363**
1364** nByte is the number of bytes of space needed.
1365**
1366** *ppFrom points to available space and pEnd points to the end of the
1367** available space.  When space is allocated, *ppFrom is advanced past
1368** the end of the allocated space.
1369**
1370** *pnByte is a counter of the number of bytes of space that have failed
1371** to allocate.  If there is insufficient space in *ppFrom to satisfy the
1372** request, then increment *pnByte by the amount of the request.
1373*/
1374static void *allocSpace(
1375  void *pBuf,          /* Where return pointer will be stored */
1376  int nByte,           /* Number of bytes to allocate */
1377  u8 **ppFrom,         /* IN/OUT: Allocate from *ppFrom */
1378  u8 *pEnd,            /* Pointer to 1 byte past the end of *ppFrom buffer */
1379  int *pnByte          /* If allocation cannot be made, increment *pnByte */
1380){
1381  assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
1382  if( pBuf ) return pBuf;
1383  nByte = ROUND8(nByte);
1384  if( &(*ppFrom)[nByte] <= pEnd ){
1385    pBuf = (void*)*ppFrom;
1386    *ppFrom += nByte;
1387  }else{
1388    *pnByte += nByte;
1389  }
1390  return pBuf;
1391}
1392
1393/*
1394** Prepare a virtual machine for execution.  This involves things such
1395** as allocating stack space and initializing the program counter.
1396** After the VDBE has be prepped, it can be executed by one or more
1397** calls to sqlite3VdbeExec().
1398**
1399** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
1400** VDBE_MAGIC_RUN.
1401**
1402** This function may be called more than once on a single virtual machine.
1403** The first call is made while compiling the SQL statement. Subsequent
1404** calls are made as part of the process of resetting a statement to be
1405** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor
1406** and isExplain parameters are only passed correct values the first time
1407** the function is called. On subsequent calls, from sqlite3_reset(), nVar
1408** is passed -1 and nMem, nCursor and isExplain are all passed zero.
1409*/
1410void sqlite3VdbeMakeReady(
1411  Vdbe *p,                       /* The VDBE */
1412  int nVar,                      /* Number of '?' see in the SQL statement */
1413  int nMem,                      /* Number of memory cells to allocate */
1414  int nCursor,                   /* Number of cursors to allocate */
1415  int nArg,                      /* Maximum number of args in SubPrograms */
1416  int isExplain,                 /* True if the EXPLAIN keywords is present */
1417  int usesStmtJournal            /* True to set Vdbe.usesStmtJournal */
1418){
1419  int n;
1420  sqlite3 *db = p->db;
1421
1422  assert( p!=0 );
1423  assert( p->magic==VDBE_MAGIC_INIT );
1424
1425  /* There should be at least one opcode.
1426  */
1427  assert( p->nOp>0 );
1428
1429  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1430  p->magic = VDBE_MAGIC_RUN;
1431
1432  /* For each cursor required, also allocate a memory cell. Memory
1433  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1434  ** the vdbe program. Instead they are used to allocate space for
1435  ** VdbeCursor/BtCursor structures. The blob of memory associated with
1436  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1437  ** stores the blob of memory associated with cursor 1, etc.
1438  **
1439  ** See also: allocateCursor().
1440  */
1441  nMem += nCursor;
1442
1443  /* Allocate space for memory registers, SQL variables, VDBE cursors and
1444  ** an array to marshal SQL function arguments in. This is only done the
1445  ** first time this function is called for a given VDBE, not when it is
1446  ** being called from sqlite3_reset() to reset the virtual machine.
1447  */
1448  if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
1449    u8 *zCsr = (u8 *)&p->aOp[p->nOp];       /* Memory avaliable for alloation */
1450    u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc];  /* First byte past available mem */
1451    int nByte;                              /* How much extra memory needed */
1452
1453    resolveP2Values(p, &nArg);
1454    p->usesStmtJournal = (u8)usesStmtJournal;
1455    if( isExplain && nMem<10 ){
1456      nMem = 10;
1457    }
1458    memset(zCsr, 0, zEnd-zCsr);
1459    zCsr += (zCsr - (u8*)0)&7;
1460    assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
1461
1462    /* Memory for registers, parameters, cursor, etc, is allocated in two
1463    ** passes.  On the first pass, we try to reuse unused space at the
1464    ** end of the opcode array.  If we are unable to satisfy all memory
1465    ** requirements by reusing the opcode array tail, then the second
1466    ** pass will fill in the rest using a fresh allocation.
1467    **
1468    ** This two-pass approach that reuses as much memory as possible from
1469    ** the leftover space at the end of the opcode array can significantly
1470    ** reduce the amount of memory held by a prepared statement.
1471    */
1472    do {
1473      nByte = 0;
1474      p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1475      p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1476      p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1477      p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1478      p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1479                            &zCsr, zEnd, &nByte);
1480      if( nByte ){
1481        p->pFree = sqlite3DbMallocZero(db, nByte);
1482      }
1483      zCsr = p->pFree;
1484      zEnd = &zCsr[nByte];
1485    }while( nByte && !db->mallocFailed );
1486
1487    p->nCursor = (u16)nCursor;
1488    if( p->aVar ){
1489      p->nVar = (ynVar)nVar;
1490      for(n=0; n<nVar; n++){
1491        p->aVar[n].flags = MEM_Null;
1492        p->aVar[n].db = db;
1493      }
1494    }
1495    if( p->aMem ){
1496      p->aMem--;                      /* aMem[] goes from 1..nMem */
1497      p->nMem = nMem;                 /*       not from 0..nMem-1 */
1498      for(n=1; n<=nMem; n++){
1499        p->aMem[n].flags = MEM_Null;
1500        p->aMem[n].db = db;
1501      }
1502    }
1503  }
1504#ifdef SQLITE_DEBUG
1505  for(n=1; n<p->nMem; n++){
1506    assert( p->aMem[n].db==db );
1507  }
1508#endif
1509
1510  p->pc = -1;
1511  p->rc = SQLITE_OK;
1512  p->errorAction = OE_Abort;
1513  p->explain |= isExplain;
1514  p->magic = VDBE_MAGIC_RUN;
1515  p->nChange = 0;
1516  p->cacheCtr = 1;
1517  p->minWriteFileFormat = 255;
1518  p->iStatement = 0;
1519  p->nFkConstraint = 0;
1520#ifdef VDBE_PROFILE
1521  {
1522    int i;
1523    for(i=0; i<p->nOp; i++){
1524      p->aOp[i].cnt = 0;
1525      p->aOp[i].cycles = 0;
1526    }
1527  }
1528#endif
1529}
1530
1531/*
1532** Close a VDBE cursor and release all the resources that cursor
1533** happens to hold.
1534*/
1535void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1536  if( pCx==0 ){
1537    return;
1538  }
1539  if( pCx->pBt ){
1540    sqlite3BtreeClose(pCx->pBt);
1541    /* The pCx->pCursor will be close automatically, if it exists, by
1542    ** the call above. */
1543  }else if( pCx->pCursor ){
1544    sqlite3BtreeCloseCursor(pCx->pCursor);
1545  }
1546#ifndef SQLITE_OMIT_VIRTUALTABLE
1547  if( pCx->pVtabCursor ){
1548    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
1549    const sqlite3_module *pModule = pCx->pModule;
1550    p->inVtabMethod = 1;
1551    pModule->xClose(pVtabCursor);
1552    p->inVtabMethod = 0;
1553  }
1554#endif
1555}
1556
1557/*
1558** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1559** is used, for example, when a trigger sub-program is halted to restore
1560** control to the main program.
1561*/
1562int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1563  Vdbe *v = pFrame->v;
1564  v->aOp = pFrame->aOp;
1565  v->nOp = pFrame->nOp;
1566  v->aMem = pFrame->aMem;
1567  v->nMem = pFrame->nMem;
1568  v->apCsr = pFrame->apCsr;
1569  v->nCursor = pFrame->nCursor;
1570  v->db->lastRowid = pFrame->lastRowid;
1571  v->nChange = pFrame->nChange;
1572  return pFrame->pc;
1573}
1574
1575/*
1576** Close all cursors.
1577**
1578** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1579** cell array. This is necessary as the memory cell array may contain
1580** pointers to VdbeFrame objects, which may in turn contain pointers to
1581** open cursors.
1582*/
1583static void closeAllCursors(Vdbe *p){
1584  if( p->pFrame ){
1585    VdbeFrame *pFrame;
1586    for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1587    sqlite3VdbeFrameRestore(pFrame);
1588  }
1589  p->pFrame = 0;
1590  p->nFrame = 0;
1591
1592  if( p->apCsr ){
1593    int i;
1594    for(i=0; i<p->nCursor; i++){
1595      VdbeCursor *pC = p->apCsr[i];
1596      if( pC ){
1597        sqlite3VdbeFreeCursor(p, pC);
1598        p->apCsr[i] = 0;
1599      }
1600    }
1601  }
1602  if( p->aMem ){
1603    releaseMemArray(&p->aMem[1], p->nMem);
1604  }
1605  while( p->pDelFrame ){
1606    VdbeFrame *pDel = p->pDelFrame;
1607    p->pDelFrame = pDel->pParent;
1608    sqlite3VdbeFrameDelete(pDel);
1609  }
1610}
1611
1612/*
1613** Clean up the VM after execution.
1614**
1615** This routine will automatically close any cursors, lists, and/or
1616** sorters that were left open.  It also deletes the values of
1617** variables in the aVar[] array.
1618*/
1619static void Cleanup(Vdbe *p){
1620  sqlite3 *db = p->db;
1621
1622#ifdef SQLITE_DEBUG
1623  /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1624  ** Vdbe.aMem[] arrays have already been cleaned up.  */
1625  int i;
1626  for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 );
1627  for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null );
1628#endif
1629
1630  sqlite3DbFree(db, p->zErrMsg);
1631  p->zErrMsg = 0;
1632  p->pResultSet = 0;
1633}
1634
1635/*
1636** Set the number of result columns that will be returned by this SQL
1637** statement. This is now set at compile time, rather than during
1638** execution of the vdbe program so that sqlite3_column_count() can
1639** be called on an SQL statement before sqlite3_step().
1640*/
1641void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
1642  Mem *pColName;
1643  int n;
1644  sqlite3 *db = p->db;
1645
1646  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
1647  sqlite3DbFree(db, p->aColName);
1648  n = nResColumn*COLNAME_N;
1649  p->nResColumn = (u16)nResColumn;
1650  p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
1651  if( p->aColName==0 ) return;
1652  while( n-- > 0 ){
1653    pColName->flags = MEM_Null;
1654    pColName->db = p->db;
1655    pColName++;
1656  }
1657}
1658
1659/*
1660** Set the name of the idx'th column to be returned by the SQL statement.
1661** zName must be a pointer to a nul terminated string.
1662**
1663** This call must be made after a call to sqlite3VdbeSetNumCols().
1664**
1665** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1666** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1667** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
1668*/
1669int sqlite3VdbeSetColName(
1670  Vdbe *p,                         /* Vdbe being configured */
1671  int idx,                         /* Index of column zName applies to */
1672  int var,                         /* One of the COLNAME_* constants */
1673  const char *zName,               /* Pointer to buffer containing name */
1674  void (*xDel)(void*)              /* Memory management strategy for zName */
1675){
1676  int rc;
1677  Mem *pColName;
1678  assert( idx<p->nResColumn );
1679  assert( var<COLNAME_N );
1680  if( p->db->mallocFailed ){
1681    assert( !zName || xDel!=SQLITE_DYNAMIC );
1682    return SQLITE_NOMEM;
1683  }
1684  assert( p->aColName!=0 );
1685  pColName = &(p->aColName[idx+var*p->nResColumn]);
1686  rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
1687  assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
1688  return rc;
1689}
1690
1691/*
1692** A read or write transaction may or may not be active on database handle
1693** db. If a transaction is active, commit it. If there is a
1694** write-transaction spanning more than one database file, this routine
1695** takes care of the master journal trickery.
1696*/
1697static int vdbeCommit(sqlite3 *db, Vdbe *p){
1698  int i;
1699  int nTrans = 0;  /* Number of databases with an active write-transaction */
1700  int rc = SQLITE_OK;
1701  int needXcommit = 0;
1702
1703#ifdef SQLITE_OMIT_VIRTUALTABLE
1704  /* With this option, sqlite3VtabSync() is defined to be simply
1705  ** SQLITE_OK so p is not used.
1706  */
1707  UNUSED_PARAMETER(p);
1708#endif
1709
1710  /* Before doing anything else, call the xSync() callback for any
1711  ** virtual module tables written in this transaction. This has to
1712  ** be done before determining whether a master journal file is
1713  ** required, as an xSync() callback may add an attached database
1714  ** to the transaction.
1715  */
1716  rc = sqlite3VtabSync(db, &p->zErrMsg);
1717
1718  /* This loop determines (a) if the commit hook should be invoked and
1719  ** (b) how many database files have open write transactions, not
1720  ** including the temp database. (b) is important because if more than
1721  ** one database file has an open write transaction, a master journal
1722  ** file is required for an atomic commit.
1723  */
1724  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1725    Btree *pBt = db->aDb[i].pBt;
1726    if( sqlite3BtreeIsInTrans(pBt) ){
1727      needXcommit = 1;
1728      if( i!=1 ) nTrans++;
1729      rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
1730    }
1731  }
1732  if( rc!=SQLITE_OK ){
1733    return rc;
1734  }
1735
1736  /* If there are any write-transactions at all, invoke the commit hook */
1737  if( needXcommit && db->xCommitCallback ){
1738    rc = db->xCommitCallback(db->pCommitArg);
1739    if( rc ){
1740      return SQLITE_CONSTRAINT;
1741    }
1742  }
1743
1744  /* The simple case - no more than one database file (not counting the
1745  ** TEMP database) has a transaction active.   There is no need for the
1746  ** master-journal.
1747  **
1748  ** If the return value of sqlite3BtreeGetFilename() is a zero length
1749  ** string, it means the main database is :memory: or a temp file.  In
1750  ** that case we do not support atomic multi-file commits, so use the
1751  ** simple case then too.
1752  */
1753  if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
1754   || nTrans<=1
1755  ){
1756    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1757      Btree *pBt = db->aDb[i].pBt;
1758      if( pBt ){
1759        rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
1760      }
1761    }
1762
1763    /* Do the commit only if all databases successfully complete phase 1.
1764    ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
1765    ** IO error while deleting or truncating a journal file. It is unlikely,
1766    ** but could happen. In this case abandon processing and return the error.
1767    */
1768    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1769      Btree *pBt = db->aDb[i].pBt;
1770      if( pBt ){
1771        rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
1772      }
1773    }
1774    if( rc==SQLITE_OK ){
1775      sqlite3VtabCommit(db);
1776    }
1777  }
1778
1779  /* The complex case - There is a multi-file write-transaction active.
1780  ** This requires a master journal file to ensure the transaction is
1781  ** committed atomicly.
1782  */
1783#ifndef SQLITE_OMIT_DISKIO
1784  else{
1785    sqlite3_vfs *pVfs = db->pVfs;
1786    int needSync = 0;
1787    char *zMaster = 0;   /* File-name for the master journal */
1788    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
1789    sqlite3_file *pMaster = 0;
1790    i64 offset = 0;
1791    int res;
1792
1793    /* Select a master journal file name */
1794    do {
1795      u32 iRandom;
1796      sqlite3DbFree(db, zMaster);
1797      sqlite3_randomness(sizeof(iRandom), &iRandom);
1798      zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff);
1799      if( !zMaster ){
1800        return SQLITE_NOMEM;
1801      }
1802      rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1803    }while( rc==SQLITE_OK && res );
1804    if( rc==SQLITE_OK ){
1805      /* Open the master journal. */
1806      rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
1807          SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
1808          SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
1809      );
1810    }
1811    if( rc!=SQLITE_OK ){
1812      sqlite3DbFree(db, zMaster);
1813      return rc;
1814    }
1815
1816    /* Write the name of each database file in the transaction into the new
1817    ** master journal file. If an error occurs at this point close
1818    ** and delete the master journal file. All the individual journal files
1819    ** still have 'null' as the master journal pointer, so they will roll
1820    ** back independently if a failure occurs.
1821    */
1822    for(i=0; i<db->nDb; i++){
1823      Btree *pBt = db->aDb[i].pBt;
1824      if( sqlite3BtreeIsInTrans(pBt) ){
1825        char const *zFile = sqlite3BtreeGetJournalname(pBt);
1826        if( zFile==0 ){
1827          continue;  /* Ignore TEMP and :memory: databases */
1828        }
1829        assert( zFile[0]!=0 );
1830        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
1831          needSync = 1;
1832        }
1833        rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
1834        offset += sqlite3Strlen30(zFile)+1;
1835        if( rc!=SQLITE_OK ){
1836          sqlite3OsCloseFree(pMaster);
1837          sqlite3OsDelete(pVfs, zMaster, 0);
1838          sqlite3DbFree(db, zMaster);
1839          return rc;
1840        }
1841      }
1842    }
1843
1844    /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
1845    ** flag is set this is not required.
1846    */
1847    if( needSync
1848     && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
1849     && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
1850    ){
1851      sqlite3OsCloseFree(pMaster);
1852      sqlite3OsDelete(pVfs, zMaster, 0);
1853      sqlite3DbFree(db, zMaster);
1854      return rc;
1855    }
1856
1857    /* Sync all the db files involved in the transaction. The same call
1858    ** sets the master journal pointer in each individual journal. If
1859    ** an error occurs here, do not delete the master journal file.
1860    **
1861    ** If the error occurs during the first call to
1862    ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
1863    ** master journal file will be orphaned. But we cannot delete it,
1864    ** in case the master journal file name was written into the journal
1865    ** file before the failure occurred.
1866    */
1867    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1868      Btree *pBt = db->aDb[i].pBt;
1869      if( pBt ){
1870        rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
1871      }
1872    }
1873    sqlite3OsCloseFree(pMaster);
1874    assert( rc!=SQLITE_BUSY );
1875    if( rc!=SQLITE_OK ){
1876      sqlite3DbFree(db, zMaster);
1877      return rc;
1878    }
1879
1880    /* Delete the master journal file. This commits the transaction. After
1881    ** doing this the directory is synced again before any individual
1882    ** transaction files are deleted.
1883    */
1884    rc = sqlite3OsDelete(pVfs, zMaster, 1);
1885    sqlite3DbFree(db, zMaster);
1886    zMaster = 0;
1887    if( rc ){
1888      return rc;
1889    }
1890
1891    /* All files and directories have already been synced, so the following
1892    ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
1893    ** deleting or truncating journals. If something goes wrong while
1894    ** this is happening we don't really care. The integrity of the
1895    ** transaction is already guaranteed, but some stray 'cold' journals
1896    ** may be lying around. Returning an error code won't help matters.
1897    */
1898    disable_simulated_io_errors();
1899    sqlite3BeginBenignMalloc();
1900    for(i=0; i<db->nDb; i++){
1901      Btree *pBt = db->aDb[i].pBt;
1902      if( pBt ){
1903        sqlite3BtreeCommitPhaseTwo(pBt, 1);
1904      }
1905    }
1906    sqlite3EndBenignMalloc();
1907    enable_simulated_io_errors();
1908
1909    sqlite3VtabCommit(db);
1910  }
1911#endif
1912
1913  return rc;
1914}
1915
1916/*
1917** This routine checks that the sqlite3.activeVdbeCnt count variable
1918** matches the number of vdbe's in the list sqlite3.pVdbe that are
1919** currently active. An assertion fails if the two counts do not match.
1920** This is an internal self-check only - it is not an essential processing
1921** step.
1922**
1923** This is a no-op if NDEBUG is defined.
1924*/
1925#ifndef NDEBUG
1926static void checkActiveVdbeCnt(sqlite3 *db){
1927  Vdbe *p;
1928  int cnt = 0;
1929  int nWrite = 0;
1930  p = db->pVdbe;
1931  while( p ){
1932    if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
1933      cnt++;
1934      if( p->readOnly==0 ) nWrite++;
1935    }
1936    p = p->pNext;
1937  }
1938  assert( cnt==db->activeVdbeCnt );
1939  assert( nWrite==db->writeVdbeCnt );
1940}
1941#else
1942#define checkActiveVdbeCnt(x)
1943#endif
1944
1945/*
1946** For every Btree that in database connection db which
1947** has been modified, "trip" or invalidate each cursor in
1948** that Btree might have been modified so that the cursor
1949** can never be used again.  This happens when a rollback
1950*** occurs.  We have to trip all the other cursors, even
1951** cursor from other VMs in different database connections,
1952** so that none of them try to use the data at which they
1953** were pointing and which now may have been changed due
1954** to the rollback.
1955**
1956** Remember that a rollback can delete tables complete and
1957** reorder rootpages.  So it is not sufficient just to save
1958** the state of the cursor.  We have to invalidate the cursor
1959** so that it is never used again.
1960*/
1961static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
1962  int i;
1963  for(i=0; i<db->nDb; i++){
1964    Btree *p = db->aDb[i].pBt;
1965    if( p && sqlite3BtreeIsInTrans(p) ){
1966      sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
1967    }
1968  }
1969}
1970
1971/*
1972** If the Vdbe passed as the first argument opened a statement-transaction,
1973** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
1974** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
1975** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
1976** statement transaction is commtted.
1977**
1978** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
1979** Otherwise SQLITE_OK.
1980*/
1981int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
1982  sqlite3 *const db = p->db;
1983  int rc = SQLITE_OK;
1984
1985  /* If p->iStatement is greater than zero, then this Vdbe opened a
1986  ** statement transaction that should be closed here. The only exception
1987  ** is that an IO error may have occured, causing an emergency rollback.
1988  ** In this case (db->nStatement==0), and there is nothing to do.
1989  */
1990  if( db->nStatement && p->iStatement ){
1991    int i;
1992    const int iSavepoint = p->iStatement-1;
1993
1994    assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
1995    assert( db->nStatement>0 );
1996    assert( p->iStatement==(db->nStatement+db->nSavepoint) );
1997
1998    for(i=0; i<db->nDb; i++){
1999      int rc2 = SQLITE_OK;
2000      Btree *pBt = db->aDb[i].pBt;
2001      if( pBt ){
2002        if( eOp==SAVEPOINT_ROLLBACK ){
2003          rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2004        }
2005        if( rc2==SQLITE_OK ){
2006          rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2007        }
2008        if( rc==SQLITE_OK ){
2009          rc = rc2;
2010        }
2011      }
2012    }
2013    db->nStatement--;
2014    p->iStatement = 0;
2015
2016    /* If the statement transaction is being rolled back, also restore the
2017    ** database handles deferred constraint counter to the value it had when
2018    ** the statement transaction was opened.  */
2019    if( eOp==SAVEPOINT_ROLLBACK ){
2020      db->nDeferredCons = p->nStmtDefCons;
2021    }
2022  }
2023  return rc;
2024}
2025
2026/*
2027** This function is called when a transaction opened by the database
2028** handle associated with the VM passed as an argument is about to be
2029** committed. If there are outstanding deferred foreign key constraint
2030** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2031**
2032** If there are outstanding FK violations and this function returns
2033** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
2034** an error message to it. Then return SQLITE_ERROR.
2035*/
2036#ifndef SQLITE_OMIT_FOREIGN_KEY
2037int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2038  sqlite3 *db = p->db;
2039  if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
2040    p->rc = SQLITE_CONSTRAINT;
2041    p->errorAction = OE_Abort;
2042    sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
2043    return SQLITE_ERROR;
2044  }
2045  return SQLITE_OK;
2046}
2047#endif
2048
2049/*
2050** This routine is called the when a VDBE tries to halt.  If the VDBE
2051** has made changes and is in autocommit mode, then commit those
2052** changes.  If a rollback is needed, then do the rollback.
2053**
2054** This routine is the only way to move the state of a VM from
2055** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
2056** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2057**
2058** Return an error code.  If the commit could not complete because of
2059** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
2060** means the close did not happen and needs to be repeated.
2061*/
2062int sqlite3VdbeHalt(Vdbe *p){
2063  int rc;                         /* Used to store transient return codes */
2064  sqlite3 *db = p->db;
2065
2066  /* This function contains the logic that determines if a statement or
2067  ** transaction will be committed or rolled back as a result of the
2068  ** execution of this virtual machine.
2069  **
2070  ** If any of the following errors occur:
2071  **
2072  **     SQLITE_NOMEM
2073  **     SQLITE_IOERR
2074  **     SQLITE_FULL
2075  **     SQLITE_INTERRUPT
2076  **
2077  ** Then the internal cache might have been left in an inconsistent
2078  ** state.  We need to rollback the statement transaction, if there is
2079  ** one, or the complete transaction if there is no statement transaction.
2080  */
2081
2082  if( p->db->mallocFailed ){
2083    p->rc = SQLITE_NOMEM;
2084  }
2085  closeAllCursors(p);
2086  if( p->magic!=VDBE_MAGIC_RUN ){
2087    return SQLITE_OK;
2088  }
2089  checkActiveVdbeCnt(db);
2090
2091  /* No commit or rollback needed if the program never started */
2092  if( p->pc>=0 ){
2093    int mrc;   /* Primary error code from p->rc */
2094    int eStatementOp = 0;
2095    int isSpecialError;            /* Set to true if a 'special' error */
2096
2097    /* Lock all btrees used by the statement */
2098    sqlite3VdbeEnter(p);
2099
2100    /* Check for one of the special errors */
2101    mrc = p->rc & 0xff;
2102    assert( p->rc!=SQLITE_IOERR_BLOCKED );  /* This error no longer exists */
2103    isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2104                     || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2105    if( isSpecialError ){
2106      /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2107      ** no rollback is necessary. Otherwise, at least a savepoint
2108      ** transaction must be rolled back to restore the database to a
2109      ** consistent state.
2110      **
2111      ** Even if the statement is read-only, it is important to perform
2112      ** a statement or transaction rollback operation. If the error
2113      ** occured while writing to the journal, sub-journal or database
2114      ** file as part of an effort to free up cache space (see function
2115      ** pagerStress() in pager.c), the rollback is required to restore
2116      ** the pager to a consistent state.
2117      */
2118      if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2119        if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2120          eStatementOp = SAVEPOINT_ROLLBACK;
2121        }else{
2122          /* We are forced to roll back the active transaction. Before doing
2123          ** so, abort any other statements this handle currently has active.
2124          */
2125          invalidateCursorsOnModifiedBtrees(db);
2126          sqlite3RollbackAll(db);
2127          sqlite3CloseSavepoints(db);
2128          db->autoCommit = 1;
2129        }
2130      }
2131    }
2132
2133    /* Check for immediate foreign key violations. */
2134    if( p->rc==SQLITE_OK ){
2135      sqlite3VdbeCheckFk(p, 0);
2136    }
2137
2138    /* If the auto-commit flag is set and this is the only active writer
2139    ** VM, then we do either a commit or rollback of the current transaction.
2140    **
2141    ** Note: This block also runs if one of the special errors handled
2142    ** above has occurred.
2143    */
2144    if( !sqlite3VtabInSync(db)
2145     && db->autoCommit
2146     && db->writeVdbeCnt==(p->readOnly==0)
2147    ){
2148      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2149        rc = sqlite3VdbeCheckFk(p, 1);
2150        if( rc!=SQLITE_OK ){
2151          if( NEVER(p->readOnly) ){
2152            sqlite3VdbeLeave(p);
2153            return SQLITE_ERROR;
2154          }
2155          rc = SQLITE_CONSTRAINT;
2156        }else{
2157          /* The auto-commit flag is true, the vdbe program was successful
2158          ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2159          ** key constraints to hold up the transaction. This means a commit
2160          ** is required. */
2161          rc = vdbeCommit(db, p);
2162        }
2163        if( rc==SQLITE_BUSY && p->readOnly ){
2164          sqlite3VdbeLeave(p);
2165          return SQLITE_BUSY;
2166        }else if( rc!=SQLITE_OK ){
2167          p->rc = rc;
2168          sqlite3RollbackAll(db);
2169        }else{
2170          db->nDeferredCons = 0;
2171          sqlite3CommitInternalChanges(db);
2172        }
2173      }else{
2174        sqlite3RollbackAll(db);
2175      }
2176      db->nStatement = 0;
2177    }else if( eStatementOp==0 ){
2178      if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2179        eStatementOp = SAVEPOINT_RELEASE;
2180      }else if( p->errorAction==OE_Abort ){
2181        eStatementOp = SAVEPOINT_ROLLBACK;
2182      }else{
2183        invalidateCursorsOnModifiedBtrees(db);
2184        sqlite3RollbackAll(db);
2185        sqlite3CloseSavepoints(db);
2186        db->autoCommit = 1;
2187      }
2188    }
2189
2190    /* If eStatementOp is non-zero, then a statement transaction needs to
2191    ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2192    ** do so. If this operation returns an error, and the current statement
2193    ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2194    ** current statement error code.
2195    **
2196    ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp
2197    ** is SAVEPOINT_ROLLBACK.  But if p->rc==SQLITE_OK then eStatementOp
2198    ** must be SAVEPOINT_RELEASE.  Hence the NEVER(p->rc==SQLITE_OK) in
2199    ** the following code.
2200    */
2201    if( eStatementOp ){
2202      rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2203      if( rc ){
2204        assert( eStatementOp==SAVEPOINT_ROLLBACK );
2205        if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){
2206          p->rc = rc;
2207          sqlite3DbFree(db, p->zErrMsg);
2208          p->zErrMsg = 0;
2209        }
2210        invalidateCursorsOnModifiedBtrees(db);
2211        sqlite3RollbackAll(db);
2212        sqlite3CloseSavepoints(db);
2213        db->autoCommit = 1;
2214      }
2215    }
2216
2217    /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2218    ** has been rolled back, update the database connection change-counter.
2219    */
2220    if( p->changeCntOn ){
2221      if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2222        sqlite3VdbeSetChanges(db, p->nChange);
2223      }else{
2224        sqlite3VdbeSetChanges(db, 0);
2225      }
2226      p->nChange = 0;
2227    }
2228
2229    /* Rollback or commit any schema changes that occurred. */
2230    if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
2231      sqlite3ResetInternalSchema(db, -1);
2232      db->flags = (db->flags | SQLITE_InternChanges);
2233    }
2234
2235    /* Release the locks */
2236    sqlite3VdbeLeave(p);
2237  }
2238
2239  /* We have successfully halted and closed the VM.  Record this fact. */
2240  if( p->pc>=0 ){
2241    db->activeVdbeCnt--;
2242    if( !p->readOnly ){
2243      db->writeVdbeCnt--;
2244    }
2245    assert( db->activeVdbeCnt>=db->writeVdbeCnt );
2246  }
2247  p->magic = VDBE_MAGIC_HALT;
2248  checkActiveVdbeCnt(db);
2249  if( p->db->mallocFailed ){
2250    p->rc = SQLITE_NOMEM;
2251  }
2252
2253  /* If the auto-commit flag is set to true, then any locks that were held
2254  ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2255  ** to invoke any required unlock-notify callbacks.
2256  */
2257  if( db->autoCommit ){
2258    sqlite3ConnectionUnlocked(db);
2259  }
2260
2261  assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
2262  return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2263}
2264
2265
2266/*
2267** Each VDBE holds the result of the most recent sqlite3_step() call
2268** in p->rc.  This routine sets that result back to SQLITE_OK.
2269*/
2270void sqlite3VdbeResetStepResult(Vdbe *p){
2271  p->rc = SQLITE_OK;
2272}
2273
2274/*
2275** Clean up a VDBE after execution but do not delete the VDBE just yet.
2276** Write any error messages into *pzErrMsg.  Return the result code.
2277**
2278** After this routine is run, the VDBE should be ready to be executed
2279** again.
2280**
2281** To look at it another way, this routine resets the state of the
2282** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2283** VDBE_MAGIC_INIT.
2284*/
2285int sqlite3VdbeReset(Vdbe *p){
2286  sqlite3 *db;
2287  db = p->db;
2288
2289  /* If the VM did not run to completion or if it encountered an
2290  ** error, then it might not have been halted properly.  So halt
2291  ** it now.
2292  */
2293  sqlite3VdbeHalt(p);
2294
2295  /* If the VDBE has be run even partially, then transfer the error code
2296  ** and error message from the VDBE into the main database structure.  But
2297  ** if the VDBE has just been set to run but has not actually executed any
2298  ** instructions yet, leave the main database error information unchanged.
2299  */
2300  if( p->pc>=0 ){
2301    if( p->zErrMsg ){
2302      sqlite3BeginBenignMalloc();
2303      sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
2304      sqlite3EndBenignMalloc();
2305      db->errCode = p->rc;
2306      sqlite3DbFree(db, p->zErrMsg);
2307      p->zErrMsg = 0;
2308    }else if( p->rc ){
2309      sqlite3Error(db, p->rc, 0);
2310    }else{
2311      sqlite3Error(db, SQLITE_OK, 0);
2312    }
2313    if( p->runOnlyOnce ) p->expired = 1;
2314  }else if( p->rc && p->expired ){
2315    /* The expired flag was set on the VDBE before the first call
2316    ** to sqlite3_step(). For consistency (since sqlite3_step() was
2317    ** called), set the database error in this case as well.
2318    */
2319    sqlite3Error(db, p->rc, 0);
2320    sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2321    sqlite3DbFree(db, p->zErrMsg);
2322    p->zErrMsg = 0;
2323  }
2324
2325  /* Reclaim all memory used by the VDBE
2326  */
2327  Cleanup(p);
2328
2329  /* Save profiling information from this VDBE run.
2330  */
2331#ifdef VDBE_PROFILE
2332  {
2333    FILE *out = fopen("vdbe_profile.out", "a");
2334    if( out ){
2335      int i;
2336      fprintf(out, "---- ");
2337      for(i=0; i<p->nOp; i++){
2338        fprintf(out, "%02x", p->aOp[i].opcode);
2339      }
2340      fprintf(out, "\n");
2341      for(i=0; i<p->nOp; i++){
2342        fprintf(out, "%6d %10lld %8lld ",
2343           p->aOp[i].cnt,
2344           p->aOp[i].cycles,
2345           p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2346        );
2347        sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2348      }
2349      fclose(out);
2350    }
2351  }
2352#endif
2353  p->magic = VDBE_MAGIC_INIT;
2354  return p->rc & db->errMask;
2355}
2356
2357/*
2358** Clean up and delete a VDBE after execution.  Return an integer which is
2359** the result code.  Write any error message text into *pzErrMsg.
2360*/
2361int sqlite3VdbeFinalize(Vdbe *p){
2362  int rc = SQLITE_OK;
2363  if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2364    rc = sqlite3VdbeReset(p);
2365    assert( (rc & p->db->errMask)==rc );
2366  }
2367  sqlite3VdbeDelete(p);
2368  return rc;
2369}
2370
2371/*
2372** Call the destructor for each auxdata entry in pVdbeFunc for which
2373** the corresponding bit in mask is clear.  Auxdata entries beyond 31
2374** are always destroyed.  To destroy all auxdata entries, call this
2375** routine with mask==0.
2376*/
2377void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
2378  int i;
2379  for(i=0; i<pVdbeFunc->nAux; i++){
2380    struct AuxData *pAux = &pVdbeFunc->apAux[i];
2381    if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
2382      if( pAux->xDelete ){
2383        pAux->xDelete(pAux->pAux);
2384      }
2385      pAux->pAux = 0;
2386    }
2387  }
2388}
2389
2390/*
2391** Free all memory associated with the Vdbe passed as the second argument.
2392** The difference between this function and sqlite3VdbeDelete() is that
2393** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2394** the database connection.
2395*/
2396void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
2397  SubProgram *pSub, *pNext;
2398  assert( p->db==0 || p->db==db );
2399  releaseMemArray(p->aVar, p->nVar);
2400  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2401  for(pSub=p->pProgram; pSub; pSub=pNext){
2402    pNext = pSub->pNext;
2403    vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2404    sqlite3DbFree(db, pSub);
2405  }
2406  vdbeFreeOpArray(db, p->aOp, p->nOp);
2407  sqlite3DbFree(db, p->aLabel);
2408  sqlite3DbFree(db, p->aColName);
2409  sqlite3DbFree(db, p->zSql);
2410  sqlite3DbFree(db, p->pFree);
2411  sqlite3DbFree(db, p);
2412}
2413
2414/*
2415** Delete an entire VDBE.
2416*/
2417void sqlite3VdbeDelete(Vdbe *p){
2418  sqlite3 *db;
2419
2420  if( NEVER(p==0) ) return;
2421  db = p->db;
2422  if( p->pPrev ){
2423    p->pPrev->pNext = p->pNext;
2424  }else{
2425    assert( db->pVdbe==p );
2426    db->pVdbe = p->pNext;
2427  }
2428  if( p->pNext ){
2429    p->pNext->pPrev = p->pPrev;
2430  }
2431  p->magic = VDBE_MAGIC_DEAD;
2432  p->db = 0;
2433  sqlite3VdbeDeleteObject(db, p);
2434}
2435
2436/*
2437** Make sure the cursor p is ready to read or write the row to which it
2438** was last positioned.  Return an error code if an OOM fault or I/O error
2439** prevents us from positioning the cursor to its correct position.
2440**
2441** If a MoveTo operation is pending on the given cursor, then do that
2442** MoveTo now.  If no move is pending, check to see if the row has been
2443** deleted out from under the cursor and if it has, mark the row as
2444** a NULL row.
2445**
2446** If the cursor is already pointing to the correct row and that row has
2447** not been deleted out from under the cursor, then this routine is a no-op.
2448*/
2449int sqlite3VdbeCursorMoveto(VdbeCursor *p){
2450  if( p->deferredMoveto ){
2451    int res, rc;
2452#ifdef SQLITE_TEST
2453    extern int sqlite3_search_count;
2454#endif
2455    assert( p->isTable );
2456    rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2457    if( rc ) return rc;
2458    p->lastRowid = p->movetoTarget;
2459    if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2460    p->rowidIsValid = 1;
2461#ifdef SQLITE_TEST
2462    sqlite3_search_count++;
2463#endif
2464    p->deferredMoveto = 0;
2465    p->cacheStatus = CACHE_STALE;
2466  }else if( ALWAYS(p->pCursor) ){
2467    int hasMoved;
2468    int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
2469    if( rc ) return rc;
2470    if( hasMoved ){
2471      p->cacheStatus = CACHE_STALE;
2472      p->nullRow = 1;
2473    }
2474  }
2475  return SQLITE_OK;
2476}
2477
2478/*
2479** The following functions:
2480**
2481** sqlite3VdbeSerialType()
2482** sqlite3VdbeSerialTypeLen()
2483** sqlite3VdbeSerialLen()
2484** sqlite3VdbeSerialPut()
2485** sqlite3VdbeSerialGet()
2486**
2487** encapsulate the code that serializes values for storage in SQLite
2488** data and index records. Each serialized value consists of a
2489** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2490** integer, stored as a varint.
2491**
2492** In an SQLite index record, the serial type is stored directly before
2493** the blob of data that it corresponds to. In a table record, all serial
2494** types are stored at the start of the record, and the blobs of data at
2495** the end. Hence these functions allow the caller to handle the
2496** serial-type and data blob seperately.
2497**
2498** The following table describes the various storage classes for data:
2499**
2500**   serial type        bytes of data      type
2501**   --------------     ---------------    ---------------
2502**      0                     0            NULL
2503**      1                     1            signed integer
2504**      2                     2            signed integer
2505**      3                     3            signed integer
2506**      4                     4            signed integer
2507**      5                     6            signed integer
2508**      6                     8            signed integer
2509**      7                     8            IEEE float
2510**      8                     0            Integer constant 0
2511**      9                     0            Integer constant 1
2512**     10,11                               reserved for expansion
2513**    N>=12 and even       (N-12)/2        BLOB
2514**    N>=13 and odd        (N-13)/2        text
2515**
2516** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
2517** of SQLite will not understand those serial types.
2518*/
2519
2520/*
2521** Return the serial-type for the value stored in pMem.
2522*/
2523u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
2524  int flags = pMem->flags;
2525  int n;
2526
2527  if( flags&MEM_Null ){
2528    return 0;
2529  }
2530  if( flags&MEM_Int ){
2531    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
2532#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
2533    i64 i = pMem->u.i;
2534    u64 u;
2535    if( file_format>=4 && (i&1)==i ){
2536      return 8+(u32)i;
2537    }
2538    if( i<0 ){
2539      if( i<(-MAX_6BYTE) ) return 6;
2540      /* Previous test prevents:  u = -(-9223372036854775808) */
2541      u = -i;
2542    }else{
2543      u = i;
2544    }
2545    if( u<=127 ) return 1;
2546    if( u<=32767 ) return 2;
2547    if( u<=8388607 ) return 3;
2548    if( u<=2147483647 ) return 4;
2549    if( u<=MAX_6BYTE ) return 5;
2550    return 6;
2551  }
2552  if( flags&MEM_Real ){
2553    return 7;
2554  }
2555  assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
2556  n = pMem->n;
2557  if( flags & MEM_Zero ){
2558    n += pMem->u.nZero;
2559  }
2560  assert( n>=0 );
2561  return ((n*2) + 12 + ((flags&MEM_Str)!=0));
2562}
2563
2564/*
2565** Return the length of the data corresponding to the supplied serial-type.
2566*/
2567u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
2568  if( serial_type>=12 ){
2569    return (serial_type-12)/2;
2570  }else{
2571    static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
2572    return aSize[serial_type];
2573  }
2574}
2575
2576/*
2577** If we are on an architecture with mixed-endian floating
2578** points (ex: ARM7) then swap the lower 4 bytes with the
2579** upper 4 bytes.  Return the result.
2580**
2581** For most architectures, this is a no-op.
2582**
2583** (later):  It is reported to me that the mixed-endian problem
2584** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
2585** that early versions of GCC stored the two words of a 64-bit
2586** float in the wrong order.  And that error has been propagated
2587** ever since.  The blame is not necessarily with GCC, though.
2588** GCC might have just copying the problem from a prior compiler.
2589** I am also told that newer versions of GCC that follow a different
2590** ABI get the byte order right.
2591**
2592** Developers using SQLite on an ARM7 should compile and run their
2593** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
2594** enabled, some asserts below will ensure that the byte order of
2595** floating point values is correct.
2596**
2597** (2007-08-30)  Frank van Vugt has studied this problem closely
2598** and has send his findings to the SQLite developers.  Frank
2599** writes that some Linux kernels offer floating point hardware
2600** emulation that uses only 32-bit mantissas instead of a full
2601** 48-bits as required by the IEEE standard.  (This is the
2602** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
2603** byte swapping becomes very complicated.  To avoid problems,
2604** the necessary byte swapping is carried out using a 64-bit integer
2605** rather than a 64-bit float.  Frank assures us that the code here
2606** works for him.  We, the developers, have no way to independently
2607** verify this, but Frank seems to know what he is talking about
2608** so we trust him.
2609*/
2610#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
2611static u64 floatSwap(u64 in){
2612  union {
2613    u64 r;
2614    u32 i[2];
2615  } u;
2616  u32 t;
2617
2618  u.r = in;
2619  t = u.i[0];
2620  u.i[0] = u.i[1];
2621  u.i[1] = t;
2622  return u.r;
2623}
2624# define swapMixedEndianFloat(X)  X = floatSwap(X)
2625#else
2626# define swapMixedEndianFloat(X)
2627#endif
2628
2629/*
2630** Write the serialized data blob for the value stored in pMem into
2631** buf. It is assumed that the caller has allocated sufficient space.
2632** Return the number of bytes written.
2633**
2634** nBuf is the amount of space left in buf[].  nBuf must always be
2635** large enough to hold the entire field.  Except, if the field is
2636** a blob with a zero-filled tail, then buf[] might be just the right
2637** size to hold everything except for the zero-filled tail.  If buf[]
2638** is only big enough to hold the non-zero prefix, then only write that
2639** prefix into buf[].  But if buf[] is large enough to hold both the
2640** prefix and the tail then write the prefix and set the tail to all
2641** zeros.
2642**
2643** Return the number of bytes actually written into buf[].  The number
2644** of bytes in the zero-filled tail is included in the return value only
2645** if those bytes were zeroed in buf[].
2646*/
2647u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
2648  u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
2649  u32 len;
2650
2651  /* Integer and Real */
2652  if( serial_type<=7 && serial_type>0 ){
2653    u64 v;
2654    u32 i;
2655    if( serial_type==7 ){
2656      assert( sizeof(v)==sizeof(pMem->r) );
2657      memcpy(&v, &pMem->r, sizeof(v));
2658      swapMixedEndianFloat(v);
2659    }else{
2660      v = pMem->u.i;
2661    }
2662    len = i = sqlite3VdbeSerialTypeLen(serial_type);
2663    assert( len<=(u32)nBuf );
2664    while( i-- ){
2665      buf[i] = (u8)(v&0xFF);
2666      v >>= 8;
2667    }
2668    return len;
2669  }
2670
2671  /* String or blob */
2672  if( serial_type>=12 ){
2673    assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
2674             == (int)sqlite3VdbeSerialTypeLen(serial_type) );
2675    assert( pMem->n<=nBuf );
2676    len = pMem->n;
2677    memcpy(buf, pMem->z, len);
2678    if( pMem->flags & MEM_Zero ){
2679      len += pMem->u.nZero;
2680      assert( nBuf>=0 );
2681      if( len > (u32)nBuf ){
2682        len = (u32)nBuf;
2683      }
2684      memset(&buf[pMem->n], 0, len-pMem->n);
2685    }
2686    return len;
2687  }
2688
2689  /* NULL or constants 0 or 1 */
2690  return 0;
2691}
2692
2693/*
2694** Deserialize the data blob pointed to by buf as serial type serial_type
2695** and store the result in pMem.  Return the number of bytes read.
2696*/
2697u32 sqlite3VdbeSerialGet(
2698  const unsigned char *buf,     /* Buffer to deserialize from */
2699  u32 serial_type,              /* Serial type to deserialize */
2700  Mem *pMem                     /* Memory cell to write value into */
2701){
2702  switch( serial_type ){
2703    case 10:   /* Reserved for future use */
2704    case 11:   /* Reserved for future use */
2705    case 0: {  /* NULL */
2706      pMem->flags = MEM_Null;
2707      break;
2708    }
2709    case 1: { /* 1-byte signed integer */
2710      pMem->u.i = (signed char)buf[0];
2711      pMem->flags = MEM_Int;
2712      return 1;
2713    }
2714    case 2: { /* 2-byte signed integer */
2715      pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
2716      pMem->flags = MEM_Int;
2717      return 2;
2718    }
2719    case 3: { /* 3-byte signed integer */
2720      pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
2721      pMem->flags = MEM_Int;
2722      return 3;
2723    }
2724    case 4: { /* 4-byte signed integer */
2725      pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2726      pMem->flags = MEM_Int;
2727      return 4;
2728    }
2729    case 5: { /* 6-byte signed integer */
2730      u64 x = (((signed char)buf[0])<<8) | buf[1];
2731      u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
2732      x = (x<<32) | y;
2733      pMem->u.i = *(i64*)&x;
2734      pMem->flags = MEM_Int;
2735      return 6;
2736    }
2737    case 6:   /* 8-byte signed integer */
2738    case 7: { /* IEEE floating point */
2739      u64 x;
2740      u32 y;
2741#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
2742      /* Verify that integers and floating point values use the same
2743      ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
2744      ** defined that 64-bit floating point values really are mixed
2745      ** endian.
2746      */
2747      static const u64 t1 = ((u64)0x3ff00000)<<32;
2748      static const double r1 = 1.0;
2749      u64 t2 = t1;
2750      swapMixedEndianFloat(t2);
2751      assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
2752#endif
2753
2754      x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2755      y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
2756      x = (x<<32) | y;
2757      if( serial_type==6 ){
2758        pMem->u.i = *(i64*)&x;
2759        pMem->flags = MEM_Int;
2760      }else{
2761        assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
2762        swapMixedEndianFloat(x);
2763        memcpy(&pMem->r, &x, sizeof(x));
2764        pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
2765      }
2766      return 8;
2767    }
2768    case 8:    /* Integer 0 */
2769    case 9: {  /* Integer 1 */
2770      pMem->u.i = serial_type-8;
2771      pMem->flags = MEM_Int;
2772      return 0;
2773    }
2774    default: {
2775      u32 len = (serial_type-12)/2;
2776      pMem->z = (char *)buf;
2777      pMem->n = len;
2778      pMem->xDel = 0;
2779      if( serial_type&0x01 ){
2780        pMem->flags = MEM_Str | MEM_Ephem;
2781      }else{
2782        pMem->flags = MEM_Blob | MEM_Ephem;
2783      }
2784      return len;
2785    }
2786  }
2787  return 0;
2788}
2789
2790
2791/*
2792** Given the nKey-byte encoding of a record in pKey[], parse the
2793** record into a UnpackedRecord structure.  Return a pointer to
2794** that structure.
2795**
2796** The calling function might provide szSpace bytes of memory
2797** space at pSpace.  This space can be used to hold the returned
2798** VDbeParsedRecord structure if it is large enough.  If it is
2799** not big enough, space is obtained from sqlite3_malloc().
2800**
2801** The returned structure should be closed by a call to
2802** sqlite3VdbeDeleteUnpackedRecord().
2803*/
2804UnpackedRecord *sqlite3VdbeRecordUnpack(
2805  KeyInfo *pKeyInfo,     /* Information about the record format */
2806  int nKey,              /* Size of the binary record */
2807  const void *pKey,      /* The binary record */
2808  char *pSpace,          /* Unaligned space available to hold the object */
2809  int szSpace            /* Size of pSpace[] in bytes */
2810){
2811  const unsigned char *aKey = (const unsigned char *)pKey;
2812  UnpackedRecord *p;  /* The unpacked record that we will return */
2813  int nByte;          /* Memory space needed to hold p, in bytes */
2814  int d;
2815  u32 idx;
2816  u16 u;              /* Unsigned loop counter */
2817  u32 szHdr;
2818  Mem *pMem;
2819  int nOff;           /* Increase pSpace by this much to 8-byte align it */
2820
2821  /*
2822  ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
2823  ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
2824  ** it by.  If pSpace is already 8-byte aligned, nOff should be zero.
2825  */
2826  nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
2827  pSpace += nOff;
2828  szSpace -= nOff;
2829  nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
2830  if( nByte>szSpace ){
2831    p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
2832    if( p==0 ) return 0;
2833    p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
2834  }else{
2835    p = (UnpackedRecord*)pSpace;
2836    p->flags = UNPACKED_NEED_DESTROY;
2837  }
2838  p->pKeyInfo = pKeyInfo;
2839  p->nField = pKeyInfo->nField + 1;
2840  p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
2841  assert( EIGHT_BYTE_ALIGNMENT(pMem) );
2842  idx = getVarint32(aKey, szHdr);
2843  d = szHdr;
2844  u = 0;
2845  while( idx<szHdr && u<p->nField && d<=nKey ){
2846    u32 serial_type;
2847
2848    idx += getVarint32(&aKey[idx], serial_type);
2849    pMem->enc = pKeyInfo->enc;
2850    pMem->db = pKeyInfo->db;
2851    pMem->flags = 0;
2852    pMem->zMalloc = 0;
2853    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
2854    pMem++;
2855    u++;
2856  }
2857  assert( u<=pKeyInfo->nField + 1 );
2858  p->nField = u;
2859  return (void*)p;
2860}
2861
2862/*
2863** This routine destroys a UnpackedRecord object.
2864*/
2865void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
2866  int i;
2867  Mem *pMem;
2868
2869  assert( p!=0 );
2870  assert( p->flags & UNPACKED_NEED_DESTROY );
2871  for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
2872    /* The unpacked record is always constructed by the
2873    ** sqlite3VdbeUnpackRecord() function above, which makes all
2874    ** strings and blobs static.  And none of the elements are
2875    ** ever transformed, so there is never anything to delete.
2876    */
2877    if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
2878  }
2879  if( p->flags & UNPACKED_NEED_FREE ){
2880    sqlite3DbFree(p->pKeyInfo->db, p);
2881  }
2882}
2883
2884/*
2885** This function compares the two table rows or index records
2886** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
2887** or positive integer if key1 is less than, equal to or
2888** greater than key2.  The {nKey1, pKey1} key must be a blob
2889** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
2890** key must be a parsed key such as obtained from
2891** sqlite3VdbeParseRecord.
2892**
2893** Key1 and Key2 do not have to contain the same number of fields.
2894** The key with fewer fields is usually compares less than the
2895** longer key.  However if the UNPACKED_INCRKEY flags in pPKey2 is set
2896** and the common prefixes are equal, then key1 is less than key2.
2897** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
2898** equal, then the keys are considered to be equal and
2899** the parts beyond the common prefix are ignored.
2900**
2901** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
2902** the header of pKey1 is ignored.  It is assumed that pKey1 is
2903** an index key, and thus ends with a rowid value.  The last byte
2904** of the header will therefore be the serial type of the rowid:
2905** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
2906** The serial type of the final rowid will always be a single byte.
2907** By ignoring this last byte of the header, we force the comparison
2908** to ignore the rowid at the end of key1.
2909*/
2910int sqlite3VdbeRecordCompare(
2911  int nKey1, const void *pKey1, /* Left key */
2912  UnpackedRecord *pPKey2        /* Right key */
2913){
2914  int d1;            /* Offset into aKey[] of next data element */
2915  u32 idx1;          /* Offset into aKey[] of next header element */
2916  u32 szHdr1;        /* Number of bytes in header */
2917  int i = 0;
2918  int nField;
2919  int rc = 0;
2920  const unsigned char *aKey1 = (const unsigned char *)pKey1;
2921  KeyInfo *pKeyInfo;
2922  Mem mem1;
2923
2924  pKeyInfo = pPKey2->pKeyInfo;
2925  mem1.enc = pKeyInfo->enc;
2926  mem1.db = pKeyInfo->db;
2927  /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
2928  VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
2929
2930  /* Compilers may complain that mem1.u.i is potentially uninitialized.
2931  ** We could initialize it, as shown here, to silence those complaints.
2932  ** But in fact, mem1.u.i will never actually be used initialized, and doing
2933  ** the unnecessary initialization has a measurable negative performance
2934  ** impact, since this routine is a very high runner.  And so, we choose
2935  ** to ignore the compiler warnings and leave this variable uninitialized.
2936  */
2937  /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
2938
2939  idx1 = getVarint32(aKey1, szHdr1);
2940  d1 = szHdr1;
2941  if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
2942    szHdr1--;
2943  }
2944  nField = pKeyInfo->nField;
2945  while( idx1<szHdr1 && i<pPKey2->nField ){
2946    u32 serial_type1;
2947
2948    /* Read the serial types for the next element in each key. */
2949    idx1 += getVarint32( aKey1+idx1, serial_type1 );
2950    if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
2951
2952    /* Extract the values to be compared.
2953    */
2954    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
2955
2956    /* Do the comparison
2957    */
2958    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
2959                           i<nField ? pKeyInfo->aColl[i] : 0);
2960    if( rc!=0 ){
2961      assert( mem1.zMalloc==0 );  /* See comment below */
2962
2963      /* Invert the result if we are using DESC sort order. */
2964      if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){
2965        rc = -rc;
2966      }
2967
2968      /* If the PREFIX_SEARCH flag is set and all fields except the final
2969      ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
2970      ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
2971      ** This is used by the OP_IsUnique opcode.
2972      */
2973      if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
2974        assert( idx1==szHdr1 && rc );
2975        assert( mem1.flags & MEM_Int );
2976        pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
2977        pPKey2->rowid = mem1.u.i;
2978      }
2979
2980      return rc;
2981    }
2982    i++;
2983  }
2984
2985  /* No memory allocation is ever used on mem1.  Prove this using
2986  ** the following assert().  If the assert() fails, it indicates a
2987  ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
2988  */
2989  assert( mem1.zMalloc==0 );
2990
2991  /* rc==0 here means that one of the keys ran out of fields and
2992  ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
2993  ** flag is set, then break the tie by treating key2 as larger.
2994  ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
2995  ** are considered to be equal.  Otherwise, the longer key is the
2996  ** larger.  As it happens, the pPKey2 will always be the longer
2997  ** if there is a difference.
2998  */
2999  assert( rc==0 );
3000  if( pPKey2->flags & UNPACKED_INCRKEY ){
3001    rc = -1;
3002  }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
3003    /* Leave rc==0 */
3004  }else if( idx1<szHdr1 ){
3005    rc = 1;
3006  }
3007  return rc;
3008}
3009
3010
3011/*
3012** pCur points at an index entry created using the OP_MakeRecord opcode.
3013** Read the rowid (the last field in the record) and store it in *rowid.
3014** Return SQLITE_OK if everything works, or an error code otherwise.
3015**
3016** pCur might be pointing to text obtained from a corrupt database file.
3017** So the content cannot be trusted.  Do appropriate checks on the content.
3018*/
3019int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
3020  i64 nCellKey = 0;
3021  int rc;
3022  u32 szHdr;        /* Size of the header */
3023  u32 typeRowid;    /* Serial type of the rowid */
3024  u32 lenRowid;     /* Size of the rowid */
3025  Mem m, v;
3026
3027  UNUSED_PARAMETER(db);
3028
3029  /* Get the size of the index entry.  Only indices entries of less
3030  ** than 2GiB are support - anything large must be database corruption.
3031  ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
3032  ** this code can safely assume that nCellKey is 32-bits
3033  */
3034  assert( sqlite3BtreeCursorIsValid(pCur) );
3035  rc = sqlite3BtreeKeySize(pCur, &nCellKey);
3036  assert( rc==SQLITE_OK );     /* pCur is always valid so KeySize cannot fail */
3037  assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
3038
3039  /* Read in the complete content of the index entry */
3040  memset(&m, 0, sizeof(m));
3041  rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
3042  if( rc ){
3043    return rc;
3044  }
3045
3046  /* The index entry must begin with a header size */
3047  (void)getVarint32((u8*)m.z, szHdr);
3048  testcase( szHdr==3 );
3049  testcase( szHdr==m.n );
3050  if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
3051    goto idx_rowid_corruption;
3052  }
3053
3054  /* The last field of the index should be an integer - the ROWID.
3055  ** Verify that the last entry really is an integer. */
3056  (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
3057  testcase( typeRowid==1 );
3058  testcase( typeRowid==2 );
3059  testcase( typeRowid==3 );
3060  testcase( typeRowid==4 );
3061  testcase( typeRowid==5 );
3062  testcase( typeRowid==6 );
3063  testcase( typeRowid==8 );
3064  testcase( typeRowid==9 );
3065  if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
3066    goto idx_rowid_corruption;
3067  }
3068  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
3069  testcase( (u32)m.n==szHdr+lenRowid );
3070  if( unlikely((u32)m.n<szHdr+lenRowid) ){
3071    goto idx_rowid_corruption;
3072  }
3073
3074  /* Fetch the integer off the end of the index record */
3075  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
3076  *rowid = v.u.i;
3077  sqlite3VdbeMemRelease(&m);
3078  return SQLITE_OK;
3079
3080  /* Jump here if database corruption is detected after m has been
3081  ** allocated.  Free the m object and return SQLITE_CORRUPT. */
3082idx_rowid_corruption:
3083  testcase( m.zMalloc!=0 );
3084  sqlite3VdbeMemRelease(&m);
3085  return SQLITE_CORRUPT_BKPT;
3086}
3087
3088/*
3089** Compare the key of the index entry that cursor pC is pointing to against
3090** the key string in pUnpacked.  Write into *pRes a number
3091** that is negative, zero, or positive if pC is less than, equal to,
3092** or greater than pUnpacked.  Return SQLITE_OK on success.
3093**
3094** pUnpacked is either created without a rowid or is truncated so that it
3095** omits the rowid at the end.  The rowid at the end of the index entry
3096** is ignored as well.  Hence, this routine only compares the prefixes
3097** of the keys prior to the final rowid, not the entire key.
3098*/
3099int sqlite3VdbeIdxKeyCompare(
3100  VdbeCursor *pC,             /* The cursor to compare against */
3101  UnpackedRecord *pUnpacked,  /* Unpacked version of key to compare against */
3102  int *res                    /* Write the comparison result here */
3103){
3104  i64 nCellKey = 0;
3105  int rc;
3106  BtCursor *pCur = pC->pCursor;
3107  Mem m;
3108
3109  assert( sqlite3BtreeCursorIsValid(pCur) );
3110  rc = sqlite3BtreeKeySize(pCur, &nCellKey);
3111  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
3112  /* nCellKey will always be between 0 and 0xffffffff because of the say
3113  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
3114  if( nCellKey<=0 || nCellKey>0x7fffffff ){
3115    *res = 0;
3116    return SQLITE_CORRUPT_BKPT;
3117  }
3118  memset(&m, 0, sizeof(m));
3119  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
3120  if( rc ){
3121    return rc;
3122  }
3123  assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
3124  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
3125  sqlite3VdbeMemRelease(&m);
3126  return SQLITE_OK;
3127}
3128
3129/*
3130** This routine sets the value to be returned by subsequent calls to
3131** sqlite3_changes() on the database handle 'db'.
3132*/
3133void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
3134  assert( sqlite3_mutex_held(db->mutex) );
3135  db->nChange = nChange;
3136  db->nTotalChange += nChange;
3137}
3138
3139/*
3140** Set a flag in the vdbe to update the change counter when it is finalised
3141** or reset.
3142*/
3143void sqlite3VdbeCountChanges(Vdbe *v){
3144  v->changeCntOn = 1;
3145}
3146
3147/*
3148** Mark every prepared statement associated with a database connection
3149** as expired.
3150**
3151** An expired statement means that recompilation of the statement is
3152** recommend.  Statements expire when things happen that make their
3153** programs obsolete.  Removing user-defined functions or collating
3154** sequences, or changing an authorization function are the types of
3155** things that make prepared statements obsolete.
3156*/
3157void sqlite3ExpirePreparedStatements(sqlite3 *db){
3158  Vdbe *p;
3159  for(p = db->pVdbe; p; p=p->pNext){
3160    p->expired = 1;
3161  }
3162}
3163
3164/*
3165** Return the database associated with the Vdbe.
3166*/
3167sqlite3 *sqlite3VdbeDb(Vdbe *v){
3168  return v->db;
3169}
3170
3171/*
3172** Return a pointer to an sqlite3_value structure containing the value bound
3173** parameter iVar of VM v. Except, if the value is an SQL NULL, return
3174** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
3175** constants) to the value before returning it.
3176**
3177** The returned value must be freed by the caller using sqlite3ValueFree().
3178*/
3179sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
3180  assert( iVar>0 );
3181  if( v ){
3182    Mem *pMem = &v->aVar[iVar-1];
3183    if( 0==(pMem->flags & MEM_Null) ){
3184      sqlite3_value *pRet = sqlite3ValueNew(v->db);
3185      if( pRet ){
3186        sqlite3VdbeMemCopy((Mem *)pRet, pMem);
3187        sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
3188        sqlite3VdbeMemStoreType((Mem *)pRet);
3189      }
3190      return pRet;
3191    }
3192  }
3193  return 0;
3194}
3195
3196/*
3197** Configure SQL variable iVar so that binding a new value to it signals
3198** to sqlite3_reoptimize() that re-preparing the statement may result
3199** in a better query plan.
3200*/
3201void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
3202  assert( iVar>0 );
3203  if( iVar>32 ){
3204    v->expmask = 0xffffffff;
3205  }else{
3206    v->expmask |= ((u32)1 << (iVar-1));
3207  }
3208}
3209