1/*
2 *  Copyright 2012 The WebRTC Project Authors. All rights reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11// Scopers help you manage ownership of a pointer, helping you easily manage the
12// a pointer within a scope, and automatically destroying the pointer at the
13// end of a scope.  There are two main classes you will use, which correspond
14// to the operators new/delete and new[]/delete[].
15//
16// Example usage (scoped_ptr<T>):
17//   {
18//     scoped_ptr<Foo> foo(new Foo("wee"));
19//   }  // foo goes out of scope, releasing the pointer with it.
20//
21//   {
22//     scoped_ptr<Foo> foo;          // No pointer managed.
23//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
24//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
25//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
26//     foo->Method();                // Foo::Method() called.
27//     foo.get()->Method();          // Foo::Method() called.
28//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
29//                                   // manages a pointer.
30//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
31//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
32//                                   // manages a pointer.
33//   }  // foo wasn't managing a pointer, so nothing was destroyed.
34//
35// Example usage (scoped_ptr<T[]>):
36//   {
37//     scoped_ptr<Foo[]> foo(new Foo[100]);
38//     foo.get()->Method();  // Foo::Method on the 0th element.
39//     foo[10].Method();     // Foo::Method on the 10th element.
40//   }
41//
42// These scopers also implement part of the functionality of C++11 unique_ptr
43// in that they are "movable but not copyable."  You can use the scopers in
44// the parameter and return types of functions to signify ownership transfer
45// in to and out of a function.  When calling a function that has a scoper
46// as the argument type, it must be called with the result of an analogous
47// scoper's Pass() function or another function that generates a temporary;
48// passing by copy will NOT work.  Here is an example using scoped_ptr:
49//
50//   void TakesOwnership(scoped_ptr<Foo> arg) {
51//     // Do something with arg
52//   }
53//   scoped_ptr<Foo> CreateFoo() {
54//     // No need for calling Pass() because we are constructing a temporary
55//     // for the return value.
56//     return scoped_ptr<Foo>(new Foo("new"));
57//   }
58//   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
59//     return arg.Pass();
60//   }
61//
62//   {
63//     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
64//     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
65//     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
66//     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
67//         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
68//   }
69//
70// Notice that if you do not call Pass() when returning from PassThru(), or
71// when invoking TakesOwnership(), the code will not compile because scopers
72// are not copyable; they only implement move semantics which require calling
73// the Pass() function to signify a destructive transfer of state. CreateFoo()
74// is different though because we are constructing a temporary on the return
75// line and thus can avoid needing to call Pass().
76//
77// Pass() properly handles upcast in initialization, i.e. you can use a
78// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
79//
80//   scoped_ptr<Foo> foo(new Foo());
81//   scoped_ptr<FooParent> parent(foo.Pass());
82//
83// PassAs<>() should be used to upcast return value in return statement:
84//
85//   scoped_ptr<Foo> CreateFoo() {
86//     scoped_ptr<FooChild> result(new FooChild());
87//     return result.PassAs<Foo>();
88//   }
89//
90// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
91// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
92
93#ifndef WEBRTC_BASE_SCOPED_PTR_H__
94#define WEBRTC_BASE_SCOPED_PTR_H__
95
96#include <stddef.h>  // for ptrdiff_t
97#include <stdlib.h>  // for free() decl
98
99#include <algorithm>  // For std::swap().
100
101#include "webrtc/base/common.h"  // for ASSERT
102#include "webrtc/base/compile_assert.h"  // for COMPILE_ASSERT
103#include "webrtc/base/move.h"    // for TALK_MOVE_ONLY_TYPE_FOR_CPP_03
104#include "webrtc/base/template_util.h"    // for is_convertible, is_array
105
106#ifdef WEBRTC_WIN
107namespace std { using ::ptrdiff_t; };
108#endif // WEBRTC_WIN
109
110namespace rtc {
111
112// Function object which deletes its parameter, which must be a pointer.
113// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
114// invokes 'delete'. The default deleter for scoped_ptr<T>.
115template <class T>
116struct DefaultDeleter {
117  DefaultDeleter() {}
118  template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
119    // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
120    // if U* is implicitly convertible to T* and U is not an array type.
121    //
122    // Correct implementation should use SFINAE to disable this
123    // constructor. However, since there are no other 1-argument constructors,
124    // using a COMPILE_ASSERT() based on is_convertible<> and requiring
125    // complete types is simpler and will cause compile failures for equivalent
126    // misuses.
127    //
128    // Note, the is_convertible<U*, T*> check also ensures that U is not an
129    // array. T is guaranteed to be a non-array, so any U* where U is an array
130    // cannot convert to T*.
131    enum { T_must_be_complete = sizeof(T) };
132    enum { U_must_be_complete = sizeof(U) };
133    COMPILE_ASSERT((rtc::is_convertible<U*, T*>::value),
134                   U_ptr_must_implicitly_convert_to_T_ptr);
135  }
136  inline void operator()(T* ptr) const {
137    enum { type_must_be_complete = sizeof(T) };
138    delete ptr;
139  }
140};
141
142// Specialization of DefaultDeleter for array types.
143template <class T>
144struct DefaultDeleter<T[]> {
145  inline void operator()(T* ptr) const {
146    enum { type_must_be_complete = sizeof(T) };
147    delete[] ptr;
148  }
149
150 private:
151  // Disable this operator for any U != T because it is undefined to execute
152  // an array delete when the static type of the array mismatches the dynamic
153  // type.
154  //
155  // References:
156  //   C++98 [expr.delete]p3
157  //   http://cplusplus.github.com/LWG/lwg-defects.html#938
158  template <typename U> void operator()(U* array) const;
159};
160
161template <class T, int n>
162struct DefaultDeleter<T[n]> {
163  // Never allow someone to declare something like scoped_ptr<int[10]>.
164  COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
165};
166
167// Function object which invokes 'free' on its parameter, which must be
168// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
169//
170// scoped_ptr<int, rtc::FreeDeleter> foo_ptr(
171//     static_cast<int*>(malloc(sizeof(int))));
172struct FreeDeleter {
173  inline void operator()(void* ptr) const {
174    free(ptr);
175  }
176};
177
178namespace internal {
179
180// Minimal implementation of the core logic of scoped_ptr, suitable for
181// reuse in both scoped_ptr and its specializations.
182template <class T, class D>
183class scoped_ptr_impl {
184 public:
185  explicit scoped_ptr_impl(T* p) : data_(p) { }
186
187  // Initializer for deleters that have data parameters.
188  scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
189
190  // Templated constructor that destructively takes the value from another
191  // scoped_ptr_impl.
192  template <typename U, typename V>
193  scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
194      : data_(other->release(), other->get_deleter()) {
195    // We do not support move-only deleters.  We could modify our move
196    // emulation to have rtc::subtle::move() and
197    // rtc::subtle::forward()
198    // functions that are imperfect emulations of their C++11 equivalents,
199    // but until there's a requirement, just assume deleters are copyable.
200  }
201
202  template <typename U, typename V>
203  void TakeState(scoped_ptr_impl<U, V>* other) {
204    // See comment in templated constructor above regarding lack of support
205    // for move-only deleters.
206    reset(other->release());
207    get_deleter() = other->get_deleter();
208  }
209
210  ~scoped_ptr_impl() {
211    if (data_.ptr != NULL) {
212      // Not using get_deleter() saves one function call in non-optimized
213      // builds.
214      static_cast<D&>(data_)(data_.ptr);
215    }
216  }
217
218  void reset(T* p) {
219    // This is a self-reset, which is no longer allowed: http://crbug.com/162971
220    if (p != NULL && p == data_.ptr)
221      abort();
222
223    // Note that running data_.ptr = p can lead to undefined behavior if
224    // get_deleter()(get()) deletes this. In order to pevent this, reset()
225    // should update the stored pointer before deleting its old value.
226    //
227    // However, changing reset() to use that behavior may cause current code to
228    // break in unexpected ways. If the destruction of the owned object
229    // dereferences the scoped_ptr when it is destroyed by a call to reset(),
230    // then it will incorrectly dispatch calls to |p| rather than the original
231    // value of |data_.ptr|.
232    //
233    // During the transition period, set the stored pointer to NULL while
234    // deleting the object. Eventually, this safety check will be removed to
235    // prevent the scenario initially described from occuring and
236    // http://crbug.com/176091 can be closed.
237    T* old = data_.ptr;
238    data_.ptr = NULL;
239    if (old != NULL)
240      static_cast<D&>(data_)(old);
241    data_.ptr = p;
242  }
243
244  T* get() const { return data_.ptr; }
245
246  D& get_deleter() { return data_; }
247  const D& get_deleter() const { return data_; }
248
249  void swap(scoped_ptr_impl& p2) {
250    // Standard swap idiom: 'using std::swap' ensures that std::swap is
251    // present in the overload set, but we call swap unqualified so that
252    // any more-specific overloads can be used, if available.
253    using std::swap;
254    swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
255    swap(data_.ptr, p2.data_.ptr);
256  }
257
258  T* release() {
259    T* old_ptr = data_.ptr;
260    data_.ptr = NULL;
261    return old_ptr;
262  }
263
264  T** accept() {
265    reset(NULL);
266    return &(data_.ptr);
267  }
268
269  T** use() {
270    return &(data_.ptr);
271  }
272
273 private:
274  // Needed to allow type-converting constructor.
275  template <typename U, typename V> friend class scoped_ptr_impl;
276
277  // Use the empty base class optimization to allow us to have a D
278  // member, while avoiding any space overhead for it when D is an
279  // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
280  // discussion of this technique.
281  struct Data : public D {
282    explicit Data(T* ptr_in) : ptr(ptr_in) {}
283    Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
284    T* ptr;
285  };
286
287  Data data_;
288
289  DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
290};
291
292}  // namespace internal
293
294// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
295// automatically deletes the pointer it holds (if any).
296// That is, scoped_ptr<T> owns the T object that it points to.
297// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
298// Also like T*, scoped_ptr<T> is thread-compatible, and once you
299// dereference it, you get the thread safety guarantees of T.
300//
301// The size of scoped_ptr is small. On most compilers, when using the
302// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
303// increase the size proportional to whatever state they need to have. See
304// comments inside scoped_ptr_impl<> for details.
305//
306// Current implementation targets having a strict subset of  C++11's
307// unique_ptr<> features. Known deficiencies include not supporting move-only
308// deleteres, function pointers as deleters, and deleters with reference
309// types.
310template <class T, class D = rtc::DefaultDeleter<T> >
311class scoped_ptr {
312  TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
313
314 public:
315  // The element and deleter types.
316  typedef T element_type;
317  typedef D deleter_type;
318
319  // Constructor.  Defaults to initializing with NULL.
320  scoped_ptr() : impl_(NULL) { }
321
322  // Constructor.  Takes ownership of p.
323  explicit scoped_ptr(element_type* p) : impl_(p) { }
324
325  // Constructor.  Allows initialization of a stateful deleter.
326  scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
327
328  // Constructor.  Allows construction from a scoped_ptr rvalue for a
329  // convertible type and deleter.
330  //
331  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
332  // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
333  // has different post-conditions if D is a reference type. Since this
334  // implementation does not support deleters with reference type,
335  // we do not need a separate move constructor allowing us to avoid one
336  // use of SFINAE. You only need to care about this if you modify the
337  // implementation of scoped_ptr.
338  template <typename U, typename V>
339  scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
340    COMPILE_ASSERT(!rtc::is_array<U>::value, U_cannot_be_an_array);
341  }
342
343  // Constructor.  Move constructor for C++03 move emulation of this type.
344  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
345
346  // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
347  // type and deleter.
348  //
349  // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
350  // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
351  // form has different requirements on for move-only Deleters. Since this
352  // implementation does not support move-only Deleters, we do not need a
353  // separate move assignment operator allowing us to avoid one use of SFINAE.
354  // You only need to care about this if you modify the implementation of
355  // scoped_ptr.
356  template <typename U, typename V>
357  scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
358    COMPILE_ASSERT(!rtc::is_array<U>::value, U_cannot_be_an_array);
359    impl_.TakeState(&rhs.impl_);
360    return *this;
361  }
362
363  // Reset.  Deletes the currently owned object, if any.
364  // Then takes ownership of a new object, if given.
365  void reset(element_type* p = NULL) { impl_.reset(p); }
366
367  // Accessors to get the owned object.
368  // operator* and operator-> will assert() if there is no current object.
369  element_type& operator*() const {
370    ASSERT(impl_.get() != NULL);
371    return *impl_.get();
372  }
373  element_type* operator->() const  {
374    ASSERT(impl_.get() != NULL);
375    return impl_.get();
376  }
377  element_type* get() const { return impl_.get(); }
378
379  // Access to the deleter.
380  deleter_type& get_deleter() { return impl_.get_deleter(); }
381  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
382
383  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
384  // implicitly convertible to a real bool (which is dangerous).
385  //
386  // Note that this trick is only safe when the == and != operators
387  // are declared explicitly, as otherwise "scoped_ptr1 ==
388  // scoped_ptr2" will compile but do the wrong thing (i.e., convert
389  // to Testable and then do the comparison).
390 private:
391  typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
392      scoped_ptr::*Testable;
393
394 public:
395  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
396
397  // Comparison operators.
398  // These return whether two scoped_ptr refer to the same object, not just to
399  // two different but equal objects.
400  bool operator==(const element_type* p) const { return impl_.get() == p; }
401  bool operator!=(const element_type* p) const { return impl_.get() != p; }
402
403  // Swap two scoped pointers.
404  void swap(scoped_ptr& p2) {
405    impl_.swap(p2.impl_);
406  }
407
408  // Release a pointer.
409  // The return value is the current pointer held by this object.
410  // If this object holds a NULL pointer, the return value is NULL.
411  // After this operation, this object will hold a NULL pointer,
412  // and will not own the object any more.
413  element_type* release() WARN_UNUSED_RESULT {
414    return impl_.release();
415  }
416
417  // Delete the currently held pointer and return a pointer
418  // to allow overwriting of the current pointer address.
419  element_type** accept() WARN_UNUSED_RESULT {
420    return impl_.accept();
421  }
422
423  // Return a pointer to the current pointer address.
424  element_type** use() WARN_UNUSED_RESULT {
425    return impl_.use();
426  }
427
428  // C++98 doesn't support functions templates with default parameters which
429  // makes it hard to write a PassAs() that understands converting the deleter
430  // while preserving simple calling semantics.
431  //
432  // Until there is a use case for PassAs() with custom deleters, just ignore
433  // the custom deleter.
434  template <typename PassAsType>
435  scoped_ptr<PassAsType> PassAs() {
436    return scoped_ptr<PassAsType>(Pass());
437  }
438
439 private:
440  // Needed to reach into |impl_| in the constructor.
441  template <typename U, typename V> friend class scoped_ptr;
442  rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
443
444  // Forbidden for API compatibility with std::unique_ptr.
445  explicit scoped_ptr(int disallow_construction_from_null);
446
447  // Forbid comparison of scoped_ptr types.  If U != T, it totally
448  // doesn't make sense, and if U == T, it still doesn't make sense
449  // because you should never have the same object owned by two different
450  // scoped_ptrs.
451  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
452  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
453};
454
455template <class T, class D>
456class scoped_ptr<T[], D> {
457  TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
458
459 public:
460  // The element and deleter types.
461  typedef T element_type;
462  typedef D deleter_type;
463
464  // Constructor.  Defaults to initializing with NULL.
465  scoped_ptr() : impl_(NULL) { }
466
467  // Constructor. Stores the given array. Note that the argument's type
468  // must exactly match T*. In particular:
469  // - it cannot be a pointer to a type derived from T, because it is
470  //   inherently unsafe in the general case to access an array through a
471  //   pointer whose dynamic type does not match its static type (eg., if
472  //   T and the derived types had different sizes access would be
473  //   incorrectly calculated). Deletion is also always undefined
474  //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
475  // - it cannot be NULL, because NULL is an integral expression, not a
476  //   pointer to T. Use the no-argument version instead of explicitly
477  //   passing NULL.
478  // - it cannot be const-qualified differently from T per unique_ptr spec
479  //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
480  //   to work around this may use implicit_cast<const T*>().
481  //   However, because of the first bullet in this comment, users MUST
482  //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
483  explicit scoped_ptr(element_type* array) : impl_(array) { }
484
485  // Constructor.  Move constructor for C++03 move emulation of this type.
486  scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
487
488  // operator=.  Move operator= for C++03 move emulation of this type.
489  scoped_ptr& operator=(RValue rhs) {
490    impl_.TakeState(&rhs.object->impl_);
491    return *this;
492  }
493
494  // Reset.  Deletes the currently owned array, if any.
495  // Then takes ownership of a new object, if given.
496  void reset(element_type* array = NULL) { impl_.reset(array); }
497
498  // Accessors to get the owned array.
499  element_type& operator[](size_t i) const {
500    ASSERT(impl_.get() != NULL);
501    return impl_.get()[i];
502  }
503  element_type* get() const { return impl_.get(); }
504
505  // Access to the deleter.
506  deleter_type& get_deleter() { return impl_.get_deleter(); }
507  const deleter_type& get_deleter() const { return impl_.get_deleter(); }
508
509  // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
510  // implicitly convertible to a real bool (which is dangerous).
511 private:
512  typedef rtc::internal::scoped_ptr_impl<element_type, deleter_type>
513      scoped_ptr::*Testable;
514
515 public:
516  operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
517
518  // Comparison operators.
519  // These return whether two scoped_ptr refer to the same object, not just to
520  // two different but equal objects.
521  bool operator==(element_type* array) const { return impl_.get() == array; }
522  bool operator!=(element_type* array) const { return impl_.get() != array; }
523
524  // Swap two scoped pointers.
525  void swap(scoped_ptr& p2) {
526    impl_.swap(p2.impl_);
527  }
528
529  // Release a pointer.
530  // The return value is the current pointer held by this object.
531  // If this object holds a NULL pointer, the return value is NULL.
532  // After this operation, this object will hold a NULL pointer,
533  // and will not own the object any more.
534  element_type* release() WARN_UNUSED_RESULT {
535    return impl_.release();
536  }
537
538  // Delete the currently held pointer and return a pointer
539  // to allow overwriting of the current pointer address.
540  element_type** accept() WARN_UNUSED_RESULT {
541    return impl_.accept();
542  }
543
544  // Return a pointer to the current pointer address.
545  element_type** use() WARN_UNUSED_RESULT {
546    return impl_.use();
547  }
548
549 private:
550  // Force element_type to be a complete type.
551  enum { type_must_be_complete = sizeof(element_type) };
552
553  // Actually hold the data.
554  rtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
555
556  // Disable initialization from any type other than element_type*, by
557  // providing a constructor that matches such an initialization, but is
558  // private and has no definition. This is disabled because it is not safe to
559  // call delete[] on an array whose static type does not match its dynamic
560  // type.
561  template <typename U> explicit scoped_ptr(U* array);
562  explicit scoped_ptr(int disallow_construction_from_null);
563
564  // Disable reset() from any type other than element_type*, for the same
565  // reasons as the constructor above.
566  template <typename U> void reset(U* array);
567  void reset(int disallow_reset_from_null);
568
569  // Forbid comparison of scoped_ptr types.  If U != T, it totally
570  // doesn't make sense, and if U == T, it still doesn't make sense
571  // because you should never have the same object owned by two different
572  // scoped_ptrs.
573  template <class U> bool operator==(scoped_ptr<U> const& p2) const;
574  template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
575};
576
577}  // namespace rtc
578
579// Free functions
580template <class T, class D>
581void swap(rtc::scoped_ptr<T, D>& p1, rtc::scoped_ptr<T, D>& p2) {
582  p1.swap(p2);
583}
584
585template <class T, class D>
586bool operator==(T* p1, const rtc::scoped_ptr<T, D>& p2) {
587  return p1 == p2.get();
588}
589
590template <class T, class D>
591bool operator!=(T* p1, const rtc::scoped_ptr<T, D>& p2) {
592  return p1 != p2.get();
593}
594
595#endif  // #ifndef WEBRTC_BASE_SCOPED_PTR_H__
596