lsan_common.cc revision 5e719a705666988781b9735d62cafc808ade60e2
14f1732b8068970b368a89271158ca29daf25650eztenghui//=-- lsan_common.cc ------------------------------------------------------===//
24f1732b8068970b368a89271158ca29daf25650eztenghui//
34f1732b8068970b368a89271158ca29daf25650eztenghui//                     The LLVM Compiler Infrastructure
44f1732b8068970b368a89271158ca29daf25650eztenghui//
54f1732b8068970b368a89271158ca29daf25650eztenghui// This file is distributed under the University of Illinois Open Source
64f1732b8068970b368a89271158ca29daf25650eztenghui// License. See LICENSE.TXT for details.
74f1732b8068970b368a89271158ca29daf25650eztenghui//
84f1732b8068970b368a89271158ca29daf25650eztenghui//===----------------------------------------------------------------------===//
94f1732b8068970b368a89271158ca29daf25650eztenghui//
104f1732b8068970b368a89271158ca29daf25650eztenghui// This file is a part of LeakSanitizer.
114f1732b8068970b368a89271158ca29daf25650eztenghui// Implementation of common leak checking functionality.
124f1732b8068970b368a89271158ca29daf25650eztenghui//
134f1732b8068970b368a89271158ca29daf25650eztenghui//===----------------------------------------------------------------------===//
144f1732b8068970b368a89271158ca29daf25650eztenghui
154f1732b8068970b368a89271158ca29daf25650eztenghui#include "lsan_common.h"
164f1732b8068970b368a89271158ca29daf25650eztenghui
174f1732b8068970b368a89271158ca29daf25650eztenghui#include "sanitizer_common/sanitizer_common.h"
184f1732b8068970b368a89271158ca29daf25650eztenghui#include "sanitizer_common/sanitizer_flags.h"
194f1732b8068970b368a89271158ca29daf25650eztenghui#include "sanitizer_common/sanitizer_stackdepot.h"
204f1732b8068970b368a89271158ca29daf25650eztenghui#include "sanitizer_common/sanitizer_stacktrace.h"
214f1732b8068970b368a89271158ca29daf25650eztenghui#include "sanitizer_common/sanitizer_stoptheworld.h"
224f1732b8068970b368a89271158ca29daf25650eztenghui
234f1732b8068970b368a89271158ca29daf25650eztenghui#if CAN_SANITIZE_LEAKS
244f1732b8068970b368a89271158ca29daf25650eztenghuinamespace __lsan {
254f1732b8068970b368a89271158ca29daf25650eztenghui
264f1732b8068970b368a89271158ca29daf25650eztenghuiFlags lsan_flags;
274f1732b8068970b368a89271158ca29daf25650eztenghui
284f1732b8068970b368a89271158ca29daf25650eztenghuistatic void InitializeFlags() {
294f1732b8068970b368a89271158ca29daf25650eztenghui  Flags *f = flags();
304f1732b8068970b368a89271158ca29daf25650eztenghui  // Default values.
314f1732b8068970b368a89271158ca29daf25650eztenghui  f->report_blocks = false;
324f1732b8068970b368a89271158ca29daf25650eztenghui  f->resolution = 0;
334f1732b8068970b368a89271158ca29daf25650eztenghui  f->max_leaks = 0;
344f1732b8068970b368a89271158ca29daf25650eztenghui  f->exitcode = 23;
354f1732b8068970b368a89271158ca29daf25650eztenghui  f->use_registers = true;
364f1732b8068970b368a89271158ca29daf25650eztenghui  f->use_globals = true;
374f1732b8068970b368a89271158ca29daf25650eztenghui  f->use_stacks = true;
384f1732b8068970b368a89271158ca29daf25650eztenghui  f->use_tls = true;
3984333e0475bc911adc16417f4ca327c975cf6c36Andreas Huber  f->use_unaligned = false;
404f1732b8068970b368a89271158ca29daf25650eztenghui  f->log_pointers = false;
414f1732b8068970b368a89271158ca29daf25650eztenghui  f->log_threads = false;
424f1732b8068970b368a89271158ca29daf25650eztenghui
434f1732b8068970b368a89271158ca29daf25650eztenghui  const char *options = GetEnv("LSAN_OPTIONS");
444f1732b8068970b368a89271158ca29daf25650eztenghui  if (options) {
454f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->use_registers, "use_registers");
464f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->use_globals, "use_globals");
474f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->use_stacks, "use_stacks");
484f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->use_tls, "use_tls");
494f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->use_unaligned, "use_unaligned");
504f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->report_blocks, "report_blocks");
514f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->resolution, "resolution");
524f1732b8068970b368a89271158ca29daf25650eztenghui    CHECK_GE(&f->resolution, 0);
534f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->max_leaks, "max_leaks");
544f1732b8068970b368a89271158ca29daf25650eztenghui    CHECK_GE(&f->max_leaks, 0);
554f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->log_pointers, "log_pointers");
564f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->log_threads, "log_threads");
574f1732b8068970b368a89271158ca29daf25650eztenghui    ParseFlag(options, &f->exitcode, "exitcode");
584f1732b8068970b368a89271158ca29daf25650eztenghui  }
594f1732b8068970b368a89271158ca29daf25650eztenghui}
604f1732b8068970b368a89271158ca29daf25650eztenghui
614f1732b8068970b368a89271158ca29daf25650eztenghuivoid InitCommonLsan() {
624f1732b8068970b368a89271158ca29daf25650eztenghui  InitializeFlags();
634f1732b8068970b368a89271158ca29daf25650eztenghui  InitializePlatformSpecificModules();
644f1732b8068970b368a89271158ca29daf25650eztenghui}
654f1732b8068970b368a89271158ca29daf25650eztenghui
664f1732b8068970b368a89271158ca29daf25650eztenghuistatic inline bool CanBeAHeapPointer(uptr p) {
674f1732b8068970b368a89271158ca29daf25650eztenghui  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
684f1732b8068970b368a89271158ca29daf25650eztenghui  // boundary on heap addresses.
694f1732b8068970b368a89271158ca29daf25650eztenghui  const uptr kMinAddress = 4 * 4096;
704f1732b8068970b368a89271158ca29daf25650eztenghui  if (p < kMinAddress) return false;
714f1732b8068970b368a89271158ca29daf25650eztenghui#ifdef __x86_64__
724f1732b8068970b368a89271158ca29daf25650eztenghui  // Accept only canonical form user-space addresses.
734f1732b8068970b368a89271158ca29daf25650eztenghui  return ((p >> 47) == 0);
744f1732b8068970b368a89271158ca29daf25650eztenghui#else
754f1732b8068970b368a89271158ca29daf25650eztenghui  return true;
764f1732b8068970b368a89271158ca29daf25650eztenghui#endif
774f1732b8068970b368a89271158ca29daf25650eztenghui}
7884333e0475bc911adc16417f4ca327c975cf6c36Andreas Huber
794f1732b8068970b368a89271158ca29daf25650eztenghui// Scan the memory range, looking for byte patterns that point into allocator
804f1732b8068970b368a89271158ca29daf25650eztenghui// chunks. Mark those chunks with tag and add them to the frontier.
814f1732b8068970b368a89271158ca29daf25650eztenghui// There are two usage modes for this function: finding reachable or suppressed
824f1732b8068970b368a89271158ca29daf25650eztenghui// chunks (tag = kReachable or kSuppressed) and finding indirectly leaked chunks
834f1732b8068970b368a89271158ca29daf25650eztenghui// (tag = kIndirectlyLeaked). In the second case, there's no flood fill,
844f1732b8068970b368a89271158ca29daf25650eztenghui// so frontier = 0.
854f1732b8068970b368a89271158ca29daf25650eztenghuivoid ScanRangeForPointers(uptr begin, uptr end, InternalVector<uptr> *frontier,
864f1732b8068970b368a89271158ca29daf25650eztenghui                          const char *region_type, ChunkTag tag) {
874f1732b8068970b368a89271158ca29daf25650eztenghui  const uptr alignment = flags()->pointer_alignment();
884f1732b8068970b368a89271158ca29daf25650eztenghui  if (flags()->log_pointers)
894f1732b8068970b368a89271158ca29daf25650eztenghui    Report("Scanning %s range %p-%p.\n", region_type, begin, end);
904f1732b8068970b368a89271158ca29daf25650eztenghui  uptr pp = begin;
914f1732b8068970b368a89271158ca29daf25650eztenghui  if (pp % alignment)
924f1732b8068970b368a89271158ca29daf25650eztenghui    pp = pp + alignment - pp % alignment;
934f1732b8068970b368a89271158ca29daf25650eztenghui  for (; pp + sizeof(uptr) <= end; pp += alignment) {
944f1732b8068970b368a89271158ca29daf25650eztenghui    void *p = *reinterpret_cast<void**>(pp);
954f1732b8068970b368a89271158ca29daf25650eztenghui    if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
964f1732b8068970b368a89271158ca29daf25650eztenghui    void *chunk = PointsIntoChunk(p);
974f1732b8068970b368a89271158ca29daf25650eztenghui    if (!chunk) continue;
984f1732b8068970b368a89271158ca29daf25650eztenghui    LsanMetadata m(chunk);
994f1732b8068970b368a89271158ca29daf25650eztenghui    // Reachable beats suppressed beats leaked.
1004f1732b8068970b368a89271158ca29daf25650eztenghui    if (m.tag() == kReachable) continue;
1014f1732b8068970b368a89271158ca29daf25650eztenghui    if (m.tag() == kSuppressed && tag != kReachable) continue;
1024f1732b8068970b368a89271158ca29daf25650eztenghui    m.set_tag(tag);
1034f1732b8068970b368a89271158ca29daf25650eztenghui    if (flags()->log_pointers)
1044f1732b8068970b368a89271158ca29daf25650eztenghui      Report("%p: found %p pointing into chunk %p-%p of size %llu.\n", pp, p,
1054f1732b8068970b368a89271158ca29daf25650eztenghui             chunk, reinterpret_cast<uptr>(chunk) + m.requested_size(),
1064f1732b8068970b368a89271158ca29daf25650eztenghui             m.requested_size());
1074f1732b8068970b368a89271158ca29daf25650eztenghui    if (frontier)
1084f1732b8068970b368a89271158ca29daf25650eztenghui      frontier->push_back(reinterpret_cast<uptr>(chunk));
1094f1732b8068970b368a89271158ca29daf25650eztenghui  }
1104f1732b8068970b368a89271158ca29daf25650eztenghui}
1114f1732b8068970b368a89271158ca29daf25650eztenghui
1124f1732b8068970b368a89271158ca29daf25650eztenghui// Scan thread data (stacks and TLS) for heap pointers.
1134f1732b8068970b368a89271158ca29daf25650eztenghuistatic void ProcessThreads(SuspendedThreadsList const &suspended_threads,
1144f1732b8068970b368a89271158ca29daf25650eztenghui                           InternalVector<uptr> *frontier) {
1154f1732b8068970b368a89271158ca29daf25650eztenghui  InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
1164f1732b8068970b368a89271158ca29daf25650eztenghui  uptr registers_begin = reinterpret_cast<uptr>(registers.data());
1174f1732b8068970b368a89271158ca29daf25650eztenghui  uptr registers_end = registers_begin + registers.size();
1184f1732b8068970b368a89271158ca29daf25650eztenghui  for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
1194f1732b8068970b368a89271158ca29daf25650eztenghui    uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
1204f1732b8068970b368a89271158ca29daf25650eztenghui    if (flags()->log_threads) Report("Processing thread %d.\n", os_id);
1214f1732b8068970b368a89271158ca29daf25650eztenghui    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
1224f1732b8068970b368a89271158ca29daf25650eztenghui    bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
1234f1732b8068970b368a89271158ca29daf25650eztenghui                                              &tls_begin, &tls_end,
1244f1732b8068970b368a89271158ca29daf25650eztenghui                                              &cache_begin, &cache_end);
1254f1732b8068970b368a89271158ca29daf25650eztenghui    if (!thread_found) {
1264f1732b8068970b368a89271158ca29daf25650eztenghui      // If a thread can't be found in the thread registry, it's probably in the
127      // process of destruction. Log this event and move on.
128      if (flags()->log_threads)
129        Report("Thread %d not found in registry.\n", os_id);
130      continue;
131    }
132    uptr sp;
133    bool have_registers =
134        (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
135    if (!have_registers) {
136      Report("Unable to get registers from thread %d.\n");
137      // If unable to get SP, consider the entire stack to be reachable.
138      sp = stack_begin;
139    }
140
141    if (flags()->use_registers && have_registers)
142      ScanRangeForPointers(registers_begin, registers_end, frontier,
143                           "REGISTERS", kReachable);
144
145    if (flags()->use_stacks) {
146      if (flags()->log_threads)
147        Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp);
148      if (sp < stack_begin || sp >= stack_end) {
149        // SP is outside the recorded stack range (e.g. the thread is running a
150        // signal handler on alternate stack). Again, consider the entire stack
151        // range to be reachable.
152        if (flags()->log_threads)
153          Report("WARNING: stack_pointer not in stack_range.\n");
154      } else {
155        // Shrink the stack range to ignore out-of-scope values.
156        stack_begin = sp;
157      }
158      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
159                           kReachable);
160    }
161
162    if (flags()->use_tls) {
163      if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end);
164      if (cache_begin == cache_end) {
165        ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
166      } else {
167        // Because LSan should not be loaded with dlopen(), we can assume
168        // that allocator cache will be part of static TLS image.
169        CHECK_LE(tls_begin, cache_begin);
170        CHECK_GE(tls_end, cache_end);
171        if (tls_begin < cache_begin)
172          ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
173                               kReachable);
174        if (tls_end > cache_end)
175          ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
176      }
177    }
178  }
179}
180
181static void FloodFillTag(InternalVector<uptr> *frontier, ChunkTag tag) {
182  while (frontier->size()) {
183    uptr next_chunk = frontier->back();
184    frontier->pop_back();
185    LsanMetadata m(reinterpret_cast<void *>(next_chunk));
186    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
187                         "HEAP", tag);
188  }
189}
190
191// Mark leaked chunks which are reachable from other leaked chunks.
192void MarkIndirectlyLeakedCb::operator()(void *p) const {
193  p = GetUserBegin(p);
194  LsanMetadata m(p);
195  if (m.allocated() && m.tag() != kReachable) {
196    ScanRangeForPointers(reinterpret_cast<uptr>(p),
197                         reinterpret_cast<uptr>(p) + m.requested_size(),
198                         /* frontier */ 0, "HEAP", kIndirectlyLeaked);
199  }
200}
201
202void CollectSuppressedCb::operator()(void *p) const {
203  p = GetUserBegin(p);
204  LsanMetadata m(p);
205  if (m.allocated() && m.tag() == kSuppressed)
206    frontier_->push_back(reinterpret_cast<uptr>(p));
207}
208
209// Set the appropriate tag on each chunk.
210static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
211  // Holds the flood fill frontier.
212  InternalVector<uptr> frontier(GetPageSizeCached());
213
214  if (flags()->use_globals)
215    ProcessGlobalRegions(&frontier);
216  ProcessThreads(suspended_threads, &frontier);
217  FloodFillTag(&frontier, kReachable);
218  // The check here is relatively expensive, so we do this in a separate flood
219  // fill. That way we can skip the check for chunks that are reachable
220  // otherwise.
221  ProcessPlatformSpecificAllocations(&frontier);
222  FloodFillTag(&frontier, kReachable);
223
224  if (flags()->log_pointers)
225    Report("Scanning suppressed blocks.\n");
226  CHECK_EQ(0, frontier.size());
227  ForEachChunk(CollectSuppressedCb(&frontier));
228  FloodFillTag(&frontier, kSuppressed);
229
230  // Iterate over leaked chunks and mark those that are reachable from other
231  // leaked chunks.
232  if (flags()->log_pointers)
233    Report("Scanning leaked blocks.\n");
234  ForEachChunk(MarkIndirectlyLeakedCb());
235}
236
237static void PrintStackTraceById(u32 stack_trace_id) {
238  CHECK(stack_trace_id);
239  uptr size = 0;
240  const uptr *trace = StackDepotGet(stack_trace_id, &size);
241  StackTrace::PrintStack(trace, size, common_flags()->symbolize,
242                         common_flags()->strip_path_prefix, 0);
243}
244
245void CollectLeaksCb::operator()(void *p) const {
246  p = GetUserBegin(p);
247  LsanMetadata m(p);
248  if (!m.allocated()) return;
249  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
250    uptr resolution = flags()->resolution;
251    if (resolution > 0) {
252      uptr size = 0;
253      const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
254      size = Min(size, resolution);
255      leak_report_->Add(StackDepotPut(trace, size), m.requested_size(),
256                        m.tag());
257    } else {
258      leak_report_->Add(m.stack_trace_id(), m.requested_size(), m.tag());
259    }
260  }
261}
262
263static void CollectLeaks(LeakReport *leak_report) {
264  ForEachChunk(CollectLeaksCb(leak_report));
265}
266
267void PrintLeakedCb::operator()(void *p) const {
268  p = GetUserBegin(p);
269  LsanMetadata m(p);
270  if (!m.allocated()) return;
271  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
272    Printf("%s leaked %llu byte block at %p\n",
273           m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
274           m.requested_size(), p);
275  }
276}
277
278static void PrintLeaked() {
279  Printf("Reporting individual blocks:\n");
280  Printf("============================\n");
281  ForEachChunk(PrintLeakedCb());
282  Printf("\n");
283}
284
285enum LeakCheckResult {
286  kFatalError,
287  kLeaksFound,
288  kNoLeaks
289};
290
291static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
292                                void *arg) {
293  LeakCheckResult *result = reinterpret_cast<LeakCheckResult *>(arg);
294  CHECK_EQ(*result, kFatalError);
295  ClassifyAllChunks(suspended_threads);
296  LeakReport leak_report;
297  CollectLeaks(&leak_report);
298  if (leak_report.IsEmpty()) {
299    *result = kNoLeaks;
300    return;
301  }
302  Printf("\n");
303  Printf("=================================================================\n");
304  Report("ERROR: LeakSanitizer: detected memory leaks\n");
305  leak_report.PrintLargest(flags()->max_leaks);
306  if (flags()->report_blocks)
307    PrintLeaked();
308  leak_report.PrintSummary();
309  Printf("\n");
310  *result = kLeaksFound;
311}
312
313void DoLeakCheck() {
314  static bool already_done;
315  LeakCheckResult result = kFatalError;
316  LockThreadRegistry();
317  LockAllocator();
318  CHECK(!already_done);
319  already_done = true;
320  StopTheWorld(DoLeakCheckCallback, &result);
321  UnlockAllocator();
322  UnlockThreadRegistry();
323  if (result == kFatalError) {
324    Report("LeakSanitizer has encountered a fatal error.\n");
325    Die();
326  } else if (result == kLeaksFound) {
327    if (flags()->exitcode)
328      internal__exit(flags()->exitcode);
329  }
330}
331
332///// LeakReport implementation. /////
333
334// A hard limit on the number of distinct leaks, to avoid quadratic complexity
335// in LeakReport::Add(). We don't expect to ever see this many leaks in
336// real-world applications.
337// FIXME: Get rid of this limit by changing the implementation of LeakReport to
338// use a hash table.
339const uptr kMaxLeaksConsidered = 1000;
340
341void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
342  CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
343  bool is_directly_leaked = (tag == kDirectlyLeaked);
344  for (uptr i = 0; i < leaks_.size(); i++)
345    if (leaks_[i].stack_trace_id == stack_trace_id &&
346        leaks_[i].is_directly_leaked == is_directly_leaked) {
347      leaks_[i].hit_count++;
348      leaks_[i].total_size += leaked_size;
349      return;
350    }
351  if (leaks_.size() == kMaxLeaksConsidered) return;
352  Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
353                is_directly_leaked };
354  leaks_.push_back(leak);
355}
356
357static bool IsLarger(const Leak &leak1, const Leak &leak2) {
358  return leak1.total_size > leak2.total_size;
359}
360
361void LeakReport::PrintLargest(uptr max_leaks) {
362  CHECK(leaks_.size() <= kMaxLeaksConsidered);
363  Printf("\n");
364  if (leaks_.size() == kMaxLeaksConsidered)
365    Printf("Too many leaks! Only the first %llu leaks encountered will be "
366           "reported.\n",
367           kMaxLeaksConsidered);
368  if (max_leaks > 0 && max_leaks < leaks_.size())
369    Printf("The %llu largest leak(s):\n", max_leaks);
370  InternalSort(&leaks_, leaks_.size(), IsLarger);
371  max_leaks = max_leaks > 0 ? Min(max_leaks, leaks_.size()) : leaks_.size();
372  for (uptr i = 0; i < max_leaks; i++) {
373    Printf("%s leak of %llu byte(s) in %llu object(s) allocated from:\n",
374           leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
375           leaks_[i].total_size, leaks_[i].hit_count);
376    PrintStackTraceById(leaks_[i].stack_trace_id);
377    Printf("\n");
378  }
379  if (max_leaks < leaks_.size()) {
380    uptr remaining = leaks_.size() - max_leaks;
381    Printf("Omitting %llu more leak(s).\n", remaining);
382  }
383}
384
385void LeakReport::PrintSummary() {
386  CHECK(leaks_.size() <= kMaxLeaksConsidered);
387  uptr bytes = 0, allocations = 0;
388  for (uptr i = 0; i < leaks_.size(); i++) {
389      bytes += leaks_[i].total_size;
390      allocations += leaks_[i].hit_count;
391  }
392  Printf("SUMMARY: LeakSanitizer: %llu byte(s) leaked in %llu allocation(s).\n",
393         bytes, allocations);
394}
395
396}  // namespace __lsan
397#endif  // CAN_SANITIZE_LEAKS
398