tsan_rtl.h revision a52e5c6f371bcc66e89792db1219a557664aab8d
1//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12// Main internal TSan header file.
13//
14// Ground rules:
15//   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16//     function-scope locals)
17//   - All functions/classes/etc reside in namespace __tsan, except for those
18//     declared in tsan_interface.h.
19//   - Platform-specific files should be used instead of ifdefs (*).
20//   - No system headers included in header files (*).
21//   - Platform specific headres included only into platform-specific files (*).
22//
23//  (*) Except when inlining is critical for performance.
24//===----------------------------------------------------------------------===//
25
26#ifndef TSAN_RTL_H
27#define TSAN_RTL_H
28
29#include "sanitizer_common/sanitizer_allocator.h"
30#include "sanitizer_common/sanitizer_allocator_internal.h"
31#include "sanitizer_common/sanitizer_common.h"
32#include "sanitizer_common/sanitizer_suppressions.h"
33#include "sanitizer_common/sanitizer_thread_registry.h"
34#include "tsan_clock.h"
35#include "tsan_defs.h"
36#include "tsan_flags.h"
37#include "tsan_sync.h"
38#include "tsan_trace.h"
39#include "tsan_vector.h"
40#include "tsan_report.h"
41#include "tsan_platform.h"
42#include "tsan_mutexset.h"
43
44#if SANITIZER_WORDSIZE != 64
45# error "ThreadSanitizer is supported only on 64-bit platforms"
46#endif
47
48namespace __tsan {
49
50// Descriptor of user's memory block.
51struct MBlock {
52  /*
53  u64 mtx : 1;  // must be first
54  u64 lst : 44;
55  u64 stk : 31;  // on word boundary
56  u64 tid : kTidBits;
57  u64 siz : 128 - 1 - 31 - 44 - kTidBits;  // 39
58  */
59  u64 raw[2];
60
61  void Init(uptr siz, u32 tid, u32 stk) {
62    raw[0] = raw[1] = 0;
63    raw[1] |= (u64)siz << ((1 + 44 + 31 + kTidBits) % 64);
64    raw[1] |= (u64)tid << ((1 + 44 + 31) % 64);
65    raw[0] |= (u64)stk << (1 + 44);
66    raw[1] |= (u64)stk >> (64 - 44 - 1);
67    DCHECK_EQ(Size(), siz);
68    DCHECK_EQ(Tid(), tid);
69    DCHECK_EQ(StackId(), stk);
70  }
71
72  u32 Tid() const {
73    return GetLsb(raw[1] >> ((1 + 44 + 31) % 64), kTidBits);
74  }
75
76  uptr Size() const {
77    return raw[1] >> ((1 + 31 + 44 + kTidBits) % 64);
78  }
79
80  u32 StackId() const {
81    return (raw[0] >> (1 + 44)) | GetLsb(raw[1] << (64 - 44 - 1), 31);
82  }
83
84  SyncVar *ListHead() const {
85    return (SyncVar*)(GetLsb(raw[0] >> 1, 44) << 3);
86  }
87
88  void ListPush(SyncVar *v) {
89    SyncVar *lst = ListHead();
90    v->next = lst;
91    u64 x = (u64)v ^ (u64)lst;
92    x = (x >> 3) << 1;
93    raw[0] ^= x;
94    DCHECK_EQ(ListHead(), v);
95  }
96
97  SyncVar *ListPop() {
98    SyncVar *lst = ListHead();
99    SyncVar *nxt = lst->next;
100    lst->next = 0;
101    u64 x = (u64)lst ^ (u64)nxt;
102    x = (x >> 3) << 1;
103    raw[0] ^= x;
104    DCHECK_EQ(ListHead(), nxt);
105    return lst;
106  }
107
108  void ListReset() {
109    SyncVar *lst = ListHead();
110    u64 x = (u64)lst;
111    x = (x >> 3) << 1;
112    raw[0] ^= x;
113    DCHECK_EQ(ListHead(), 0);
114  }
115
116  void Lock();
117  void Unlock();
118  typedef GenericScopedLock<MBlock> ScopedLock;
119};
120
121#ifndef TSAN_GO
122#if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
123const uptr kAllocatorSpace = 0x7d0000000000ULL;
124#else
125const uptr kAllocatorSpace = 0x7d0000000000ULL;
126#endif
127const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
128
129struct MapUnmapCallback;
130typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock),
131    DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
132typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
133typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
134typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
135    SecondaryAllocator> Allocator;
136Allocator *allocator();
137#endif
138
139void TsanCheckFailed(const char *file, int line, const char *cond,
140                     u64 v1, u64 v2);
141
142const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
143
144// FastState (from most significant bit):
145//   ignore          : 1
146//   tid             : kTidBits
147//   epoch           : kClkBits
148//   unused          : -
149//   history_size    : 3
150class FastState {
151 public:
152  FastState(u64 tid, u64 epoch) {
153    x_ = tid << kTidShift;
154    x_ |= epoch << kClkShift;
155    DCHECK_EQ(tid, this->tid());
156    DCHECK_EQ(epoch, this->epoch());
157    DCHECK_EQ(GetIgnoreBit(), false);
158  }
159
160  explicit FastState(u64 x)
161      : x_(x) {
162  }
163
164  u64 raw() const {
165    return x_;
166  }
167
168  u64 tid() const {
169    u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
170    return res;
171  }
172
173  u64 TidWithIgnore() const {
174    u64 res = x_ >> kTidShift;
175    return res;
176  }
177
178  u64 epoch() const {
179    u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits);
180    return res;
181  }
182
183  void IncrementEpoch() {
184    u64 old_epoch = epoch();
185    x_ += 1 << kClkShift;
186    DCHECK_EQ(old_epoch + 1, epoch());
187    (void)old_epoch;
188  }
189
190  void SetIgnoreBit() { x_ |= kIgnoreBit; }
191  void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
192  bool GetIgnoreBit() const { return (s64)x_ < 0; }
193
194  void SetHistorySize(int hs) {
195    CHECK_GE(hs, 0);
196    CHECK_LE(hs, 7);
197    x_ = (x_ & ~7) | hs;
198  }
199
200  int GetHistorySize() const {
201    return (int)(x_ & 7);
202  }
203
204  void ClearHistorySize() {
205    x_ &= ~7;
206  }
207
208  u64 GetTracePos() const {
209    const int hs = GetHistorySize();
210    // When hs == 0, the trace consists of 2 parts.
211    const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
212    return epoch() & mask;
213  }
214
215 private:
216  friend class Shadow;
217  static const int kTidShift = 64 - kTidBits - 1;
218  static const int kClkShift = kTidShift - kClkBits;
219  static const u64 kIgnoreBit = 1ull << 63;
220  static const u64 kFreedBit = 1ull << 63;
221  u64 x_;
222};
223
224// Shadow (from most significant bit):
225//   freed           : 1
226//   tid             : kTidBits
227//   epoch           : kClkBits
228//   is_atomic       : 1
229//   is_read         : 1
230//   size_log        : 2
231//   addr0           : 3
232class Shadow : public FastState {
233 public:
234  explicit Shadow(u64 x)
235      : FastState(x) {
236  }
237
238  explicit Shadow(const FastState &s)
239      : FastState(s.x_) {
240    ClearHistorySize();
241  }
242
243  void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
244    DCHECK_EQ(x_ & 31, 0);
245    DCHECK_LE(addr0, 7);
246    DCHECK_LE(kAccessSizeLog, 3);
247    x_ |= (kAccessSizeLog << 3) | addr0;
248    DCHECK_EQ(kAccessSizeLog, size_log());
249    DCHECK_EQ(addr0, this->addr0());
250  }
251
252  void SetWrite(unsigned kAccessIsWrite) {
253    DCHECK_EQ(x_ & kReadBit, 0);
254    if (!kAccessIsWrite)
255      x_ |= kReadBit;
256    DCHECK_EQ(kAccessIsWrite, IsWrite());
257  }
258
259  void SetAtomic(bool kIsAtomic) {
260    DCHECK(!IsAtomic());
261    if (kIsAtomic)
262      x_ |= kAtomicBit;
263    DCHECK_EQ(IsAtomic(), kIsAtomic);
264  }
265
266  bool IsAtomic() const {
267    return x_ & kAtomicBit;
268  }
269
270  bool IsZero() const {
271    return x_ == 0;
272  }
273
274  static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
275    u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
276    DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
277    return shifted_xor == 0;
278  }
279
280  static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
281    u64 masked_xor = (s1.x_ ^ s2.x_) & 31;
282    return masked_xor == 0;
283  }
284
285  static inline bool TwoRangesIntersect(Shadow s1, Shadow s2,
286      unsigned kS2AccessSize) {
287    bool res = false;
288    u64 diff = s1.addr0() - s2.addr0();
289    if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
290      // if (s1.addr0() + size1) > s2.addr0()) return true;
291      if (s1.size() > -diff)  res = true;
292    } else {
293      // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
294      if (kS2AccessSize > diff) res = true;
295    }
296    DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2));
297    DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1));
298    return res;
299  }
300
301  // The idea behind the offset is as follows.
302  // Consider that we have 8 bool's contained within a single 8-byte block
303  // (mapped to a single shadow "cell"). Now consider that we write to the bools
304  // from a single thread (which we consider the common case).
305  // W/o offsetting each access will have to scan 4 shadow values at average
306  // to find the corresponding shadow value for the bool.
307  // With offsetting we start scanning shadow with the offset so that
308  // each access hits necessary shadow straight off (at least in an expected
309  // optimistic case).
310  // This logic works seamlessly for any layout of user data. For example,
311  // if user data is {int, short, char, char}, then accesses to the int are
312  // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses
313  // from a single thread won't need to scan all 8 shadow values.
314  unsigned ComputeSearchOffset() {
315    return x_ & 7;
316  }
317  u64 addr0() const { return x_ & 7; }
318  u64 size() const { return 1ull << size_log(); }
319  bool IsWrite() const { return !IsRead(); }
320  bool IsRead() const { return x_ & kReadBit; }
321
322  // The idea behind the freed bit is as follows.
323  // When the memory is freed (or otherwise unaccessible) we write to the shadow
324  // values with tid/epoch related to the free and the freed bit set.
325  // During memory accesses processing the freed bit is considered
326  // as msb of tid. So any access races with shadow with freed bit set
327  // (it is as if write from a thread with which we never synchronized before).
328  // This allows us to detect accesses to freed memory w/o additional
329  // overheads in memory access processing and at the same time restore
330  // tid/epoch of free.
331  void MarkAsFreed() {
332     x_ |= kFreedBit;
333  }
334
335  bool IsFreed() const {
336    return x_ & kFreedBit;
337  }
338
339  bool GetFreedAndReset() {
340    bool res = x_ & kFreedBit;
341    x_ &= ~kFreedBit;
342    return res;
343  }
344
345  bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
346    // analyzes 5-th bit (is_read) and 6-th bit (is_atomic)
347    bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift)
348        | (kIsAtomic << kAtomicShift));
349    DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
350    return v;
351  }
352
353  bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
354    bool v = ((x_ >> kReadShift) & 3)
355        <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
356    DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
357        (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
358    return v;
359  }
360
361  bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
362    bool v = ((x_ >> kReadShift) & 3)
363        >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
364    DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
365        (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
366    return v;
367  }
368
369 private:
370  static const u64 kReadShift   = 5;
371  static const u64 kReadBit     = 1ull << kReadShift;
372  static const u64 kAtomicShift = 6;
373  static const u64 kAtomicBit   = 1ull << kAtomicShift;
374
375  u64 size_log() const { return (x_ >> 3) & 3; }
376
377  static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) {
378    if (s1.addr0() == s2.addr0()) return true;
379    if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
380      return true;
381    if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
382      return true;
383    return false;
384  }
385};
386
387struct SignalContext;
388
389struct JmpBuf {
390  uptr sp;
391  uptr mangled_sp;
392  uptr *shadow_stack_pos;
393};
394
395// This struct is stored in TLS.
396struct ThreadState {
397  FastState fast_state;
398  // Synch epoch represents the threads's epoch before the last synchronization
399  // action. It allows to reduce number of shadow state updates.
400  // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
401  // if we are processing write to X from the same thread at epoch=200,
402  // we do nothing, because both writes happen in the same 'synch epoch'.
403  // That is, if another memory access does not race with the former write,
404  // it does not race with the latter as well.
405  // QUESTION: can we can squeeze this into ThreadState::Fast?
406  // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
407  // taken by epoch between synchs.
408  // This way we can save one load from tls.
409  u64 fast_synch_epoch;
410  // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
411  // We do not distinguish beteween ignoring reads and writes
412  // for better performance.
413  int ignore_reads_and_writes;
414  uptr *shadow_stack_pos;
415  u64 *racy_shadow_addr;
416  u64 racy_state[2];
417#ifndef TSAN_GO
418  // C/C++ uses embed shadow stack of fixed size.
419  uptr shadow_stack[kShadowStackSize];
420#else
421  // Go uses satellite shadow stack with dynamic size.
422  uptr *shadow_stack;
423  uptr *shadow_stack_end;
424#endif
425  MutexSet mset;
426  ThreadClock clock;
427#ifndef TSAN_GO
428  AllocatorCache alloc_cache;
429  InternalAllocatorCache internal_alloc_cache;
430  Vector<JmpBuf> jmp_bufs;
431#endif
432  u64 stat[StatCnt];
433  const int tid;
434  const int unique_id;
435  int in_rtl;
436  bool in_symbolizer;
437  bool is_alive;
438  bool is_freeing;
439  bool is_vptr_access;
440  const uptr stk_addr;
441  const uptr stk_size;
442  const uptr tls_addr;
443  const uptr tls_size;
444
445  DeadlockDetector deadlock_detector;
446
447  bool in_signal_handler;
448  SignalContext *signal_ctx;
449
450#ifndef TSAN_GO
451  u32 last_sleep_stack_id;
452  ThreadClock last_sleep_clock;
453#endif
454
455  // Set in regions of runtime that must be signal-safe and fork-safe.
456  // If set, malloc must not be called.
457  int nomalloc;
458
459  explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
460                       uptr stk_addr, uptr stk_size,
461                       uptr tls_addr, uptr tls_size);
462};
463
464Context *CTX();
465
466#ifndef TSAN_GO
467extern THREADLOCAL char cur_thread_placeholder[];
468INLINE ThreadState *cur_thread() {
469  return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
470}
471#endif
472
473class ThreadContext : public ThreadContextBase {
474 public:
475  explicit ThreadContext(int tid);
476  ~ThreadContext();
477  ThreadState *thr;
478#ifdef TSAN_GO
479  StackTrace creation_stack;
480#else
481  u32 creation_stack_id;
482#endif
483  SyncClock sync;
484  // Epoch at which the thread had started.
485  // If we see an event from the thread stamped by an older epoch,
486  // the event is from a dead thread that shared tid with this thread.
487  u64 epoch0;
488  u64 epoch1;
489
490  // Override superclass callbacks.
491  void OnDead();
492  void OnJoined(void *arg);
493  void OnFinished();
494  void OnStarted(void *arg);
495  void OnCreated(void *arg);
496  void OnReset();
497};
498
499struct RacyStacks {
500  MD5Hash hash[2];
501  bool operator==(const RacyStacks &other) const {
502    if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
503      return true;
504    if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
505      return true;
506    return false;
507  }
508};
509
510struct RacyAddress {
511  uptr addr_min;
512  uptr addr_max;
513};
514
515struct FiredSuppression {
516  ReportType type;
517  uptr pc;
518  Suppression *supp;
519};
520
521struct Context {
522  Context();
523
524  bool initialized;
525
526  SyncTab synctab;
527
528  Mutex report_mtx;
529  int nreported;
530  int nmissed_expected;
531  atomic_uint64_t last_symbolize_time_ns;
532
533  ThreadRegistry *thread_registry;
534
535  Vector<RacyStacks> racy_stacks;
536  Vector<RacyAddress> racy_addresses;
537  // Number of fired suppressions may be large enough.
538  InternalMmapVector<FiredSuppression> fired_suppressions;
539
540  Flags flags;
541
542  u64 stat[StatCnt];
543  u64 int_alloc_cnt[MBlockTypeCount];
544  u64 int_alloc_siz[MBlockTypeCount];
545};
546
547class ScopedInRtl {
548 public:
549  ScopedInRtl();
550  ~ScopedInRtl();
551 private:
552  ThreadState*thr_;
553  int in_rtl_;
554  int errno_;
555};
556
557class ScopedReport {
558 public:
559  explicit ScopedReport(ReportType typ);
560  ~ScopedReport();
561
562  void AddStack(const StackTrace *stack);
563  void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
564                       const MutexSet *mset);
565  void AddThread(const ThreadContext *tctx);
566  void AddMutex(const SyncVar *s);
567  void AddLocation(uptr addr, uptr size);
568  void AddSleep(u32 stack_id);
569  void SetCount(int count);
570
571  const ReportDesc *GetReport() const;
572
573 private:
574  Context *ctx_;
575  ReportDesc *rep_;
576
577  void AddMutex(u64 id);
578
579  ScopedReport(const ScopedReport&);
580  void operator = (const ScopedReport&);
581};
582
583void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
584
585void StatAggregate(u64 *dst, u64 *src);
586void StatOutput(u64 *stat);
587void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
588  if (kCollectStats)
589    thr->stat[typ] += n;
590}
591void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
592  if (kCollectStats)
593    thr->stat[typ] = n;
594}
595
596void MapShadow(uptr addr, uptr size);
597void MapThreadTrace(uptr addr, uptr size);
598void DontNeedShadowFor(uptr addr, uptr size);
599void InitializeShadowMemory();
600void InitializeInterceptors();
601void InitializeDynamicAnnotations();
602
603void ReportRace(ThreadState *thr);
604bool OutputReport(Context *ctx,
605                  const ScopedReport &srep,
606                  const ReportStack *suppress_stack1 = 0,
607                  const ReportStack *suppress_stack2 = 0,
608                  const ReportLocation *suppress_loc = 0);
609bool IsFiredSuppression(Context *ctx,
610                        const ScopedReport &srep,
611                        const StackTrace &trace);
612bool IsExpectedReport(uptr addr, uptr size);
613void PrintMatchedBenignRaces();
614bool FrameIsInternal(const ReportStack *frame);
615ReportStack *SkipTsanInternalFrames(ReportStack *ent);
616
617#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
618# define DPrintf Printf
619#else
620# define DPrintf(...)
621#endif
622
623#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
624# define DPrintf2 Printf
625#else
626# define DPrintf2(...)
627#endif
628
629u32 CurrentStackId(ThreadState *thr, uptr pc);
630void PrintCurrentStack(ThreadState *thr, uptr pc);
631void PrintCurrentStackSlow();  // uses libunwind
632
633void Initialize(ThreadState *thr);
634int Finalize(ThreadState *thr);
635
636SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr,
637                     bool write_lock, bool create);
638SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr);
639
640void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
641    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
642void MemoryAccessImpl(ThreadState *thr, uptr addr,
643    int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
644    u64 *shadow_mem, Shadow cur);
645void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
646    uptr size, bool is_write);
647void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
648    uptr size, uptr step, bool is_write);
649void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
650    int size, bool kAccessIsWrite, bool kIsAtomic);
651
652const int kSizeLog1 = 0;
653const int kSizeLog2 = 1;
654const int kSizeLog4 = 2;
655const int kSizeLog8 = 3;
656
657void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
658                                     uptr addr, int kAccessSizeLog) {
659  MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
660}
661
662void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
663                                      uptr addr, int kAccessSizeLog) {
664  MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
665}
666
667void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
668                                           uptr addr, int kAccessSizeLog) {
669  MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
670}
671
672void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
673                                            uptr addr, int kAccessSizeLog) {
674  MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
675}
676
677void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
678void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
679void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
680void IgnoreCtl(ThreadState *thr, bool write, bool begin);
681
682void FuncEntry(ThreadState *thr, uptr pc);
683void FuncExit(ThreadState *thr);
684
685int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
686void ThreadStart(ThreadState *thr, int tid, uptr os_id);
687void ThreadFinish(ThreadState *thr);
688int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
689void ThreadJoin(ThreadState *thr, uptr pc, int tid);
690void ThreadDetach(ThreadState *thr, uptr pc, int tid);
691void ThreadFinalize(ThreadState *thr);
692void ThreadSetName(ThreadState *thr, const char *name);
693int ThreadCount(ThreadState *thr);
694void ProcessPendingSignals(ThreadState *thr);
695
696void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
697                 bool rw, bool recursive, bool linker_init);
698void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
699void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1);
700int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
701void MutexReadLock(ThreadState *thr, uptr pc, uptr addr);
702void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
703void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
704
705void Acquire(ThreadState *thr, uptr pc, uptr addr);
706void AcquireGlobal(ThreadState *thr, uptr pc);
707void Release(ThreadState *thr, uptr pc, uptr addr);
708void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
709void AfterSleep(ThreadState *thr, uptr pc);
710
711// The hacky call uses custom calling convention and an assembly thunk.
712// It is considerably faster that a normal call for the caller
713// if it is not executed (it is intended for slow paths from hot functions).
714// The trick is that the call preserves all registers and the compiler
715// does not treat it as a call.
716// If it does not work for you, use normal call.
717#if TSAN_DEBUG == 0
718// The caller may not create the stack frame for itself at all,
719// so we create a reserve stack frame for it (1024b must be enough).
720#define HACKY_CALL(f) \
721  __asm__ __volatile__("sub $1024, %%rsp;" \
722                       "/*.cfi_adjust_cfa_offset 1024;*/" \
723                       ".hidden " #f "_thunk;" \
724                       "call " #f "_thunk;" \
725                       "add $1024, %%rsp;" \
726                       "/*.cfi_adjust_cfa_offset -1024;*/" \
727                       ::: "memory", "cc");
728#else
729#define HACKY_CALL(f) f()
730#endif
731
732void TraceSwitch(ThreadState *thr);
733uptr TraceTopPC(ThreadState *thr);
734uptr TraceSize();
735uptr TraceParts();
736Trace *ThreadTrace(int tid);
737
738extern "C" void __tsan_trace_switch();
739void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
740                                        EventType typ, u64 addr) {
741  DCHECK_GE((int)typ, 0);
742  DCHECK_LE((int)typ, 7);
743  DCHECK_EQ(GetLsb(addr, 61), addr);
744  StatInc(thr, StatEvents);
745  u64 pos = fs.GetTracePos();
746  if (UNLIKELY((pos % kTracePartSize) == 0)) {
747#ifndef TSAN_GO
748    HACKY_CALL(__tsan_trace_switch);
749#else
750    TraceSwitch(thr);
751#endif
752  }
753  Event *trace = (Event*)GetThreadTrace(fs.tid());
754  Event *evp = &trace[pos];
755  Event ev = (u64)addr | ((u64)typ << 61);
756  *evp = ev;
757}
758
759}  // namespace __tsan
760
761#endif  // TSAN_RTL_H
762