1/*
2 * Copyright (C) 2009 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package com.google.common.primitives;
18
19import static com.google.common.base.Preconditions.checkArgument;
20import static com.google.common.base.Preconditions.checkNotNull;
21
22import com.google.common.annotations.VisibleForTesting;
23
24// BEGIN android-changed
25//import sun.misc.Unsafe;
26// END android-changed
27
28import java.lang.reflect.Field;
29import java.nio.ByteOrder;
30import java.security.AccessController;
31import java.security.PrivilegedAction;
32import java.util.Comparator;
33
34/**
35 * Static utility methods pertaining to {@code byte} primitives that interpret
36 * values as <i>unsigned</i> (that is, any negative value {@code b} is treated
37 * as the positive value {@code 256 + b}). The corresponding methods that treat
38 * the values as signed are found in {@link SignedBytes}, and the methods for
39 * which signedness is not an issue are in {@link Bytes}.
40 *
41 * @author Kevin Bourrillion
42 * @author Martin Buchholz
43 * @author Hiroshi Yamauchi
44 * @since 1.0
45 */
46public final class UnsignedBytes {
47  private UnsignedBytes() {}
48
49  /**
50   * The largest power of two that can be represented as an unsigned {@code byte}.
51   *
52   * @since 10.0
53   */
54  public static final byte MAX_POWER_OF_TWO = (byte) (1 << 7);
55
56  /**
57   * Returns the value of the given byte as an integer, when treated as
58   * unsigned. That is, returns {@code value + 256} if {@code value} is
59   * negative; {@code value} itself otherwise.
60   *
61   * @since 6.0
62   */
63  public static int toInt(byte value) {
64    return value & 0xFF;
65  }
66
67  /**
68   * Returns the {@code byte} value that, when treated as unsigned, is equal to
69   * {@code value}, if possible.
70   *
71   * @param value a value between 0 and 255 inclusive
72   * @return the {@code byte} value that, when treated as unsigned, equals
73   *     {@code value}
74   * @throws IllegalArgumentException if {@code value} is negative or greater
75   *     than 255
76   */
77  public static byte checkedCast(long value) {
78    checkArgument(value >> 8 == 0, "out of range: %s", value);
79    return (byte) value;
80  }
81
82  /**
83   * Returns the {@code byte} value that, when treated as unsigned, is nearest
84   * in value to {@code value}.
85   *
86   * @param value any {@code long} value
87   * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if
88   *     {@code value <= 0}, and {@code value} cast to {@code byte} otherwise
89   */
90  public static byte saturatedCast(long value) {
91    if (value > 255) {
92      return (byte) 255; // -1
93    }
94    if (value < 0) {
95      return (byte) 0;
96    }
97    return (byte) value;
98  }
99
100  /**
101   * Compares the two specified {@code byte} values, treating them as unsigned
102   * values between 0 and 255 inclusive. For example, {@code (byte) -127} is
103   * considered greater than {@code (byte) 127} because it is seen as having
104   * the value of positive {@code 129}.
105   *
106   * @param a the first {@code byte} to compare
107   * @param b the second {@code byte} to compare
108   * @return a negative value if {@code a} is less than {@code b}; a positive
109   *     value if {@code a} is greater than {@code b}; or zero if they are equal
110   */
111  public static int compare(byte a, byte b) {
112    return toInt(a) - toInt(b);
113  }
114
115  /**
116   * Returns the least value present in {@code array}.
117   *
118   * @param array a <i>nonempty</i> array of {@code byte} values
119   * @return the value present in {@code array} that is less than or equal to
120   *     every other value in the array
121   * @throws IllegalArgumentException if {@code array} is empty
122   */
123  public static byte min(byte... array) {
124    checkArgument(array.length > 0);
125    int min = toInt(array[0]);
126    for (int i = 1; i < array.length; i++) {
127      int next = toInt(array[i]);
128      if (next < min) {
129        min = next;
130      }
131    }
132    return (byte) min;
133  }
134
135  /**
136   * Returns the greatest value present in {@code array}.
137   *
138   * @param array a <i>nonempty</i> array of {@code byte} values
139   * @return the value present in {@code array} that is greater than or equal
140   *     to every other value in the array
141   * @throws IllegalArgumentException if {@code array} is empty
142   */
143  public static byte max(byte... array) {
144    checkArgument(array.length > 0);
145    int max = toInt(array[0]);
146    for (int i = 1; i < array.length; i++) {
147      int next = toInt(array[i]);
148      if (next > max) {
149        max = next;
150      }
151    }
152    return (byte) max;
153  }
154
155  /**
156   * Returns a string containing the supplied {@code byte} values separated by
157   * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2,
158   * (byte) 255)} returns the string {@code "1:2:255"}.
159   *
160   * @param separator the text that should appear between consecutive values in
161   *     the resulting string (but not at the start or end)
162   * @param array an array of {@code byte} values, possibly empty
163   */
164  public static String join(String separator, byte... array) {
165    checkNotNull(separator);
166    if (array.length == 0) {
167      return "";
168    }
169
170    // For pre-sizing a builder, just get the right order of magnitude
171    StringBuilder builder = new StringBuilder(array.length * 5);
172    builder.append(toInt(array[0]));
173    for (int i = 1; i < array.length; i++) {
174      builder.append(separator).append(toInt(array[i]));
175    }
176    return builder.toString();
177  }
178
179  /**
180   * Returns a comparator that compares two {@code byte} arrays
181   * lexicographically. That is, it compares, using {@link
182   * #compare(byte, byte)}), the first pair of values that follow any common
183   * prefix, or when one array is a prefix of the other, treats the shorter
184   * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] <
185   * [0x01, 0x80] < [0x02]}. Values are treated as unsigned.
186   *
187   * <p>The returned comparator is inconsistent with {@link
188   * Object#equals(Object)} (since arrays support only identity equality), but
189   * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}.
190   *
191   * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order">
192   *     Lexicographical order article at Wikipedia</a>
193   * @since 2.0
194   */
195  public static Comparator<byte[]> lexicographicalComparator() {
196    return LexicographicalComparatorHolder.BEST_COMPARATOR;
197  }
198
199  @VisibleForTesting
200  static Comparator<byte[]> lexicographicalComparatorJavaImpl() {
201    return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE;
202  }
203
204  /**
205   * Provides a lexicographical comparator implementation; either a Java
206   * implementation or a faster implementation based on {@link Unsafe}.
207   *
208   * <p>Uses reflection to gracefully fall back to the Java implementation if
209   * {@code Unsafe} isn't available.
210   */
211  @VisibleForTesting
212  static class LexicographicalComparatorHolder {
213    static final String UNSAFE_COMPARATOR_NAME =
214        LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator";
215
216    // BEGIN android-changed
217
218    static final Comparator<byte[]> BEST_COMPARATOR = lexicographicalComparatorJavaImpl();
219
220    // @VisibleForTesting
221    // enum UnsafeComparator implements Comparator<byte[]> {
222    //   INSTANCE;
223
224    //   static final boolean littleEndian =
225    //       ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN);
226
227    //   /*
228    //    * The following static final fields exist for performance reasons.
229    //    *
230    //    * In UnsignedBytesBenchmark, accessing the following objects via static
231    //    * final fields is the fastest (more than twice as fast as the Java
232    //    * implementation, vs ~1.5x with non-final static fields, on x86_32)
233    //    * under the Hotspot server compiler. The reason is obviously that the
234    //    * non-final fields need to be reloaded inside the loop.
235    //    *
236    //    * And, no, defining (final or not) local variables out of the loop still
237    //    * isn't as good because the null check on the theUnsafe object remains
238    //    * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get
239    //    * constant-folded.
240    //    *
241    //    * The compiler can treat static final fields as compile-time constants
242    //    * and can constant-fold them while (final or not) local variables are
243    //    * run time values.
244    //    */
245
246    //   static final Unsafe theUnsafe;
247
248    //   /** The offset to the first element in a byte array. */
249    //   static final int BYTE_ARRAY_BASE_OFFSET;
250
251    //   static {
252    //     theUnsafe = (Unsafe) AccessController.doPrivileged(
253    //         new PrivilegedAction<Object>() {
254    //           @Override
255    //           public Object run() {
256    //             try {
257    //               Field f = Unsafe.class.getDeclaredField("theUnsafe");
258    //               f.setAccessible(true);
259    //               return f.get(null);
260    //             } catch (NoSuchFieldException e) {
261    //               // It doesn't matter what we throw;
262    //               // it's swallowed in getBestComparator().
263    //               throw new Error();
264    //             } catch (IllegalAccessException e) {
265    //               throw new Error();
266    //             }
267    //           }
268    //         });
269
270    //     BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class);
271
272    //     // sanity check - this should never fail
273    //     if (theUnsafe.arrayIndexScale(byte[].class) != 1) {
274    //       throw new AssertionError();
275    //     }
276    //   }
277
278    //   @Override public int compare(byte[] left, byte[] right) {
279    //     int minLength = Math.min(left.length, right.length);
280    //     int minWords = minLength / Longs.BYTES;
281
282    //     /*
283    //      * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a
284    //      * time is no slower than comparing 4 bytes at a time even on 32-bit.
285    //      * On the other hand, it is substantially faster on 64-bit.
286    //      */
287    //     for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) {
288    //       long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i);
289    //       long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i);
290    //       long diff = lw ^ rw;
291
292    //       if (diff != 0) {
293    //         if (!littleEndian) {
294    //           return UnsignedLongs.compare(lw, rw);
295    //         }
296
297    //         // Use binary search
298    //         int n = 0;
299    //         int y;
300    //         int x = (int) diff;
301    //         if (x == 0) {
302    //           x = (int) (diff >>> 32);
303    //           n = 32;
304    //         }
305
306    //         y = x << 16;
307    //         if (y == 0) {
308    //           n += 16;
309    //         } else {
310    //           x = y;
311    //         }
312
313    //         y = x << 8;
314    //         if (y == 0) {
315    //           n += 8;
316    //         }
317    //         return (int) (((lw >>> n) & 0xFFL) - ((rw >>> n) & 0xFFL));
318    //       }
319    //     }
320
321    //     // The epilogue to cover the last (minLength % 8) elements.
322    //     for (int i = minWords * Longs.BYTES; i < minLength; i++) {
323    //       int result = UnsignedBytes.compare(left[i], right[i]);
324    //       if (result != 0) {
325    //         return result;
326    //       }
327    //     }
328    //     return left.length - right.length;
329    //   }
330    // }
331
332    // END android-changed
333
334    enum PureJavaComparator implements Comparator<byte[]> {
335      INSTANCE;
336
337      @Override public int compare(byte[] left, byte[] right) {
338        int minLength = Math.min(left.length, right.length);
339        for (int i = 0; i < minLength; i++) {
340          int result = UnsignedBytes.compare(left[i], right[i]);
341          if (result != 0) {
342            return result;
343          }
344        }
345        return left.length - right.length;
346      }
347    }
348
349    // BEGIN android-changed
350
351    // /**
352    //  * Returns the Unsafe-using Comparator, or falls back to the pure-Java
353    //  * implementation if unable to do so.
354    //  */
355    // static Comparator<byte[]> getBestComparator() {
356    //   try {
357    //     Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME);
358
359    //     // yes, UnsafeComparator does implement Comparator<byte[]>
360    //     @SuppressWarnings("unchecked")
361    //     Comparator<byte[]> comparator =
362    //         (Comparator<byte[]>) theClass.getEnumConstants()[0];
363    //     return comparator;
364    //   } catch (Throwable t) { // ensure we really catch *everything*
365    //     return lexicographicalComparatorJavaImpl();
366    //   }
367    // }
368
369    // END android-changed
370
371  }
372}
373
374