1/*
2*******************************************************************************
3* Copyright (C) 2013-2014, International Business Machines
4* Corporation and others.  All Rights Reserved.
5*******************************************************************************
6* collationbuilder.cpp
7*
8* (replaced the former ucol_bld.cpp)
9*
10* created on: 2013may06
11* created by: Markus W. Scherer
12*/
13
14#ifdef DEBUG_COLLATION_BUILDER
15#include <stdio.h>
16#endif
17
18#include "unicode/utypes.h"
19
20#if !UCONFIG_NO_COLLATION
21
22#include "unicode/caniter.h"
23#include "unicode/normalizer2.h"
24#include "unicode/tblcoll.h"
25#include "unicode/parseerr.h"
26#include "unicode/uchar.h"
27#include "unicode/ucol.h"
28#include "unicode/unistr.h"
29#include "unicode/usetiter.h"
30#include "unicode/utf16.h"
31#include "unicode/uversion.h"
32#include "cmemory.h"
33#include "collation.h"
34#include "collationbuilder.h"
35#include "collationdata.h"
36#include "collationdatabuilder.h"
37#include "collationfastlatin.h"
38#include "collationroot.h"
39#include "collationrootelements.h"
40#include "collationruleparser.h"
41#include "collationsettings.h"
42#include "collationtailoring.h"
43#include "collationweights.h"
44#include "normalizer2impl.h"
45#include "uassert.h"
46#include "ucol_imp.h"
47#include "utf16collationiterator.h"
48
49#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
50
51U_NAMESPACE_BEGIN
52
53namespace {
54
55class BundleImporter : public CollationRuleParser::Importer {
56public:
57    BundleImporter() : rules(NULL) {}
58    virtual ~BundleImporter();
59    virtual const UnicodeString *getRules(
60            const char *localeID, const char *collationType,
61            const char *&errorReason, UErrorCode &errorCode);
62
63private:
64    UnicodeString *rules;
65};
66
67BundleImporter::~BundleImporter() {
68    delete rules;
69}
70
71const UnicodeString *
72BundleImporter::getRules(
73        const char *localeID, const char *collationType,
74        const char *& /*errorReason*/, UErrorCode &errorCode) {
75    delete rules;
76    return rules = CollationLoader::loadRules(localeID, collationType, errorCode);
77}
78
79}  // namespace
80
81// RuleBasedCollator implementation ---------------------------------------- ***
82
83// These methods are here, rather than in rulebasedcollator.cpp,
84// for modularization:
85// Most code using Collator does not need to build a Collator from rules.
86// By moving these constructors and helper methods to a separate file,
87// most code will not have a static dependency on the builder code.
88
89RuleBasedCollator::RuleBasedCollator()
90        : data(NULL),
91          settings(NULL),
92          tailoring(NULL),
93          validLocale(""),
94          explicitlySetAttributes(0),
95          actualLocaleIsSameAsValid(FALSE) {
96}
97
98RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
99        : data(NULL),
100          settings(NULL),
101          tailoring(NULL),
102          validLocale(""),
103          explicitlySetAttributes(0),
104          actualLocaleIsSameAsValid(FALSE) {
105    internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, NULL, NULL, errorCode);
106}
107
108RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
109                                     UErrorCode &errorCode)
110        : data(NULL),
111          settings(NULL),
112          tailoring(NULL),
113          validLocale(""),
114          explicitlySetAttributes(0),
115          actualLocaleIsSameAsValid(FALSE) {
116    internalBuildTailoring(rules, strength, UCOL_DEFAULT, NULL, NULL, errorCode);
117}
118
119RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
120                                     UColAttributeValue decompositionMode,
121                                     UErrorCode &errorCode)
122        : data(NULL),
123          settings(NULL),
124          tailoring(NULL),
125          validLocale(""),
126          explicitlySetAttributes(0),
127          actualLocaleIsSameAsValid(FALSE) {
128    internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, NULL, NULL, errorCode);
129}
130
131RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
132                                     ECollationStrength strength,
133                                     UColAttributeValue decompositionMode,
134                                     UErrorCode &errorCode)
135        : data(NULL),
136          settings(NULL),
137          tailoring(NULL),
138          validLocale(""),
139          explicitlySetAttributes(0),
140          actualLocaleIsSameAsValid(FALSE) {
141    internalBuildTailoring(rules, strength, decompositionMode, NULL, NULL, errorCode);
142}
143
144RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
145                                     UParseError &parseError, UnicodeString &reason,
146                                     UErrorCode &errorCode)
147        : data(NULL),
148          settings(NULL),
149          tailoring(NULL),
150          validLocale(""),
151          explicitlySetAttributes(0),
152          actualLocaleIsSameAsValid(FALSE) {
153    internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
154}
155
156void
157RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
158                                          int32_t strength,
159                                          UColAttributeValue decompositionMode,
160                                          UParseError *outParseError, UnicodeString *outReason,
161                                          UErrorCode &errorCode) {
162    const CollationTailoring *base = CollationRoot::getRoot(errorCode);
163    if(U_FAILURE(errorCode)) { return; }
164    if(outReason != NULL) { outReason->remove(); }
165    CollationBuilder builder(base, errorCode);
166    UVersionInfo noVersion = { 0, 0, 0, 0 };
167    BundleImporter importer;
168    LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
169                                                             &importer,
170                                                             outParseError, errorCode));
171    if(U_FAILURE(errorCode)) {
172        const char *reason = builder.getErrorReason();
173        if(reason != NULL && outReason != NULL) {
174            *outReason = UnicodeString(reason, -1, US_INV);
175        }
176        return;
177    }
178    t->actualLocale.setToBogus();
179    adoptTailoring(t.orphan());
180    // Set attributes after building the collator,
181    // to keep the default settings consistent with the rule string.
182    if(strength != UCOL_DEFAULT) {
183        setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode);
184    }
185    if(decompositionMode != UCOL_DEFAULT) {
186        setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode);
187    }
188}
189
190// CollationBuilder implementation ----------------------------------------- ***
191
192CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
193        : nfd(*Normalizer2::getNFDInstance(errorCode)),
194          fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
195          nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
196          base(b),
197          baseData(b->data),
198          rootElements(b->data->rootElements, b->data->rootElementsLength),
199          variableTop(0),
200          dataBuilder(new CollationDataBuilder(errorCode)), fastLatinEnabled(TRUE),
201          errorReason(NULL),
202          cesLength(0),
203          rootPrimaryIndexes(errorCode), nodes(errorCode) {
204    nfcImpl.ensureCanonIterData(errorCode);
205    if(U_FAILURE(errorCode)) {
206        errorReason = "CollationBuilder fields initialization failed";
207        return;
208    }
209    if(dataBuilder == NULL) {
210        errorCode = U_MEMORY_ALLOCATION_ERROR;
211        return;
212    }
213    dataBuilder->initForTailoring(baseData, errorCode);
214    if(U_FAILURE(errorCode)) {
215        errorReason = "CollationBuilder initialization failed";
216    }
217}
218
219CollationBuilder::~CollationBuilder() {
220    delete dataBuilder;
221}
222
223CollationTailoring *
224CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
225                                const UVersionInfo rulesVersion,
226                                CollationRuleParser::Importer *importer,
227                                UParseError *outParseError,
228                                UErrorCode &errorCode) {
229    if(U_FAILURE(errorCode)) { return NULL; }
230    if(baseData->rootElements == NULL) {
231        errorCode = U_MISSING_RESOURCE_ERROR;
232        errorReason = "missing root elements data, tailoring not supported";
233        return NULL;
234    }
235    LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
236    if(tailoring.isNull() || tailoring->isBogus()) {
237        errorCode = U_MEMORY_ALLOCATION_ERROR;
238        return NULL;
239    }
240    CollationRuleParser parser(baseData, errorCode);
241    if(U_FAILURE(errorCode)) { return NULL; }
242    // Note: This always bases &[last variable] and &[first regular]
243    // on the root collator's maxVariable/variableTop.
244    // If we wanted this to change after [maxVariable x], then we would keep
245    // the tailoring.settings pointer here and read its variableTop when we need it.
246    // See http://unicode.org/cldr/trac/ticket/6070
247    variableTop = base->settings->variableTop;
248    parser.setSink(this);
249    parser.setImporter(importer);
250    CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings);
251    parser.parse(ruleString, ownedSettings, outParseError, errorCode);
252    errorReason = parser.getErrorReason();
253    if(U_FAILURE(errorCode)) { return NULL; }
254    if(dataBuilder->hasMappings()) {
255        makeTailoredCEs(errorCode);
256        closeOverComposites(errorCode);
257        finalizeCEs(errorCode);
258        // Copy all of ASCII, and Latin-1 letters, into each tailoring.
259        optimizeSet.add(0, 0x7f);
260        optimizeSet.add(0xc0, 0xff);
261        // Hangul is decomposed on the fly during collation,
262        // and the tailoring data is always built with HANGUL_TAG specials.
263        optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
264        dataBuilder->optimize(optimizeSet, errorCode);
265        tailoring->ensureOwnedData(errorCode);
266        if(U_FAILURE(errorCode)) { return NULL; }
267        if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
268        dataBuilder->build(*tailoring->ownedData, errorCode);
269        tailoring->builder = dataBuilder;
270        dataBuilder = NULL;
271    } else {
272        tailoring->data = baseData;
273    }
274    if(U_FAILURE(errorCode)) { return NULL; }
275    ownedSettings.fastLatinOptions = CollationFastLatin::getOptions(
276        tailoring->data, ownedSettings,
277        ownedSettings.fastLatinPrimaries, LENGTHOF(ownedSettings.fastLatinPrimaries));
278    tailoring->rules = ruleString;
279    tailoring->rules.getTerminatedBuffer();  // ensure NUL-termination
280    tailoring->setVersion(base->version, rulesVersion);
281    return tailoring.orphan();
282}
283
284void
285CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
286                           const char *&parserErrorReason, UErrorCode &errorCode) {
287    if(U_FAILURE(errorCode)) { return; }
288    U_ASSERT(!str.isEmpty());
289    if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
290        ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
291        cesLength = 1;
292        if(U_FAILURE(errorCode)) { return; }
293        U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
294    } else {
295        // normal reset to a character or string
296        UnicodeString nfdString = nfd.normalize(str, errorCode);
297        if(U_FAILURE(errorCode)) {
298            parserErrorReason = "normalizing the reset position";
299            return;
300        }
301        cesLength = dataBuilder->getCEs(nfdString, ces, 0);
302        if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
303            errorCode = U_ILLEGAL_ARGUMENT_ERROR;
304            parserErrorReason = "reset position maps to too many collation elements (more than 31)";
305            return;
306        }
307    }
308    if(strength == UCOL_IDENTICAL) { return; }  // simple reset-at-position
309
310    // &[before strength]position
311    U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
312    int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
313    if(U_FAILURE(errorCode)) { return; }
314
315    int64_t node = nodes.elementAti(index);
316    // If the index is for a "weaker" tailored node,
317    // then skip backwards over this and further "weaker" nodes.
318    while(strengthFromNode(node) > strength) {
319        index = previousIndexFromNode(node);
320        node = nodes.elementAti(index);
321    }
322
323    // Find or insert a node whose index we will put into a temporary CE.
324    if(strengthFromNode(node) == strength && isTailoredNode(node)) {
325        // Reset to just before this same-strength tailored node.
326        index = previousIndexFromNode(node);
327    } else if(strength == UCOL_PRIMARY) {
328        // root primary node (has no previous index)
329        uint32_t p = weight32FromNode(node);
330        if(p == 0) {
331            errorCode = U_UNSUPPORTED_ERROR;
332            parserErrorReason = "reset primary-before ignorable not possible";
333            return;
334        }
335        if(p <= rootElements.getFirstPrimary()) {
336            // There is no primary gap between ignorables and the space-first-primary.
337            errorCode = U_UNSUPPORTED_ERROR;
338            parserErrorReason = "reset primary-before first non-ignorable not supported";
339            return;
340        }
341        if(p == Collation::FIRST_TRAILING_PRIMARY) {
342            // We do not support tailoring to an unassigned-implicit CE.
343            errorCode = U_UNSUPPORTED_ERROR;
344            parserErrorReason = "reset primary-before [first trailing] not supported";
345            return;
346        }
347        p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
348        index = findOrInsertNodeForPrimary(p, errorCode);
349        // Go to the last node in this list:
350        // Tailor after the last node between adjacent root nodes.
351        for(;;) {
352            node = nodes.elementAti(index);
353            int32_t nextIndex = nextIndexFromNode(node);
354            if(nextIndex == 0) { break; }
355            index = nextIndex;
356        }
357    } else {
358        // &[before 2] or &[before 3]
359        index = findCommonNode(index, UCOL_SECONDARY);
360        if(strength >= UCOL_TERTIARY) {
361            index = findCommonNode(index, UCOL_TERTIARY);
362        }
363        node = nodes.elementAti(index);
364        if(strengthFromNode(node) == strength) {
365            // Found a same-strength node with an explicit weight.
366            uint32_t weight16 = weight16FromNode(node);
367            if(weight16 == 0) {
368                errorCode = U_UNSUPPORTED_ERROR;
369                if(strength == UCOL_SECONDARY) {
370                    parserErrorReason = "reset secondary-before secondary ignorable not possible";
371                } else {
372                    parserErrorReason = "reset tertiary-before completely ignorable not possible";
373                }
374                return;
375            }
376            U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16);
377            int32_t previousIndex = previousIndexFromNode(node);
378            if(weight16 == Collation::COMMON_WEIGHT16) {
379                // Reset to just before this same-strength common-weight node.
380                index = previousIndex;
381            } else {
382                // A non-common weight is only possible from a root CE.
383                // Find the higher-level weights, which must all be explicit,
384                // and then find the preceding weight for this level.
385                uint32_t previousWeight16 = 0;
386                int32_t previousWeightIndex = -1;
387                int32_t i = index;
388                if(strength == UCOL_SECONDARY) {
389                    uint32_t p;
390                    do {
391                        i = previousIndexFromNode(node);
392                        node = nodes.elementAti(i);
393                        if(strengthFromNode(node) == UCOL_SECONDARY && !isTailoredNode(node) &&
394                                previousWeightIndex < 0) {
395                            previousWeightIndex = i;
396                            previousWeight16 = weight16FromNode(node);
397                        }
398                    } while(strengthFromNode(node) > UCOL_PRIMARY);
399                    U_ASSERT(!isTailoredNode(node));
400                    p = weight32FromNode(node);
401                    weight16 = rootElements.getSecondaryBefore(p, weight16);
402                } else {
403                    uint32_t p, s;
404                    do {
405                        i = previousIndexFromNode(node);
406                        node = nodes.elementAti(i);
407                        if(strengthFromNode(node) == UCOL_TERTIARY && !isTailoredNode(node) &&
408                                previousWeightIndex < 0) {
409                            previousWeightIndex = i;
410                            previousWeight16 = weight16FromNode(node);
411                        }
412                    } while(strengthFromNode(node) > UCOL_SECONDARY);
413                    U_ASSERT(!isTailoredNode(node));
414                    if(strengthFromNode(node) == UCOL_SECONDARY) {
415                        s = weight16FromNode(node);
416                        do {
417                            i = previousIndexFromNode(node);
418                            node = nodes.elementAti(i);
419                        } while(strengthFromNode(node) > UCOL_PRIMARY);
420                        U_ASSERT(!isTailoredNode(node));
421                    } else {
422                        U_ASSERT(!nodeHasBefore2(node));
423                        s = Collation::COMMON_WEIGHT16;
424                    }
425                    p = weight32FromNode(node);
426                    weight16 = rootElements.getTertiaryBefore(p, s, weight16);
427                    U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
428                }
429                // Find or insert the new explicit weight before the current one.
430                if(previousWeightIndex >= 0 && weight16 == previousWeight16) {
431                    // Tailor after the last node between adjacent root nodes.
432                    index = previousIndex;
433                } else {
434                    node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
435                    index = insertNodeBetween(previousIndex, index, node, errorCode);
436                }
437            }
438        } else {
439            // Found a stronger node with implied strength-common weight.
440            int64_t hasBefore3 = 0;
441            if(strength == UCOL_SECONDARY) {
442                U_ASSERT(!nodeHasBefore2(node));
443                // Move the HAS_BEFORE3 flag from the parent node
444                // to the new secondary common node.
445                hasBefore3 = node & HAS_BEFORE3;
446                node = (node & ~(int64_t)HAS_BEFORE3) | HAS_BEFORE2;
447            } else {
448                U_ASSERT(!nodeHasBefore3(node));
449                node |= HAS_BEFORE3;
450            }
451            nodes.setElementAt(node, index);
452            int32_t nextIndex = nextIndexFromNode(node);
453            // Insert default nodes with weights 02 and 05, reset to the 02 node.
454            node = nodeFromWeight16(BEFORE_WEIGHT16) | nodeFromStrength(strength);
455            index = insertNodeBetween(index, nextIndex, node, errorCode);
456            node = nodeFromWeight16(Collation::COMMON_WEIGHT16) | hasBefore3 |
457                    nodeFromStrength(strength);
458            insertNodeBetween(index, nextIndex, node, errorCode);
459        }
460        // Strength of the temporary CE = strength of its reset position.
461        // Code above raises an error if the before-strength is stronger.
462        strength = ceStrength(ces[cesLength - 1]);
463    }
464    if(U_FAILURE(errorCode)) {
465        parserErrorReason = "inserting reset position for &[before n]";
466        return;
467    }
468    ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
469}
470
471int64_t
472CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
473                                          const char *&parserErrorReason, UErrorCode &errorCode) {
474    U_ASSERT(str.length() == 2);
475    int64_t ce;
476    int32_t strength = UCOL_PRIMARY;
477    UBool isBoundary = FALSE;
478    UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
479    U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
480    switch(pos) {
481    case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
482        // Quaternary CEs are not supported.
483        // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
484        return 0;
485    case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
486        return 0;
487    case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
488        // Look for a tailored tertiary node after [0, 0, 0].
489        int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
490        if(U_FAILURE(errorCode)) { return 0; }
491        int64_t node = nodes.elementAti(index);
492        if((index = nextIndexFromNode(node)) != 0) {
493            node = nodes.elementAti(index);
494            U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
495            if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
496                return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
497            }
498        }
499        return rootElements.getFirstTertiaryCE();
500        // No need to look for nodeHasAnyBefore() on a tertiary node.
501    }
502    case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
503        ce = rootElements.getLastTertiaryCE();
504        strength = UCOL_TERTIARY;
505        break;
506    case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
507        // Look for a tailored secondary node after [0, 0, *].
508        int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
509        if(U_FAILURE(errorCode)) { return 0; }
510        int64_t node = nodes.elementAti(index);
511        while((index = nextIndexFromNode(node)) != 0) {
512            node = nodes.elementAti(index);
513            strength = strengthFromNode(node);
514            if(strength < UCOL_SECONDARY) { break; }
515            if(strength == UCOL_SECONDARY) {
516                if(isTailoredNode(node)) {
517                    if(nodeHasBefore3(node)) {
518                        index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
519                        U_ASSERT(isTailoredNode(nodes.elementAti(index)));
520                    }
521                    return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
522                } else {
523                    break;
524                }
525            }
526        }
527        ce = rootElements.getFirstSecondaryCE();
528        strength = UCOL_SECONDARY;
529        break;
530    }
531    case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
532        ce = rootElements.getLastSecondaryCE();
533        strength = UCOL_SECONDARY;
534        break;
535    case CollationRuleParser::FIRST_VARIABLE:
536        ce = rootElements.getFirstPrimaryCE();
537        isBoundary = TRUE;  // FractionalUCA.txt: FDD1 00A0, SPACE first primary
538        break;
539    case CollationRuleParser::LAST_VARIABLE:
540        ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
541        break;
542    case CollationRuleParser::FIRST_REGULAR:
543        ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
544        isBoundary = TRUE;  // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
545        break;
546    case CollationRuleParser::LAST_REGULAR:
547        // Use the Hani-first-primary rather than the actual last "regular" CE before it,
548        // for backward compatibility with behavior before the introduction of
549        // script-first-primary CEs in the root collator.
550        ce = rootElements.firstCEWithPrimaryAtLeast(
551            baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
552        break;
553    case CollationRuleParser::FIRST_IMPLICIT: {
554        uint32_t ce32 = baseData->getCE32(0x4e00);
555        U_ASSERT(Collation::hasCE32Tag(ce32, Collation::OFFSET_TAG));
556        ce = baseData->getCEFromOffsetCE32(0x4e00, ce32);
557        break;
558    }
559    case CollationRuleParser::LAST_IMPLICIT:
560        // We do not support tailoring to an unassigned-implicit CE.
561        errorCode = U_UNSUPPORTED_ERROR;
562        parserErrorReason = "reset to [last implicit] not supported";
563        return 0;
564    case CollationRuleParser::FIRST_TRAILING:
565        ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
566        isBoundary = TRUE;  // trailing first primary (there is no mapping for it)
567        break;
568    case CollationRuleParser::LAST_TRAILING:
569        errorCode = U_ILLEGAL_ARGUMENT_ERROR;
570        parserErrorReason = "LDML forbids tailoring to U+FFFF";
571        return 0;
572    default:
573        U_ASSERT(FALSE);
574        return 0;
575    }
576
577    int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
578    if(U_FAILURE(errorCode)) { return 0; }
579    int64_t node = nodes.elementAti(index);
580    if((pos & 1) == 0) {
581        // even pos = [first xyz]
582        if(!nodeHasAnyBefore(node) && isBoundary) {
583            // A <group> first primary boundary is artificially added to FractionalUCA.txt.
584            // It is reachable via its special contraction, but is not normally used.
585            // Find the first character tailored after the boundary CE,
586            // or the first real root CE after it.
587            if((index = nextIndexFromNode(node)) != 0) {
588                // If there is a following node, then it must be tailored
589                // because there are no root CEs with a boundary primary
590                // and non-common secondary/tertiary weights.
591                node = nodes.elementAti(index);
592                U_ASSERT(isTailoredNode(node));
593                ce = tempCEFromIndexAndStrength(index, strength);
594            } else {
595                U_ASSERT(strength == UCOL_PRIMARY);
596                uint32_t p = (uint32_t)(ce >> 32);
597                int32_t pIndex = rootElements.findPrimary(p);
598                UBool isCompressible = baseData->isCompressiblePrimary(p);
599                p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
600                ce = Collation::makeCE(p);
601                index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
602                if(U_FAILURE(errorCode)) { return 0; }
603                node = nodes.elementAti(index);
604            }
605        }
606        if(nodeHasAnyBefore(node)) {
607            // Get the first node that was tailored before this one at a weaker strength.
608            if(nodeHasBefore2(node)) {
609                index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
610                node = nodes.elementAti(index);
611            }
612            if(nodeHasBefore3(node)) {
613                index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
614            }
615            U_ASSERT(isTailoredNode(nodes.elementAti(index)));
616            ce = tempCEFromIndexAndStrength(index, strength);
617        }
618    } else {
619        // odd pos = [last xyz]
620        // Find the last node that was tailored after the [last xyz]
621        // at a strength no greater than the position's strength.
622        for(;;) {
623            int32_t nextIndex = nextIndexFromNode(node);
624            if(nextIndex == 0) { break; }
625            int64_t nextNode = nodes.elementAti(nextIndex);
626            if(strengthFromNode(nextNode) < strength) { break; }
627            index = nextIndex;
628            node = nextNode;
629        }
630        // Do not make a temporary CE for a root node.
631        // This last node might be the node for the root CE itself,
632        // or a node with a common secondary or tertiary weight.
633        if(isTailoredNode(node)) {
634            ce = tempCEFromIndexAndStrength(index, strength);
635        }
636    }
637    return ce;
638}
639
640void
641CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
642                              const UnicodeString &str, const UnicodeString &extension,
643                              const char *&parserErrorReason, UErrorCode &errorCode) {
644    if(U_FAILURE(errorCode)) { return; }
645    UnicodeString nfdPrefix;
646    if(!prefix.isEmpty()) {
647        nfd.normalize(prefix, nfdPrefix, errorCode);
648        if(U_FAILURE(errorCode)) {
649            parserErrorReason = "normalizing the relation prefix";
650            return;
651        }
652    }
653    UnicodeString nfdString = nfd.normalize(str, errorCode);
654    if(U_FAILURE(errorCode)) {
655        parserErrorReason = "normalizing the relation string";
656        return;
657    }
658
659    // The runtime code decomposes Hangul syllables on the fly,
660    // with recursive processing but without making the Jamo pieces visible for matching.
661    // It does not work with certain types of contextual mappings.
662    int32_t nfdLength = nfdString.length();
663    if(nfdLength >= 2) {
664        UChar c = nfdString.charAt(0);
665        if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
666            // While handling a Hangul syllable, contractions starting with Jamo L or V
667            // would not see the following Jamo of that syllable.
668            errorCode = U_UNSUPPORTED_ERROR;
669            parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
670            return;
671        }
672        c = nfdString.charAt(nfdLength - 1);
673        if(Hangul::isJamoL(c) ||
674                (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
675            // A contraction ending with Jamo L or L+V would require
676            // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
677            // or decomposing a following Hangul syllable on the fly, during contraction matching.
678            errorCode = U_UNSUPPORTED_ERROR;
679            parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
680            return;
681        }
682        // A Hangul syllable completely inside a contraction is ok.
683    }
684    // Note: If there is a prefix, then the parser checked that
685    // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
686    // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
687    // (While handling a Hangul syllable, prefixes on Jamo V or T
688    // would not see the previous Jamo of that syllable.)
689
690    if(strength != UCOL_IDENTICAL) {
691        // Find the node index after which we insert the new tailored node.
692        int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
693        U_ASSERT(cesLength > 0);
694        int64_t ce = ces[cesLength - 1];
695        if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
696            // There is no primary gap between ignorables and the space-first-primary.
697            errorCode = U_UNSUPPORTED_ERROR;
698            parserErrorReason = "tailoring primary after ignorables not supported";
699            return;
700        }
701        if(strength == UCOL_QUATERNARY && ce == 0) {
702            // The CE data structure does not support non-zero quaternary weights
703            // on tertiary ignorables.
704            errorCode = U_UNSUPPORTED_ERROR;
705            parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
706            return;
707        }
708        // Insert the new tailored node.
709        index = insertTailoredNodeAfter(index, strength, errorCode);
710        if(U_FAILURE(errorCode)) {
711            parserErrorReason = "modifying collation elements";
712            return;
713        }
714        // Strength of the temporary CE:
715        // The new relation may yield a stronger CE but not a weaker one.
716        int32_t tempStrength = ceStrength(ce);
717        if(strength < tempStrength) { tempStrength = strength; }
718        ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
719    }
720
721    setCaseBits(nfdString, parserErrorReason, errorCode);
722    if(U_FAILURE(errorCode)) { return; }
723
724    int32_t cesLengthBeforeExtension = cesLength;
725    if(!extension.isEmpty()) {
726        UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
727        if(U_FAILURE(errorCode)) {
728            parserErrorReason = "normalizing the relation extension";
729            return;
730        }
731        cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
732        if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
733            errorCode = U_ILLEGAL_ARGUMENT_ERROR;
734            parserErrorReason =
735                "extension string adds too many collation elements (more than 31 total)";
736            return;
737        }
738    }
739    uint32_t ce32 = Collation::UNASSIGNED_CE32;
740    if((prefix != nfdPrefix || str != nfdString) &&
741            !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
742        // Map from the original input to the CEs.
743        // We do this in case the canonical closure is incomplete,
744        // so that it is possible to explicitly provide the missing mappings.
745        ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
746    }
747    addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
748    if(U_FAILURE(errorCode)) {
749        parserErrorReason = "writing collation elements";
750        return;
751    }
752    cesLength = cesLengthBeforeExtension;
753}
754
755int32_t
756CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
757                                         UErrorCode &errorCode) {
758    if(U_FAILURE(errorCode)) { return 0; }
759    U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
760
761    // Find the last CE that is at least as "strong" as the requested difference.
762    // Note: Stronger is smaller (UCOL_PRIMARY=0).
763    int64_t ce;
764    for(;; --cesLength) {
765        if(cesLength == 0) {
766            ce = ces[0] = 0;
767            cesLength = 1;
768            break;
769        } else {
770            ce = ces[cesLength - 1];
771        }
772        if(ceStrength(ce) <= strength) { break; }
773    }
774
775    if(isTempCE(ce)) {
776        // No need to findCommonNode() here for lower levels
777        // because insertTailoredNodeAfter() will do that anyway.
778        return indexFromTempCE(ce);
779    }
780
781    // root CE
782    if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
783        errorCode = U_UNSUPPORTED_ERROR;
784        parserErrorReason = "tailoring relative to an unassigned code point not supported";
785        return 0;
786    }
787    return findOrInsertNodeForRootCE(ce, strength, errorCode);
788}
789
790int32_t
791CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
792    if(U_FAILURE(errorCode)) { return 0; }
793    U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
794
795    // Find or insert the node for each of the root CE's weights,
796    // down to the requested level/strength.
797    // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
798    U_ASSERT((ce & 0xc0) == 0);
799    int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32) , errorCode);
800    if(strength >= UCOL_SECONDARY) {
801        uint32_t lower32 = (uint32_t)ce;
802        index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
803        if(strength >= UCOL_TERTIARY) {
804            index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
805                                         UCOL_TERTIARY, errorCode);
806        }
807    }
808    return index;
809}
810
811namespace {
812
813/**
814 * Like Java Collections.binarySearch(List, key, Comparator).
815 *
816 * @return the index>=0 where the item was found,
817 *         or the index<0 for inserting the string at ~index in sorted order
818 *         (index into rootPrimaryIndexes)
819 */
820int32_t
821binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
822                               const int64_t *nodes, uint32_t p) {
823    if(length == 0) { return ~0; }
824    int32_t start = 0;
825    int32_t limit = length;
826    for (;;) {
827        int32_t i = (start + limit) / 2;
828        int64_t node = nodes[rootPrimaryIndexes[i]];
829        uint32_t nodePrimary = (uint32_t)(node >> 32);  // weight32FromNode(node)
830        if (p == nodePrimary) {
831            return i;
832        } else if (p < nodePrimary) {
833            if (i == start) {
834                return ~start;  // insert s before i
835            }
836            limit = i;
837        } else {
838            if (i == start) {
839                return ~(start + 1);  // insert s after i
840            }
841            start = i;
842        }
843    }
844}
845
846}  // namespace
847
848int32_t
849CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
850    if(U_FAILURE(errorCode)) { return 0; }
851
852    int32_t rootIndex = binarySearchForRootPrimaryNode(
853        rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
854    if(rootIndex >= 0) {
855        return rootPrimaryIndexes.elementAti(rootIndex);
856    } else {
857        // Start a new list of nodes with this primary.
858        int32_t index = nodes.size();
859        nodes.addElement(nodeFromWeight32(p), errorCode);
860        rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
861        return index;
862    }
863}
864
865int32_t
866CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
867    if(U_FAILURE(errorCode)) { return 0; }
868    U_ASSERT(0 <= index && index < nodes.size());
869
870    U_ASSERT(weight16 == 0 || weight16 >= Collation::COMMON_WEIGHT16);
871    // Only reset-before inserts common weights.
872    if(weight16 == Collation::COMMON_WEIGHT16) {
873        return findCommonNode(index, level);
874    }
875    // Find the root CE's weight for this level.
876    // Postpone insertion if not found:
877    // Insert the new root node before the next stronger node,
878    // or before the next root node with the same strength and a larger weight.
879    int64_t node = nodes.elementAti(index);
880    int32_t nextIndex;
881    while((nextIndex = nextIndexFromNode(node)) != 0) {
882        node = nodes.elementAti(nextIndex);
883        int32_t nextStrength = strengthFromNode(node);
884        if(nextStrength <= level) {
885            // Insert before a stronger node.
886            if(nextStrength < level) { break; }
887            // nextStrength == level
888            if(!isTailoredNode(node)) {
889                uint32_t nextWeight16 = weight16FromNode(node);
890                if(nextWeight16 == weight16) {
891                    // Found the node for the root CE up to this level.
892                    return nextIndex;
893                }
894                // Insert before a node with a larger same-strength weight.
895                if(nextWeight16 > weight16) { break; }
896            }
897        }
898        // Skip the next node.
899        index = nextIndex;
900    }
901    node = nodeFromWeight16(weight16) | nodeFromStrength(level);
902    return insertNodeBetween(index, nextIndex, node, errorCode);
903}
904
905int32_t
906CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
907    if(U_FAILURE(errorCode)) { return 0; }
908    U_ASSERT(0 <= index && index < nodes.size());
909    if(strength >= UCOL_SECONDARY) {
910        index = findCommonNode(index, UCOL_SECONDARY);
911        if(strength >= UCOL_TERTIARY) {
912            index = findCommonNode(index, UCOL_TERTIARY);
913        }
914    }
915    // Postpone insertion:
916    // Insert the new node before the next one with a strength at least as strong.
917    int64_t node = nodes.elementAti(index);
918    int32_t nextIndex;
919    while((nextIndex = nextIndexFromNode(node)) != 0) {
920        node = nodes.elementAti(nextIndex);
921        if(strengthFromNode(node) <= strength) { break; }
922        // Skip the next node which has a weaker (larger) strength than the new one.
923        index = nextIndex;
924    }
925    node = IS_TAILORED | nodeFromStrength(strength);
926    return insertNodeBetween(index, nextIndex, node, errorCode);
927}
928
929int32_t
930CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
931                                    UErrorCode &errorCode) {
932    if(U_FAILURE(errorCode)) { return 0; }
933    U_ASSERT(previousIndexFromNode(node) == 0);
934    U_ASSERT(nextIndexFromNode(node) == 0);
935    U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
936    // Append the new node and link it to the existing nodes.
937    int32_t newIndex = nodes.size();
938    node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
939    nodes.addElement(node, errorCode);
940    if(U_FAILURE(errorCode)) { return 0; }
941    // nodes[index].nextIndex = newIndex
942    node = nodes.elementAti(index);
943    nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
944    // nodes[nextIndex].previousIndex = newIndex
945    if(nextIndex != 0) {
946        node = nodes.elementAti(nextIndex);
947        nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
948    }
949    return newIndex;
950}
951
952int32_t
953CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
954    U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
955    int64_t node = nodes.elementAti(index);
956    if(strengthFromNode(node) >= strength) {
957        // The current node is no stronger.
958        return index;
959    }
960    if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
961        // The current node implies the strength-common weight.
962        return index;
963    }
964    index = nextIndexFromNode(node);
965    node = nodes.elementAti(index);
966    U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
967            weight16FromNode(node) == BEFORE_WEIGHT16);
968    // Skip to the explicit common node.
969    do {
970        index = nextIndexFromNode(node);
971        node = nodes.elementAti(index);
972        U_ASSERT(strengthFromNode(node) >= strength);
973    } while(isTailoredNode(node) || strengthFromNode(node) > strength);
974    U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
975    return index;
976}
977
978void
979CollationBuilder::setCaseBits(const UnicodeString &nfdString,
980                              const char *&parserErrorReason, UErrorCode &errorCode) {
981    if(U_FAILURE(errorCode)) { return; }
982    int32_t numTailoredPrimaries = 0;
983    for(int32_t i = 0; i < cesLength; ++i) {
984        if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
985    }
986    // We should not be able to get too many case bits because
987    // cesLength<=31==MAX_EXPANSION_LENGTH.
988    // 31 pairs of case bits fit into an int64_t without setting its sign bit.
989    U_ASSERT(numTailoredPrimaries <= 31);
990
991    int64_t cases = 0;
992    if(numTailoredPrimaries > 0) {
993        const UChar *s = nfdString.getBuffer();
994        UTF16CollationIterator baseCEs(baseData, FALSE, s, s, s + nfdString.length());
995        int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
996        if(U_FAILURE(errorCode)) {
997            parserErrorReason = "fetching root CEs for tailored string";
998            return;
999        }
1000        U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
1001
1002        uint32_t lastCase = 0;
1003        int32_t numBasePrimaries = 0;
1004        for(int32_t i = 0; i < baseCEsLength; ++i) {
1005            int64_t ce = baseCEs.getCE(i);
1006            if((ce >> 32) != 0) {
1007                ++numBasePrimaries;
1008                uint32_t c = ((uint32_t)ce >> 14) & 3;
1009                U_ASSERT(c == 0 || c == 2);  // lowercase or uppercase, no mixed case in any base CE
1010                if(numBasePrimaries < numTailoredPrimaries) {
1011                    cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
1012                } else if(numBasePrimaries == numTailoredPrimaries) {
1013                    lastCase = c;
1014                } else if(c != lastCase) {
1015                    // There are more base primary CEs than tailored primaries.
1016                    // Set mixed case if the case bits of the remainder differ.
1017                    lastCase = 1;
1018                    // Nothing more can change.
1019                    break;
1020                }
1021            }
1022        }
1023        if(numBasePrimaries >= numTailoredPrimaries) {
1024            cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
1025        }
1026    }
1027
1028    for(int32_t i = 0; i < cesLength; ++i) {
1029        int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff);  // clear old case bits
1030        int32_t strength = ceStrength(ce);
1031        if(strength == UCOL_PRIMARY) {
1032            ce |= (cases & 3) << 14;
1033            cases >>= 2;
1034        } else if(strength == UCOL_TERTIARY) {
1035            // Tertiary CEs must have uppercase bits.
1036            // See the LDML spec, and comments in class CollationCompare.
1037            ce |= 0x8000;
1038        }
1039        // Tertiary ignorable CEs must have 0 case bits.
1040        // We set 0 case bits for secondary CEs too
1041        // since currently only U+0345 is cased and maps to a secondary CE,
1042        // and it is lowercase. Other secondaries are uncased.
1043        // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
1044        ces[i] = ce;
1045    }
1046}
1047
1048void
1049CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
1050                                       UErrorCode &errorCode) {
1051    if(U_FAILURE(errorCode)) { return; }
1052    dataBuilder->suppressContractions(set, errorCode);
1053    if(U_FAILURE(errorCode)) {
1054        parserErrorReason = "application of [suppressContractions [set]] failed";
1055    }
1056}
1057
1058void
1059CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
1060                           UErrorCode &errorCode) {
1061    if(U_FAILURE(errorCode)) { return; }
1062    optimizeSet.addAll(set);
1063}
1064
1065uint32_t
1066CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1067                                 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1068                                 UErrorCode &errorCode) {
1069    // Map from the NFD input to the CEs.
1070    ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1071    ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1072    addTailComposites(nfdPrefix, nfdString, errorCode);
1073    return ce32;
1074}
1075
1076uint32_t
1077CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1078                                 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1079                                 UErrorCode &errorCode) {
1080    if(U_FAILURE(errorCode)) { return ce32; }
1081
1082    // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
1083    if(nfdPrefix.isEmpty()) {
1084        CanonicalIterator stringIter(nfdString, errorCode);
1085        if(U_FAILURE(errorCode)) { return ce32; }
1086        UnicodeString prefix;
1087        for(;;) {
1088            UnicodeString str = stringIter.next();
1089            if(str.isBogus()) { break; }
1090            if(ignoreString(str, errorCode) || str == nfdString) { continue; }
1091            ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1092            if(U_FAILURE(errorCode)) { return ce32; }
1093        }
1094    } else {
1095        CanonicalIterator prefixIter(nfdPrefix, errorCode);
1096        CanonicalIterator stringIter(nfdString, errorCode);
1097        if(U_FAILURE(errorCode)) { return ce32; }
1098        for(;;) {
1099            UnicodeString prefix = prefixIter.next();
1100            if(prefix.isBogus()) { break; }
1101            if(ignorePrefix(prefix, errorCode)) { continue; }
1102            UBool samePrefix = prefix == nfdPrefix;
1103            for(;;) {
1104                UnicodeString str = stringIter.next();
1105                if(str.isBogus()) { break; }
1106                if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
1107                ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1108                if(U_FAILURE(errorCode)) { return ce32; }
1109            }
1110            stringIter.reset();
1111        }
1112    }
1113    return ce32;
1114}
1115
1116void
1117CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1118                                    UErrorCode &errorCode) {
1119    if(U_FAILURE(errorCode)) { return; }
1120
1121    // Look for the last starter in the NFD string.
1122    UChar32 lastStarter;
1123    int32_t indexAfterLastStarter = nfdString.length();
1124    for(;;) {
1125        if(indexAfterLastStarter == 0) { return; }  // no starter at all
1126        lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
1127        if(nfd.getCombiningClass(lastStarter) == 0) { break; }
1128        indexAfterLastStarter -= U16_LENGTH(lastStarter);
1129    }
1130    // No closure to Hangul syllables since we decompose them on the fly.
1131    if(Hangul::isJamoL(lastStarter)) { return; }
1132
1133    // Are there any composites whose decomposition starts with the lastStarter?
1134    // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
1135    // We might find some more equivalent mappings here if it did.
1136    UnicodeSet composites;
1137    if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
1138
1139    UnicodeString decomp;
1140    UnicodeString newNFDString, newString;
1141    int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
1142    UnicodeSetIterator iter(composites);
1143    while(iter.next()) {
1144        U_ASSERT(!iter.isString());
1145        UChar32 composite = iter.getCodepoint();
1146        nfd.getDecomposition(composite, decomp);
1147        if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
1148                                     newNFDString, newString, errorCode)) {
1149            continue;
1150        }
1151        int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
1152        if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
1153            // Ignore mappings that we cannot store.
1154            continue;
1155        }
1156        // Note: It is possible that the newCEs do not make use of the mapping
1157        // for which we are adding the tail composites, in which case we might be adding
1158        // unnecessary mappings.
1159        // For example, when we add tail composites for ae^ (^=combining circumflex),
1160        // UCA discontiguous-contraction matching does not find any matches
1161        // for ae_^ (_=any combining diacritic below) *unless* there is also
1162        // a contraction mapping for ae.
1163        // Thus, if there is no ae contraction, then the ae^ mapping is ignored
1164        // while fetching the newCEs for ae_^.
1165        // TODO: Try to detect this effectively.
1166        // (Alternatively, print a warning when prefix contractions are missing.)
1167
1168        // We do not need an explicit mapping for the NFD strings.
1169        // It is fine if the NFD input collates like this via a sequence of mappings.
1170        // It also saves a little bit of space, and may reduce the set of characters with contractions.
1171        uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
1172                                       newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
1173        if(ce32 != Collation::UNASSIGNED_CE32) {
1174            // was different, was added
1175            addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
1176        }
1177    }
1178}
1179
1180UBool
1181CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
1182                                           int32_t indexAfterLastStarter,
1183                                           UChar32 composite, const UnicodeString &decomp,
1184                                           UnicodeString &newNFDString, UnicodeString &newString,
1185                                           UErrorCode &errorCode) const {
1186    if(U_FAILURE(errorCode)) { return FALSE; }
1187    U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
1188    int32_t lastStarterLength = decomp.moveIndex32(0, 1);
1189    if(lastStarterLength == decomp.length()) {
1190        // Singleton decompositions should be found by addWithClosure()
1191        // and the CanonicalIterator, so we can ignore them here.
1192        return FALSE;
1193    }
1194    if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
1195                         decomp, lastStarterLength, 0x7fffffff) == 0) {
1196        // same strings, nothing new to be found here
1197        return FALSE;
1198    }
1199
1200    // Make new FCD strings that combine a composite, or its decomposition,
1201    // into the nfdString's last starter and the combining marks following it.
1202    // Make an NFD version, and a version with the composite.
1203    newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
1204    newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
1205
1206    // The following is related to discontiguous contraction matching,
1207    // but builds only FCD strings (or else returns FALSE).
1208    int32_t sourceIndex = indexAfterLastStarter;
1209    int32_t decompIndex = lastStarterLength;
1210    // Small optimization: We keep the source character across loop iterations
1211    // because we do not always consume it,
1212    // and then need not fetch it again nor look up its combining class again.
1213    UChar32 sourceChar = U_SENTINEL;
1214    // The cc variables need to be declared before the loop so that at the end
1215    // they are set to the last combining classes seen.
1216    uint8_t sourceCC = 0;
1217    uint8_t decompCC = 0;
1218    for(;;) {
1219        if(sourceChar < 0) {
1220            if(sourceIndex >= nfdString.length()) { break; }
1221            sourceChar = nfdString.char32At(sourceIndex);
1222            sourceCC = nfd.getCombiningClass(sourceChar);
1223            U_ASSERT(sourceCC != 0);
1224        }
1225        // We consume a decomposition character in each iteration.
1226        if(decompIndex >= decomp.length()) { break; }
1227        UChar32 decompChar = decomp.char32At(decompIndex);
1228        decompCC = nfd.getCombiningClass(decompChar);
1229        // Compare the two characters and their combining classes.
1230        if(decompCC == 0) {
1231            // Unable to merge because the source contains a non-zero combining mark
1232            // but the composite's decomposition contains another starter.
1233            // The strings would not be equivalent.
1234            return FALSE;
1235        } else if(sourceCC < decompCC) {
1236            // Composite + sourceChar would not be FCD.
1237            return FALSE;
1238        } else if(decompCC < sourceCC) {
1239            newNFDString.append(decompChar);
1240            decompIndex += U16_LENGTH(decompChar);
1241        } else if(decompChar != sourceChar) {
1242            // Blocked because same combining class.
1243            return FALSE;
1244        } else {  // match: decompChar == sourceChar
1245            newNFDString.append(decompChar);
1246            decompIndex += U16_LENGTH(decompChar);
1247            sourceIndex += U16_LENGTH(decompChar);
1248            sourceChar = U_SENTINEL;
1249        }
1250    }
1251    // We are at the end of at least one of the two inputs.
1252    if(sourceChar >= 0) {  // more characters from nfdString but not from decomp
1253        if(sourceCC < decompCC) {
1254            // Appending the next source character to the composite would not be FCD.
1255            return FALSE;
1256        }
1257        newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
1258        newString.append(nfdString, sourceIndex, 0x7fffffff);
1259    } else if(decompIndex < decomp.length()) {  // more characters from decomp, not from nfdString
1260        newNFDString.append(decomp, decompIndex, 0x7fffffff);
1261    }
1262    U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
1263    U_ASSERT(fcd.isNormalized(newString, errorCode));
1264    U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString);  // canonically equivalent
1265    return TRUE;
1266}
1267
1268UBool
1269CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
1270    // Do not map non-FCD prefixes.
1271    return !isFCD(s, errorCode);
1272}
1273
1274UBool
1275CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
1276    // Do not map non-FCD strings.
1277    // Do not map strings that start with Hangul syllables: We decompose those on the fly.
1278    return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
1279}
1280
1281UBool
1282CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
1283    return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
1284}
1285
1286void
1287CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
1288    UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode);  // Java: static final
1289    if(U_FAILURE(errorCode)) { return; }
1290    // Hangul is decomposed on the fly during collation.
1291    composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
1292    UnicodeString prefix;  // empty
1293    UnicodeString nfdString;
1294    UnicodeSetIterator iter(composites);
1295    while(iter.next()) {
1296        U_ASSERT(!iter.isString());
1297        nfd.getDecomposition(iter.getCodepoint(), nfdString);
1298        cesLength = dataBuilder->getCEs(nfdString, ces, 0);
1299        if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
1300            // Too many CEs from the decomposition (unusual), ignore this composite.
1301            // We could add a capacity parameter to getCEs() and reallocate if necessary.
1302            // However, this can only really happen in contrived cases.
1303            continue;
1304        }
1305        const UnicodeString &composite(iter.getString());
1306        addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
1307    }
1308}
1309
1310uint32_t
1311CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
1312                                 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1313                                 UErrorCode &errorCode) {
1314    if(U_FAILURE(errorCode)) { return ce32; }
1315    int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
1316    int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
1317    if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
1318        if(ce32 == Collation::UNASSIGNED_CE32) {
1319            ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
1320        }
1321        dataBuilder->addCE32(prefix, str, ce32, errorCode);
1322    }
1323    return ce32;
1324}
1325
1326UBool
1327CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
1328                          const int64_t ces2[], int32_t ces2Length) {
1329    if(ces1Length != ces2Length) {
1330        return FALSE;
1331    }
1332    U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
1333    for(int32_t i = 0; i < ces1Length; ++i) {
1334        if(ces1[i] != ces2[i]) { return FALSE; }
1335    }
1336    return TRUE;
1337}
1338
1339#ifdef DEBUG_COLLATION_BUILDER
1340
1341uint32_t
1342alignWeightRight(uint32_t w) {
1343    if(w != 0) {
1344        while((w & 0xff) == 0) { w >>= 8; }
1345    }
1346    return w;
1347}
1348
1349#endif
1350
1351void
1352CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
1353    if(U_FAILURE(errorCode)) { return; }
1354
1355    CollationWeights primaries, secondaries, tertiaries;
1356    int64_t *nodesArray = nodes.getBuffer();
1357
1358    for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
1359        int32_t i = rootPrimaryIndexes.elementAti(rpi);
1360        int64_t node = nodesArray[i];
1361        uint32_t p = weight32FromNode(node);
1362        uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
1363        uint32_t t = s;
1364        uint32_t q = 0;
1365        UBool pIsTailored = FALSE;
1366        UBool sIsTailored = FALSE;
1367        UBool tIsTailored = FALSE;
1368#ifdef DEBUG_COLLATION_BUILDER
1369        printf("\nprimary     %lx\n", (long)alignWeightRight(p));
1370#endif
1371        int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
1372        int32_t nextIndex = nextIndexFromNode(node);
1373        while(nextIndex != 0) {
1374            i = nextIndex;
1375            node = nodesArray[i];
1376            nextIndex = nextIndexFromNode(node);
1377            int32_t strength = strengthFromNode(node);
1378            if(strength == UCOL_QUATERNARY) {
1379                U_ASSERT(isTailoredNode(node));
1380#ifdef DEBUG_COLLATION_BUILDER
1381                printf("      quat+     ");
1382#endif
1383                if(q == 3) {
1384                    errorCode = U_BUFFER_OVERFLOW_ERROR;
1385                    errorReason = "quaternary tailoring gap too small";
1386                    return;
1387                }
1388                ++q;
1389            } else {
1390                if(strength == UCOL_TERTIARY) {
1391                    if(isTailoredNode(node)) {
1392#ifdef DEBUG_COLLATION_BUILDER
1393                        printf("    ter+        ");
1394#endif
1395                        if(!tIsTailored) {
1396                            // First tailored tertiary node for [p, s].
1397                            int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
1398                                                                UCOL_TERTIARY) + 1;
1399                            uint32_t tLimit;
1400                            if(t == 0) {
1401                                // Gap at the beginning of the tertiary CE range.
1402                                t = rootElements.getTertiaryBoundary() - 0x100;
1403                                tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
1404                            } else if(t == BEFORE_WEIGHT16) {
1405                                tLimit = Collation::COMMON_WEIGHT16;
1406                            } else if(!pIsTailored && !sIsTailored) {
1407                                // p and s are root weights.
1408                                tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
1409                            } else {
1410                                // [p, s] is tailored.
1411                                U_ASSERT(t == Collation::COMMON_WEIGHT16);
1412                                tLimit = rootElements.getTertiaryBoundary();
1413                            }
1414                            U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
1415                            tertiaries.initForTertiary();
1416                            if(!tertiaries.allocWeights(t, tLimit, tCount)) {
1417                                errorCode = U_BUFFER_OVERFLOW_ERROR;
1418                                errorReason = "tertiary tailoring gap too small";
1419                                return;
1420                            }
1421                            tIsTailored = TRUE;
1422                        }
1423                        t = tertiaries.nextWeight();
1424                        U_ASSERT(t != 0xffffffff);
1425                    } else {
1426                        t = weight16FromNode(node);
1427                        tIsTailored = FALSE;
1428#ifdef DEBUG_COLLATION_BUILDER
1429                        printf("    ter     %lx\n", (long)alignWeightRight(t));
1430#endif
1431                    }
1432                } else {
1433                    if(strength == UCOL_SECONDARY) {
1434                        if(isTailoredNode(node)) {
1435#ifdef DEBUG_COLLATION_BUILDER
1436                            printf("  sec+          ");
1437#endif
1438                            if(!sIsTailored) {
1439                                // First tailored secondary node for p.
1440                                int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
1441                                                                    UCOL_SECONDARY) + 1;
1442                                uint32_t sLimit;
1443                                if(s == 0) {
1444                                    // Gap at the beginning of the secondary CE range.
1445                                    s = rootElements.getSecondaryBoundary() - 0x100;
1446                                    sLimit = rootElements.getFirstSecondaryCE() >> 16;
1447                                } else if(s == BEFORE_WEIGHT16) {
1448                                    sLimit = Collation::COMMON_WEIGHT16;
1449                                } else if(!pIsTailored) {
1450                                    // p is a root primary.
1451                                    sLimit = rootElements.getSecondaryAfter(pIndex, s);
1452                                } else {
1453                                    // p is a tailored primary.
1454                                    U_ASSERT(s == Collation::COMMON_WEIGHT16);
1455                                    sLimit = rootElements.getSecondaryBoundary();
1456                                }
1457                                if(s == Collation::COMMON_WEIGHT16) {
1458                                    // Do not tailor into the getSortKey() range of
1459                                    // compressed common secondaries.
1460                                    s = rootElements.getLastCommonSecondary();
1461                                }
1462                                secondaries.initForSecondary();
1463                                if(!secondaries.allocWeights(s, sLimit, sCount)) {
1464                                    errorCode = U_BUFFER_OVERFLOW_ERROR;
1465                                    errorReason = "secondary tailoring gap too small";
1466                                    return;
1467                                }
1468                                sIsTailored = TRUE;
1469                            }
1470                            s = secondaries.nextWeight();
1471                            U_ASSERT(s != 0xffffffff);
1472                        } else {
1473                            s = weight16FromNode(node);
1474                            sIsTailored = FALSE;
1475#ifdef DEBUG_COLLATION_BUILDER
1476                            printf("  sec       %lx\n", (long)alignWeightRight(s));
1477#endif
1478                        }
1479                    } else /* UCOL_PRIMARY */ {
1480                        U_ASSERT(isTailoredNode(node));
1481#ifdef DEBUG_COLLATION_BUILDER
1482                        printf("pri+            ");
1483#endif
1484                        if(!pIsTailored) {
1485                            // First tailored primary node in this list.
1486                            int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
1487                                                                UCOL_PRIMARY) + 1;
1488                            UBool isCompressible = baseData->isCompressiblePrimary(p);
1489                            uint32_t pLimit =
1490                                rootElements.getPrimaryAfter(p, pIndex, isCompressible);
1491                            primaries.initForPrimary(isCompressible);
1492                            if(!primaries.allocWeights(p, pLimit, pCount)) {
1493                                errorCode = U_BUFFER_OVERFLOW_ERROR;  // TODO: introduce a more specific UErrorCode?
1494                                errorReason = "primary tailoring gap too small";
1495                                return;
1496                            }
1497                            pIsTailored = TRUE;
1498                        }
1499                        p = primaries.nextWeight();
1500                        U_ASSERT(p != 0xffffffff);
1501                        s = Collation::COMMON_WEIGHT16;
1502                        sIsTailored = FALSE;
1503                    }
1504                    t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
1505                    tIsTailored = FALSE;
1506                }
1507                q = 0;
1508            }
1509            if(isTailoredNode(node)) {
1510                nodesArray[i] = Collation::makeCE(p, s, t, q);
1511#ifdef DEBUG_COLLATION_BUILDER
1512                printf("%016llx\n", (long long)nodesArray[i]);
1513#endif
1514            }
1515        }
1516    }
1517}
1518
1519int32_t
1520CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
1521    int32_t count = 0;
1522    for(;;) {
1523        if(i == 0) { break; }
1524        int64_t node = nodesArray[i];
1525        if(strengthFromNode(node) < strength) { break; }
1526        if(strengthFromNode(node) == strength) {
1527            if(isTailoredNode(node)) {
1528                ++count;
1529            } else {
1530                break;
1531            }
1532        }
1533        i = nextIndexFromNode(node);
1534    }
1535    return count;
1536}
1537
1538class CEFinalizer : public CollationDataBuilder::CEModifier {
1539public:
1540    CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
1541    virtual ~CEFinalizer();
1542    virtual int64_t modifyCE32(uint32_t ce32) const {
1543        U_ASSERT(!Collation::isSpecialCE32(ce32));
1544        if(CollationBuilder::isTempCE32(ce32)) {
1545            // retain case bits
1546            return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
1547        } else {
1548            return Collation::NO_CE;
1549        }
1550    }
1551    virtual int64_t modifyCE(int64_t ce) const {
1552        if(CollationBuilder::isTempCE(ce)) {
1553            // retain case bits
1554            return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
1555        } else {
1556            return Collation::NO_CE;
1557        }
1558    }
1559
1560private:
1561    const int64_t *finalCEs;
1562};
1563
1564CEFinalizer::~CEFinalizer() {}
1565
1566void
1567CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
1568    if(U_FAILURE(errorCode)) { return; }
1569    LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(errorCode));
1570    if(newBuilder.isNull()) {
1571        errorCode = U_MEMORY_ALLOCATION_ERROR;
1572        return;
1573    }
1574    newBuilder->initForTailoring(baseData, errorCode);
1575    CEFinalizer finalizer(nodes.getBuffer());
1576    newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
1577    if(U_FAILURE(errorCode)) { return; }
1578    delete dataBuilder;
1579    dataBuilder = newBuilder.orphan();
1580}
1581
1582int32_t
1583CollationBuilder::ceStrength(int64_t ce) {
1584    return
1585        isTempCE(ce) ? strengthFromTempCE(ce) :
1586        (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
1587        ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
1588        ce != 0 ? UCOL_TERTIARY :
1589        UCOL_IDENTICAL;
1590}
1591
1592U_NAMESPACE_END
1593
1594U_NAMESPACE_USE
1595
1596U_CAPI UCollator * U_EXPORT2
1597ucol_openRules(const UChar *rules, int32_t rulesLength,
1598               UColAttributeValue normalizationMode, UCollationStrength strength,
1599               UParseError *parseError, UErrorCode *pErrorCode) {
1600    if(U_FAILURE(*pErrorCode)) { return NULL; }
1601    if(rules == NULL && rulesLength != 0) {
1602        *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
1603        return NULL;
1604    }
1605    RuleBasedCollator *coll = new RuleBasedCollator();
1606    if(coll == NULL) {
1607        *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
1608        return NULL;
1609    }
1610    UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
1611    coll->internalBuildTailoring(r, strength, normalizationMode, parseError, NULL, *pErrorCode);
1612    if(U_FAILURE(*pErrorCode)) {
1613        delete coll;
1614        return NULL;
1615    }
1616    return coll->toUCollator();
1617}
1618
1619static const int32_t internalBufferSize = 512;
1620
1621// The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
1622// because it calls UnicodeSet "builder" code that depends on all Unicode properties,
1623// and the rest of the collation "runtime" code only depends on normalization.
1624// This function is not related to the collation builder,
1625// but it did not seem worth moving it into its own .cpp file,
1626// nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
1627U_CAPI int32_t U_EXPORT2
1628ucol_getUnsafeSet( const UCollator *coll,
1629                  USet *unsafe,
1630                  UErrorCode *status)
1631{
1632    UChar buffer[internalBufferSize];
1633    int32_t len = 0;
1634
1635    uset_clear(unsafe);
1636
1637    // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
1638    static const UChar cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
1639                                    0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
1640
1641    // add chars that fail the fcd check
1642    uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
1643
1644    // add lead/trail surrogates
1645    // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
1646    // not when testing code *points*)
1647    uset_addRange(unsafe, 0xd800, 0xdfff);
1648
1649    USet *contractions = uset_open(0,0);
1650
1651    int32_t i = 0, j = 0;
1652    ucol_getContractionsAndExpansions(coll, contractions, NULL, FALSE, status);
1653    int32_t contsSize = uset_size(contractions);
1654    UChar32 c = 0;
1655    // Contraction set consists only of strings
1656    // to get unsafe code points, we need to
1657    // break the strings apart and add them to the unsafe set
1658    for(i = 0; i < contsSize; i++) {
1659        len = uset_getItem(contractions, i, NULL, NULL, buffer, internalBufferSize, status);
1660        if(len > 0) {
1661            j = 0;
1662            while(j < len) {
1663                U16_NEXT(buffer, j, len, c);
1664                if(j < len) {
1665                    uset_add(unsafe, c);
1666                }
1667            }
1668        }
1669    }
1670
1671    uset_close(contractions);
1672
1673    return uset_size(unsafe);
1674}
1675
1676#endif  // !UCONFIG_NO_COLLATION
1677