1/*
2*******************************************************************************
3* Copyright (C) 1997-2013, International Business Machines Corporation and
4* others. All Rights Reserved.
5*******************************************************************************
6*
7* File GREGOCAL.CPP
8*
9* Modification History:
10*
11*   Date        Name        Description
12*   02/05/97    clhuang     Creation.
13*   03/28/97    aliu        Made highly questionable fix to computeFields to
14*                           handle DST correctly.
15*   04/22/97    aliu        Cleaned up code drastically.  Added monthLength().
16*                           Finished unimplemented parts of computeTime() for
17*                           week-based date determination.  Removed quetionable
18*                           fix and wrote correct fix for computeFields() and
19*                           daylight time handling.  Rewrote inDaylightTime()
20*                           and computeFields() to handle sensitive Daylight to
21*                           Standard time transitions correctly.
22*   05/08/97    aliu        Added code review changes.  Fixed isLeapYear() to
23*                           not cutover.
24*   08/12/97    aliu        Added equivalentTo.  Misc other fixes.  Updated
25*                           add() from Java source.
26*    07/28/98    stephen        Sync up with JDK 1.2
27*    09/14/98    stephen        Changed type of kOneDay, kOneWeek to double.
28*                            Fixed bug in roll()
29*   10/15/99    aliu        Fixed j31, incorrect WEEK_OF_YEAR computation.
30*   10/15/99    aliu        Fixed j32, cannot set date to Feb 29 2000 AD.
31*                           {JDK bug 4210209 4209272}
32*   11/15/99    weiv        Added YEAR_WOY and DOW_LOCAL computation
33*                           to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues
34*   12/09/99    aliu        Fixed j81, calculation errors and roll bugs
35*                           in year of cutover.
36*   01/24/2000  aliu        Revised computeJulianDay for YEAR YEAR_WOY WOY.
37********************************************************************************
38*/
39
40#include "unicode/utypes.h"
41#include <float.h>
42
43#if !UCONFIG_NO_FORMATTING
44
45#include "unicode/gregocal.h"
46#include "gregoimp.h"
47#include "umutex.h"
48#include "uassert.h"
49
50// *****************************************************************************
51// class GregorianCalendar
52// *****************************************************************************
53
54/**
55* Note that the Julian date used here is not a true Julian date, since
56* it is measured from midnight, not noon.  This value is the Julian
57* day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU]
58*/
59
60static const int16_t kNumDays[]
61= {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year
62static const int16_t kLeapNumDays[]
63= {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year
64static const int8_t kMonthLength[]
65= {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
66static const int8_t kLeapMonthLength[]
67= {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based
68
69// setTimeInMillis() limits the Julian day range to +/-7F000000.
70// This would seem to limit the year range to:
71//  ms=+183882168921600000  jd=7f000000  December 20, 5828963 AD
72//  ms=-184303902528000000  jd=81000000  September 20, 5838270 BC
73// HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual
74// range limit on the year field is smaller (~ +/-140000). [alan 3.0]
75
76static const int32_t kGregorianCalendarLimits[UCAL_FIELD_COUNT][4] = {
77    // Minimum  Greatest    Least  Maximum
78    //           Minimum  Maximum
79    {        0,        0,        1,        1}, // ERA
80    {        1,        1,   140742,   144683}, // YEAR
81    {        0,        0,       11,       11}, // MONTH
82    {        1,        1,       52,       53}, // WEEK_OF_YEAR
83    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
84    {        1,        1,       28,       31}, // DAY_OF_MONTH
85    {        1,        1,      365,      366}, // DAY_OF_YEAR
86    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
87    {       -1,       -1,        4,        5}, // DAY_OF_WEEK_IN_MONTH
88    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
89    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
90    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
91    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
92    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
93    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
94    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
95    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
96    {  -140742,  -140742,   140742,   144683}, // YEAR_WOY
97    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
98    {  -140742,  -140742,   140742,   144683}, // EXTENDED_YEAR
99    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
100    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
101    {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH
102};
103
104/*
105* <pre>
106*                            Greatest       Least
107* Field name        Minimum   Minimum     Maximum     Maximum
108* ----------        -------   -------     -------     -------
109* ERA                     0         0           1           1
110* YEAR                    1         1      140742      144683
111* MONTH                   0         0          11          11
112* WEEK_OF_YEAR            1         1          52          53
113* WEEK_OF_MONTH           0         0           4           6
114* DAY_OF_MONTH            1         1          28          31
115* DAY_OF_YEAR             1         1         365         366
116* DAY_OF_WEEK             1         1           7           7
117* DAY_OF_WEEK_IN_MONTH   -1        -1           4           5
118* AM_PM                   0         0           1           1
119* HOUR                    0         0          11          11
120* HOUR_OF_DAY             0         0          23          23
121* MINUTE                  0         0          59          59
122* SECOND                  0         0          59          59
123* MILLISECOND             0         0         999         999
124* ZONE_OFFSET           -12*      -12*         12*         12*
125* DST_OFFSET              0         0           1*          1*
126* YEAR_WOY                1         1      140742      144683
127* DOW_LOCAL               1         1           7           7
128* </pre>
129* (*) In units of one-hour
130*/
131
132#if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
133#include <stdio.h>
134#endif
135
136U_NAMESPACE_BEGIN
137
138UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar)
139
140// 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch.
141// Note that only Italy and other Catholic countries actually
142// observed this cutover.  Most other countries followed in
143// the next few centuries, some as late as 1928. [LIU]
144// in Java, -12219292800000L
145//const UDate GregorianCalendar::kPapalCutover = -12219292800000L;
146static const uint32_t kCutoverJulianDay = 2299161;
147static const UDate kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * U_MILLIS_PER_DAY;
148//static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay);
149
150// -------------------------------------
151
152GregorianCalendar::GregorianCalendar(UErrorCode& status)
153:   Calendar(status),
154fGregorianCutover(kPapalCutover),
155fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
156fIsGregorian(TRUE), fInvertGregorian(FALSE)
157{
158    setTimeInMillis(getNow(), status);
159}
160
161// -------------------------------------
162
163GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status)
164:   Calendar(zone, Locale::getDefault(), status),
165fGregorianCutover(kPapalCutover),
166fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
167fIsGregorian(TRUE), fInvertGregorian(FALSE)
168{
169    setTimeInMillis(getNow(), status);
170}
171
172// -------------------------------------
173
174GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status)
175:   Calendar(zone, Locale::getDefault(), status),
176fGregorianCutover(kPapalCutover),
177fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
178fIsGregorian(TRUE), fInvertGregorian(FALSE)
179{
180    setTimeInMillis(getNow(), status);
181}
182
183// -------------------------------------
184
185GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status)
186:   Calendar(TimeZone::createDefault(), aLocale, status),
187fGregorianCutover(kPapalCutover),
188fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
189fIsGregorian(TRUE), fInvertGregorian(FALSE)
190{
191    setTimeInMillis(getNow(), status);
192}
193
194// -------------------------------------
195
196GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale,
197                                     UErrorCode& status)
198                                     :   Calendar(zone, aLocale, status),
199                                     fGregorianCutover(kPapalCutover),
200                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
201                                     fIsGregorian(TRUE), fInvertGregorian(FALSE)
202{
203    setTimeInMillis(getNow(), status);
204}
205
206// -------------------------------------
207
208GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale,
209                                     UErrorCode& status)
210                                     :   Calendar(zone, aLocale, status),
211                                     fGregorianCutover(kPapalCutover),
212                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
213                                     fIsGregorian(TRUE), fInvertGregorian(FALSE)
214{
215    setTimeInMillis(getNow(), status);
216}
217
218// -------------------------------------
219
220GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
221                                     UErrorCode& status)
222                                     :   Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
223                                     fGregorianCutover(kPapalCutover),
224                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
225                                     fIsGregorian(TRUE), fInvertGregorian(FALSE)
226{
227    set(UCAL_ERA, AD);
228    set(UCAL_YEAR, year);
229    set(UCAL_MONTH, month);
230    set(UCAL_DATE, date);
231}
232
233// -------------------------------------
234
235GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
236                                     int32_t hour, int32_t minute, UErrorCode& status)
237                                     :   Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
238                                     fGregorianCutover(kPapalCutover),
239                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
240                                     fIsGregorian(TRUE), fInvertGregorian(FALSE)
241{
242    set(UCAL_ERA, AD);
243    set(UCAL_YEAR, year);
244    set(UCAL_MONTH, month);
245    set(UCAL_DATE, date);
246    set(UCAL_HOUR_OF_DAY, hour);
247    set(UCAL_MINUTE, minute);
248}
249
250// -------------------------------------
251
252GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
253                                     int32_t hour, int32_t minute, int32_t second,
254                                     UErrorCode& status)
255                                     :   Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
256                                     fGregorianCutover(kPapalCutover),
257                                     fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
258                                     fIsGregorian(TRUE), fInvertGregorian(FALSE)
259{
260    set(UCAL_ERA, AD);
261    set(UCAL_YEAR, year);
262    set(UCAL_MONTH, month);
263    set(UCAL_DATE, date);
264    set(UCAL_HOUR_OF_DAY, hour);
265    set(UCAL_MINUTE, minute);
266    set(UCAL_SECOND, second);
267}
268
269// -------------------------------------
270
271GregorianCalendar::~GregorianCalendar()
272{
273}
274
275// -------------------------------------
276
277GregorianCalendar::GregorianCalendar(const GregorianCalendar &source)
278:   Calendar(source),
279fGregorianCutover(source.fGregorianCutover),
280fCutoverJulianDay(source.fCutoverJulianDay), fNormalizedGregorianCutover(source.fNormalizedGregorianCutover), fGregorianCutoverYear(source.fGregorianCutoverYear),
281fIsGregorian(source.fIsGregorian), fInvertGregorian(source.fInvertGregorian)
282{
283}
284
285// -------------------------------------
286
287Calendar* GregorianCalendar::clone() const
288{
289    return new GregorianCalendar(*this);
290}
291
292// -------------------------------------
293
294GregorianCalendar &
295GregorianCalendar::operator=(const GregorianCalendar &right)
296{
297    if (this != &right)
298    {
299        Calendar::operator=(right);
300        fGregorianCutover = right.fGregorianCutover;
301        fNormalizedGregorianCutover = right.fNormalizedGregorianCutover;
302        fGregorianCutoverYear = right.fGregorianCutoverYear;
303        fCutoverJulianDay = right.fCutoverJulianDay;
304    }
305    return *this;
306}
307
308// -------------------------------------
309
310UBool GregorianCalendar::isEquivalentTo(const Calendar& other) const
311{
312    // Calendar override.
313    return Calendar::isEquivalentTo(other) &&
314        fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover;
315}
316
317// -------------------------------------
318
319void
320GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status)
321{
322    if (U_FAILURE(status))
323        return;
324
325    fGregorianCutover = date;
326
327    // Precompute two internal variables which we use to do the actual
328    // cutover computations.  These are the normalized cutover, which is the
329    // midnight at or before the cutover, and the cutover year.  The
330    // normalized cutover is in pure date milliseconds; it contains no time
331    // of day or timezone component, and it used to compare against other
332    // pure date values.
333    int32_t cutoverDay = (int32_t)ClockMath::floorDivide(fGregorianCutover, (double)kOneDay);
334    fNormalizedGregorianCutover = cutoverDay * kOneDay;
335
336    // Handle the rare case of numeric overflow.  If the user specifies a
337    // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian
338    // calendar, then the epoch day is -106751991168, which when multiplied
339    // by ONE_DAY gives 9223372036794351616 -- the negative value is too
340    // large for 64 bits, and overflows into a positive value.  We correct
341    // this by using the next day, which for all intents is semantically
342    // equivalent.
343    if (cutoverDay < 0 && fNormalizedGregorianCutover > 0) {
344        fNormalizedGregorianCutover = (cutoverDay + 1) * kOneDay;
345    }
346
347    // Normalize the year so BC values are represented as 0 and negative
348    // values.
349    GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status);
350    /* test for NULL */
351    if (cal == 0) {
352        status = U_MEMORY_ALLOCATION_ERROR;
353        return;
354    }
355    if(U_FAILURE(status))
356        return;
357    cal->setTime(date, status);
358    fGregorianCutoverYear = cal->get(UCAL_YEAR, status);
359    if (cal->get(UCAL_ERA, status) == BC)
360        fGregorianCutoverYear = 1 - fGregorianCutoverYear;
361    fCutoverJulianDay = cutoverDay;
362    delete cal;
363}
364
365
366void GregorianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& status) {
367    int32_t eyear, month, dayOfMonth, dayOfYear, unusedRemainder;
368
369
370    if(U_FAILURE(status)) {
371        return;
372    }
373
374#if defined (U_DEBUG_CAL)
375    fprintf(stderr, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n",
376        __FILE__, __LINE__, julianDay, getGregorianDayOfYear(), fCutoverJulianDay);
377#endif
378
379
380    if (julianDay >= fCutoverJulianDay) {
381        month = getGregorianMonth();
382        dayOfMonth = getGregorianDayOfMonth();
383        dayOfYear = getGregorianDayOfYear();
384        eyear = getGregorianYear();
385    } else {
386        // The Julian epoch day (not the same as Julian Day)
387        // is zero on Saturday December 30, 0 (Gregorian).
388        int32_t julianEpochDay = julianDay - (kJan1_1JulianDay - 2);
389		eyear = (int32_t) ClockMath::floorDivide((4.0*julianEpochDay) + 1464.0, (int32_t) 1461, unusedRemainder);
390
391        // Compute the Julian calendar day number for January 1, eyear
392        int32_t january1 = 365*(eyear-1) + ClockMath::floorDivide(eyear-1, (int32_t)4);
393        dayOfYear = (julianEpochDay - january1); // 0-based
394
395        // Julian leap years occurred historically every 4 years starting
396        // with 8 AD.  Before 8 AD the spacing is irregular; every 3 years
397        // from 45 BC to 9 BC, and then none until 8 AD.  However, we don't
398        // implement this historical detail; instead, we implement the
399        // computatinally cleaner proleptic calendar, which assumes
400        // consistent 4-year cycles throughout time.
401        UBool isLeap = ((eyear&0x3) == 0); // equiv. to (eyear%4 == 0)
402
403        // Common Julian/Gregorian calculation
404        int32_t correction = 0;
405        int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
406        if (dayOfYear >= march1) {
407            correction = isLeap ? 1 : 2;
408        }
409        month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month
410        dayOfMonth = dayOfYear - (isLeap?kLeapNumDays[month]:kNumDays[month]) + 1; // one-based DOM
411        ++dayOfYear;
412#if defined (U_DEBUG_CAL)
413        //     fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month );
414        //           fprintf(stderr, "%s:%d:  greg's HCF %d -> %d/%d/%d not %d/%d/%d\n",
415        //                   __FILE__, __LINE__,julianDay,
416        //          eyear,month,dayOfMonth,
417        //          getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth()  );
418        fprintf(stderr, "%s:%d: doy %d (greg's %d)- [cut=%d]\n",
419            __FILE__, __LINE__, dayOfYear, getGregorianDayOfYear(), fCutoverJulianDay);
420#endif
421
422    }
423
424    // [j81] if we are after the cutover in its year, shift the day of the year
425    if((eyear == fGregorianCutoverYear) && (julianDay >= fCutoverJulianDay)) {
426        //from handleComputeMonthStart
427        int32_t gregShift = Grego::gregorianShift(eyear);
428#if defined (U_DEBUG_CAL)
429        fprintf(stderr, "%s:%d:  gregorian shift %d :::  doy%d => %d [cut=%d]\n",
430            __FILE__, __LINE__,gregShift, dayOfYear, dayOfYear+gregShift, fCutoverJulianDay);
431#endif
432        dayOfYear += gregShift;
433    }
434
435    internalSet(UCAL_MONTH, month);
436    internalSet(UCAL_DAY_OF_MONTH, dayOfMonth);
437    internalSet(UCAL_DAY_OF_YEAR, dayOfYear);
438    internalSet(UCAL_EXTENDED_YEAR, eyear);
439    int32_t era = AD;
440    if (eyear < 1) {
441        era = BC;
442        eyear = 1 - eyear;
443    }
444    internalSet(UCAL_ERA, era);
445    internalSet(UCAL_YEAR, eyear);
446}
447
448
449// -------------------------------------
450
451UDate
452GregorianCalendar::getGregorianChange() const
453{
454    return fGregorianCutover;
455}
456
457// -------------------------------------
458
459UBool
460GregorianCalendar::isLeapYear(int32_t year) const
461{
462    // MSVC complains bitterly if we try to use Grego::isLeapYear here
463    // NOTE: year&0x3 == year%4
464    return (year >= fGregorianCutoverYear ?
465        (((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian
466    ((year&0x3) == 0)); // Julian
467}
468
469// -------------------------------------
470
471int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField)
472{
473    fInvertGregorian = FALSE;
474
475    int32_t jd = Calendar::handleComputeJulianDay(bestField);
476
477    if((bestField == UCAL_WEEK_OF_YEAR) &&  // if we are doing WOY calculations, we are counting relative to Jan 1 *julian*
478        (internalGet(UCAL_EXTENDED_YEAR)==fGregorianCutoverYear) &&
479        jd >= fCutoverJulianDay) {
480            fInvertGregorian = TRUE;  // So that the Julian Jan 1 will be used in handleComputeMonthStart
481            return Calendar::handleComputeJulianDay(bestField);
482        }
483
484
485        // The following check handles portions of the cutover year BEFORE the
486        // cutover itself happens.
487        //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) {  /*  cutoverJulianDay)) { */
488        if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) {  /*  cutoverJulianDay)) { */
489#if defined (U_DEBUG_CAL)
490            fprintf(stderr, "%s:%d: jd [invert] %d\n",
491                __FILE__, __LINE__, jd);
492#endif
493            fInvertGregorian = TRUE;
494            jd = Calendar::handleComputeJulianDay(bestField);
495#if defined (U_DEBUG_CAL)
496            fprintf(stderr, "%s:%d:  fIsGregorian %s, fInvertGregorian %s - ",
497                __FILE__, __LINE__,fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
498            fprintf(stderr, " jd NOW %d\n",
499                jd);
500#endif
501        } else {
502#if defined (U_DEBUG_CAL)
503            fprintf(stderr, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n",
504                __FILE__, __LINE__, jd, fIsGregorian?"T":"F", fInvertGregorian?"T":"F", bestField);
505#endif
506        }
507
508        if(fIsGregorian && (internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutoverYear)) {
509            int32_t gregShift = Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR));
510            if (bestField == UCAL_DAY_OF_YEAR) {
511#if defined (U_DEBUG_CAL)
512                fprintf(stderr, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n",
513                    __FILE__, __LINE__, fFields[bestField],jd, gregShift);
514#endif
515                jd -= gregShift;
516            } else if ( bestField == UCAL_WEEK_OF_MONTH ) {
517                int32_t weekShift = 14;
518#if defined (U_DEBUG_CAL)
519                fprintf(stderr, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n",
520                    __FILE__, __LINE__, jd, weekShift);
521#endif
522                jd += weekShift; // shift by weeks for week based fields.
523            }
524        }
525
526        return jd;
527}
528
529int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month,
530
531                                                   UBool /* useMonth */) const
532{
533    GregorianCalendar *nonConstThis = (GregorianCalendar*)this; // cast away const
534
535    // If the month is out of range, adjust it into range, and
536    // modify the extended year value accordingly.
537    if (month < 0 || month > 11) {
538        eyear += ClockMath::floorDivide(month, 12, month);
539    }
540
541    UBool isLeap = eyear%4 == 0;
542    int32_t y = eyear-1;
543    int32_t julianDay = 365*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3);
544
545    nonConstThis->fIsGregorian = (eyear >= fGregorianCutoverYear);
546#if defined (U_DEBUG_CAL)
547    fprintf(stderr, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n",
548        __FILE__, __LINE__, eyear,month, fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
549#endif
550    if (fInvertGregorian) {
551        nonConstThis->fIsGregorian = !fIsGregorian;
552    }
553    if (fIsGregorian) {
554        isLeap = isLeap && ((eyear%100 != 0) || (eyear%400 == 0));
555        // Add 2 because Gregorian calendar starts 2 days after
556        // Julian calendar
557        int32_t gregShift = Grego::gregorianShift(eyear);
558#if defined (U_DEBUG_CAL)
559        fprintf(stderr, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n",
560            __FILE__, __LINE__, eyear, month, julianDay, gregShift);
561#endif
562        julianDay += gregShift;
563    }
564
565    // At this point julianDay indicates the day BEFORE the first
566    // day of January 1, <eyear> of either the Julian or Gregorian
567    // calendar.
568
569    if (month != 0) {
570        julianDay += isLeap?kLeapNumDays[month]:kNumDays[month];
571    }
572
573    return julianDay;
574}
575
576int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month)  const
577{
578    // If the month is out of range, adjust it into range, and
579    // modify the extended year value accordingly.
580    if (month < 0 || month > 11) {
581        extendedYear += ClockMath::floorDivide(month, 12, month);
582    }
583
584    return isLeapYear(extendedYear) ? kLeapMonthLength[month] : kMonthLength[month];
585}
586
587int32_t GregorianCalendar::handleGetYearLength(int32_t eyear) const {
588    return isLeapYear(eyear) ? 366 : 365;
589}
590
591
592int32_t
593GregorianCalendar::monthLength(int32_t month) const
594{
595    int32_t year = internalGet(UCAL_EXTENDED_YEAR);
596    return handleGetMonthLength(year, month);
597}
598
599// -------------------------------------
600
601int32_t
602GregorianCalendar::monthLength(int32_t month, int32_t year) const
603{
604    return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month];
605}
606
607// -------------------------------------
608
609int32_t
610GregorianCalendar::yearLength(int32_t year) const
611{
612    return isLeapYear(year) ? 366 : 365;
613}
614
615// -------------------------------------
616
617int32_t
618GregorianCalendar::yearLength() const
619{
620    return isLeapYear(internalGet(UCAL_YEAR)) ? 366 : 365;
621}
622
623// -------------------------------------
624
625/**
626* After adjustments such as add(MONTH), add(YEAR), we don't want the
627* month to jump around.  E.g., we don't want Jan 31 + 1 month to go to Mar
628* 3, we want it to go to Feb 28.  Adjustments which might run into this
629* problem call this method to retain the proper month.
630*/
631void
632GregorianCalendar::pinDayOfMonth()
633{
634    int32_t monthLen = monthLength(internalGet(UCAL_MONTH));
635    int32_t dom = internalGet(UCAL_DATE);
636    if(dom > monthLen)
637        set(UCAL_DATE, monthLen);
638}
639
640// -------------------------------------
641
642
643UBool
644GregorianCalendar::validateFields() const
645{
646    for (int32_t field = 0; field < UCAL_FIELD_COUNT; field++) {
647        // Ignore DATE and DAY_OF_YEAR which are handled below
648        if (field != UCAL_DATE &&
649            field != UCAL_DAY_OF_YEAR &&
650            isSet((UCalendarDateFields)field) &&
651            ! boundsCheck(internalGet((UCalendarDateFields)field), (UCalendarDateFields)field))
652            return FALSE;
653    }
654
655    // Values differ in Least-Maximum and Maximum should be handled
656    // specially.
657    if (isSet(UCAL_DATE)) {
658        int32_t date = internalGet(UCAL_DATE);
659        if (date < getMinimum(UCAL_DATE) ||
660            date > monthLength(internalGet(UCAL_MONTH))) {
661                return FALSE;
662            }
663    }
664
665    if (isSet(UCAL_DAY_OF_YEAR)) {
666        int32_t days = internalGet(UCAL_DAY_OF_YEAR);
667        if (days < 1 || days > yearLength()) {
668            return FALSE;
669        }
670    }
671
672    // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero.
673    // We've checked against minimum and maximum above already.
674    if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH) &&
675        0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH)) {
676            return FALSE;
677        }
678
679        return TRUE;
680}
681
682// -------------------------------------
683
684UBool
685GregorianCalendar::boundsCheck(int32_t value, UCalendarDateFields field) const
686{
687    return value >= getMinimum(field) && value <= getMaximum(field);
688}
689
690// -------------------------------------
691
692UDate
693GregorianCalendar::getEpochDay(UErrorCode& status)
694{
695    complete(status);
696    // Divide by 1000 (convert to seconds) in order to prevent overflow when
697    // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE).
698    double wallSec = internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET) + internalGet(UCAL_DST_OFFSET))/1000;
699
700    return ClockMath::floorDivide(wallSec, kOneDay/1000.0);
701}
702
703// -------------------------------------
704
705
706// -------------------------------------
707
708/**
709* Compute the julian day number of the day BEFORE the first day of
710* January 1, year 1 of the given calendar.  If julianDay == 0, it
711* specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
712* or Gregorian).
713*/
714double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian,
715                                                 int32_t year, UBool& isLeap)
716{
717    isLeap = year%4 == 0;
718    int32_t y = year - 1;
719    double julianDay = 365.0*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3);
720
721    if (isGregorian) {
722        isLeap = isLeap && ((year%100 != 0) || (year%400 == 0));
723        // Add 2 because Gregorian calendar starts 2 days after Julian calendar
724        julianDay += Grego::gregorianShift(year);
725    }
726
727    return julianDay;
728}
729
730// /**
731//  * Compute the day of week, relative to the first day of week, from
732//  * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields.  This is
733//  * equivalent to get(DOW_LOCAL) - 1.
734//  */
735// int32_t GregorianCalendar::computeRelativeDOW() const {
736//     int32_t relDow = 0;
737//     if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) {
738//         relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based
739//     } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) {
740//         relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
741//         if (relDow < 0) relDow += 7;
742//     }
743//     return relDow;
744// }
745
746// /**
747//  * Compute the day of week, relative to the first day of week,
748//  * from 0..6 of the given julian day.
749//  */
750// int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const {
751//   int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek();
752//     if (relDow < 0) {
753//         relDow += 7;
754//     }
755//     return relDow;
756// }
757
758// /**
759//  * Compute the DOY using the WEEK_OF_YEAR field and the julian day
760//  * of the day BEFORE January 1 of a year (a return value from
761//  * computeJulianDayOfYear).
762//  */
763// int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const {
764//     // Compute DOY from day of week plus week of year
765
766//     // Find the day of the week for the first of this year.  This
767//     // is zero-based, with 0 being the locale-specific first day of
768//     // the week.  Add 1 to get first day of year.
769//     int32_t fdy = computeRelativeDOW(julianDayOfYear + 1);
770
771//     return
772//         // Compute doy of first (relative) DOW of WOY 1
773//         (((7 - fdy) < getMinimalDaysInFirstWeek())
774//          ? (8 - fdy) : (1 - fdy))
775
776//         // Adjust for the week number.
777//         + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1))
778
779//         // Adjust for the DOW
780//         + computeRelativeDOW();
781// }
782
783// -------------------------------------
784
785double
786GregorianCalendar::millisToJulianDay(UDate millis)
787{
788    return (double)kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (double)kOneDay);
789}
790
791// -------------------------------------
792
793UDate
794GregorianCalendar::julianDayToMillis(double julian)
795{
796    return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay);
797}
798
799// -------------------------------------
800
801int32_t
802GregorianCalendar::aggregateStamp(int32_t stamp_a, int32_t stamp_b)
803{
804    return (((stamp_a != kUnset && stamp_b != kUnset)
805        ? uprv_max(stamp_a, stamp_b)
806        : (int32_t)kUnset));
807}
808
809// -------------------------------------
810
811/**
812* Roll a field by a signed amount.
813* Note: This will be made public later. [LIU]
814*/
815
816void
817GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) {
818    roll((UCalendarDateFields) field, amount, status);
819}
820
821void
822GregorianCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status)
823{
824    if((amount == 0) || U_FAILURE(status)) {
825        return;
826    }
827
828    // J81 processing. (gregorian cutover)
829    UBool inCutoverMonth = FALSE;
830    int32_t cMonthLen=0; // 'c' for cutover; in days
831    int32_t cDayOfMonth=0; // no discontinuity: [0, cMonthLen)
832    double cMonthStart=0.0; // in ms
833
834    // Common code - see if we're in the cutover month of the cutover year
835    if(get(UCAL_EXTENDED_YEAR, status) == fGregorianCutoverYear) {
836        switch (field) {
837        case UCAL_DAY_OF_MONTH:
838        case UCAL_WEEK_OF_MONTH:
839            {
840                int32_t max = monthLength(internalGet(UCAL_MONTH));
841                UDate t = internalGetTime();
842                // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an
843                // additional 10 if we are after the cutover. Thus the monthStart
844                // value will be correct iff we actually are in the cutover month.
845                cDayOfMonth = internalGet(UCAL_DAY_OF_MONTH) - ((t >= fGregorianCutover) ? 10 : 0);
846                cMonthStart = t - ((cDayOfMonth - 1) * kOneDay);
847                // A month containing the cutover is 10 days shorter.
848                if ((cMonthStart < fGregorianCutover) &&
849                    (cMonthStart + (cMonthLen=(max-10))*kOneDay >= fGregorianCutover)) {
850                        inCutoverMonth = TRUE;
851                    }
852            }
853        default:
854            ;
855        }
856    }
857
858    switch (field) {
859    case UCAL_WEEK_OF_YEAR: {
860        // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the
861        // week.  Also, rolling the week of the year can have seemingly
862        // strange effects simply because the year of the week of year
863        // may be different from the calendar year.  For example, the
864        // date Dec 28, 1997 is the first day of week 1 of 1998 (if
865        // weeks start on Sunday and the minimal days in first week is
866        // <= 3).
867        int32_t woy = get(UCAL_WEEK_OF_YEAR, status);
868        // Get the ISO year, which matches the week of year.  This
869        // may be one year before or after the calendar year.
870        int32_t isoYear = get(UCAL_YEAR_WOY, status);
871        int32_t isoDoy = internalGet(UCAL_DAY_OF_YEAR);
872        if (internalGet(UCAL_MONTH) == UCAL_JANUARY) {
873            if (woy >= 52) {
874                isoDoy += handleGetYearLength(isoYear);
875            }
876        } else {
877            if (woy == 1) {
878                isoDoy -= handleGetYearLength(isoYear - 1);
879            }
880        }
881        woy += amount;
882        // Do fast checks to avoid unnecessary computation:
883        if (woy < 1 || woy > 52) {
884            // Determine the last week of the ISO year.
885            // We do this using the standard formula we use
886            // everywhere in this file.  If we can see that the
887            // days at the end of the year are going to fall into
888            // week 1 of the next year, we drop the last week by
889            // subtracting 7 from the last day of the year.
890            int32_t lastDoy = handleGetYearLength(isoYear);
891            int32_t lastRelDow = (lastDoy - isoDoy + internalGet(UCAL_DAY_OF_WEEK) -
892                getFirstDayOfWeek()) % 7;
893            if (lastRelDow < 0) lastRelDow += 7;
894            if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7;
895            int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1);
896            woy = ((woy + lastWoy - 1) % lastWoy) + 1;
897        }
898        set(UCAL_WEEK_OF_YEAR, woy);
899        set(UCAL_YEAR_WOY,isoYear);
900        return;
901                            }
902
903    case UCAL_DAY_OF_MONTH:
904        if( !inCutoverMonth ) {
905            Calendar::roll(field, amount, status);
906            return;
907        } else {
908            // [j81] 1582 special case for DOM
909            // The default computation works except when the current month
910            // contains the Gregorian cutover.  We handle this special case
911            // here.  [j81 - aliu]
912            double monthLen = cMonthLen * kOneDay;
913            double msIntoMonth = uprv_fmod(internalGetTime() - cMonthStart +
914                amount * kOneDay, monthLen);
915            if (msIntoMonth < 0) {
916                msIntoMonth += monthLen;
917            }
918#if defined (U_DEBUG_CAL)
919            fprintf(stderr, "%s:%d: roll DOM %d  -> %.0lf ms  \n",
920                __FILE__, __LINE__,amount, cMonthLen, cMonthStart+msIntoMonth);
921#endif
922            setTimeInMillis(cMonthStart + msIntoMonth, status);
923            return;
924        }
925
926    case UCAL_WEEK_OF_MONTH:
927        if( !inCutoverMonth ) {
928            Calendar::roll(field, amount, status);
929            return;
930        } else {
931#if defined (U_DEBUG_CAL)
932            fprintf(stderr, "%s:%d: roll WOM %d ??????????????????? \n",
933                __FILE__, __LINE__,amount);
934#endif
935            // NOTE: following copied from  the old
936            //     GregorianCalendar::roll( WEEK_OF_MONTH )  code
937
938            // This is tricky, because during the roll we may have to shift
939            // to a different day of the week.  For example:
940
941            //    s  m  t  w  r  f  s
942            //          1  2  3  4  5
943            //    6  7  8  9 10 11 12
944
945            // When rolling from the 6th or 7th back one week, we go to the
946            // 1st (assuming that the first partial week counts).  The same
947            // thing happens at the end of the month.
948
949            // The other tricky thing is that we have to figure out whether
950            // the first partial week actually counts or not, based on the
951            // minimal first days in the week.  And we have to use the
952            // correct first day of the week to delineate the week
953            // boundaries.
954
955            // Here's our algorithm.  First, we find the real boundaries of
956            // the month.  Then we discard the first partial week if it
957            // doesn't count in this locale.  Then we fill in the ends with
958            // phantom days, so that the first partial week and the last
959            // partial week are full weeks.  We then have a nice square
960            // block of weeks.  We do the usual rolling within this block,
961            // as is done elsewhere in this method.  If we wind up on one of
962            // the phantom days that we added, we recognize this and pin to
963            // the first or the last day of the month.  Easy, eh?
964
965            // Another wrinkle: To fix jitterbug 81, we have to make all this
966            // work in the oddball month containing the Gregorian cutover.
967            // This month is 10 days shorter than usual, and also contains
968            // a discontinuity in the days; e.g., the default cutover month
969            // is Oct 1582, and goes from day of month 4 to day of month 15.
970
971            // Normalize the DAY_OF_WEEK so that 0 is the first day of the week
972            // in this locale.  We have dow in 0..6.
973            int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
974            if (dow < 0)
975                dow += 7;
976
977            // Find the day of month, compensating for cutover discontinuity.
978            int32_t dom = cDayOfMonth;
979
980            // Find the day of the week (normalized for locale) for the first
981            // of the month.
982            int32_t fdm = (dow - dom + 1) % 7;
983            if (fdm < 0)
984                fdm += 7;
985
986            // Get the first day of the first full week of the month,
987            // including phantom days, if any.  Figure out if the first week
988            // counts or not; if it counts, then fill in phantom days.  If
989            // not, advance to the first real full week (skip the partial week).
990            int32_t start;
991            if ((7 - fdm) < getMinimalDaysInFirstWeek())
992                start = 8 - fdm; // Skip the first partial week
993            else
994                start = 1 - fdm; // This may be zero or negative
995
996            // Get the day of the week (normalized for locale) for the last
997            // day of the month.
998            int32_t monthLen = cMonthLen;
999            int32_t ldm = (monthLen - dom + dow) % 7;
1000            // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.
1001
1002            // Get the limit day for the blocked-off rectangular month; that
1003            // is, the day which is one past the last day of the month,
1004            // after the month has already been filled in with phantom days
1005            // to fill out the last week.  This day has a normalized DOW of 0.
1006            int32_t limit = monthLen + 7 - ldm;
1007
1008            // Now roll between start and (limit - 1).
1009            int32_t gap = limit - start;
1010            int32_t newDom = (dom + amount*7 - start) % gap;
1011            if (newDom < 0)
1012                newDom += gap;
1013            newDom += start;
1014
1015            // Finally, pin to the real start and end of the month.
1016            if (newDom < 1)
1017                newDom = 1;
1018            if (newDom > monthLen)
1019                newDom = monthLen;
1020
1021            // Set the DAY_OF_MONTH.  We rely on the fact that this field
1022            // takes precedence over everything else (since all other fields
1023            // are also set at this point).  If this fact changes (if the
1024            // disambiguation algorithm changes) then we will have to unset
1025            // the appropriate fields here so that DAY_OF_MONTH is attended
1026            // to.
1027
1028            // If we are in the cutover month, manipulate ms directly.  Don't do
1029            // this in general because it doesn't work across DST boundaries
1030            // (details, details).  This takes care of the discontinuity.
1031            setTimeInMillis(cMonthStart + (newDom-1)*kOneDay, status);
1032            return;
1033        }
1034
1035    default:
1036        Calendar::roll(field, amount, status);
1037        return;
1038    }
1039}
1040
1041// -------------------------------------
1042
1043
1044/**
1045* Return the minimum value that this field could have, given the current date.
1046* For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1047* @param field    the time field.
1048* @return         the minimum value that this field could have, given the current date.
1049* @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead.
1050*/
1051int32_t GregorianCalendar::getActualMinimum(EDateFields field) const
1052{
1053    return getMinimum((UCalendarDateFields)field);
1054}
1055
1056int32_t GregorianCalendar::getActualMinimum(EDateFields field, UErrorCode& /* status */) const
1057{
1058    return getMinimum((UCalendarDateFields)field);
1059}
1060
1061/**
1062* Return the minimum value that this field could have, given the current date.
1063* For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1064* @param field    the time field.
1065* @return         the minimum value that this field could have, given the current date.
1066* @draft ICU 2.6.
1067*/
1068int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field, UErrorCode& /* status */) const
1069{
1070    return getMinimum(field);
1071}
1072
1073
1074// ------------------------------------
1075
1076/**
1077* Old year limits were least max 292269054, max 292278994.
1078*/
1079
1080/**
1081* @stable ICU 2.0
1082*/
1083int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
1084    return kGregorianCalendarLimits[field][limitType];
1085}
1086
1087/**
1088* Return the maximum value that this field could have, given the current date.
1089* For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual
1090* maximum would be 28; for "Feb 3, 1996" it s 29.  Similarly for a Hebrew calendar,
1091* for some years the actual maximum for MONTH is 12, and for others 13.
1092* @stable ICU 2.0
1093*/
1094int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const
1095{
1096    /* It is a known limitation that the code here (and in getActualMinimum)
1097    * won't behave properly at the extreme limits of GregorianCalendar's
1098    * representable range (except for the code that handles the YEAR
1099    * field).  That's because the ends of the representable range are at
1100    * odd spots in the year.  For calendars with the default Gregorian
1101    * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun
1102    * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT
1103    * zones.  As a result, if the calendar is set to Aug 1 292278994 AD,
1104    * the actual maximum of DAY_OF_MONTH is 17, not 30.  If the date is Mar
1105    * 31 in that year, the actual maximum month might be Jul, whereas is
1106    * the date is Mar 15, the actual maximum might be Aug -- depending on
1107    * the precise semantics that are desired.  Similar considerations
1108    * affect all fields.  Nonetheless, this effect is sufficiently arcane
1109    * that we permit it, rather than complicating the code to handle such
1110    * intricacies. - liu 8/20/98
1111
1112    * UPDATE: No longer true, since we have pulled in the limit values on
1113    * the year. - Liu 11/6/00 */
1114
1115    switch (field) {
1116
1117    case UCAL_YEAR:
1118        /* The year computation is no different, in principle, from the
1119        * others, however, the range of possible maxima is large.  In
1120        * addition, the way we know we've exceeded the range is different.
1121        * For these reasons, we use the special case code below to handle
1122        * this field.
1123        *
1124        * The actual maxima for YEAR depend on the type of calendar:
1125        *
1126        *     Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD
1127        *     Julian    = Dec  2, 292269055 BC - Jan  3, 292272993 AD
1128        *     Hybrid    = Dec  2, 292269055 BC - Aug 17, 292278994 AD
1129        *
1130        * We know we've exceeded the maximum when either the month, date,
1131        * time, or era changes in response to setting the year.  We don't
1132        * check for month, date, and time here because the year and era are
1133        * sufficient to detect an invalid year setting.  NOTE: If code is
1134        * added to check the month and date in the future for some reason,
1135        * Feb 29 must be allowed to shift to Mar 1 when setting the year.
1136        */
1137        {
1138            if(U_FAILURE(status)) return 0;
1139            Calendar *cal = clone();
1140            if(!cal) {
1141                status = U_MEMORY_ALLOCATION_ERROR;
1142                return 0;
1143            }
1144
1145            cal->setLenient(TRUE);
1146
1147            int32_t era = cal->get(UCAL_ERA, status);
1148            UDate d = cal->getTime(status);
1149
1150            /* Perform a binary search, with the invariant that lowGood is a
1151            * valid year, and highBad is an out of range year.
1152            */
1153            int32_t lowGood = kGregorianCalendarLimits[UCAL_YEAR][1];
1154            int32_t highBad = kGregorianCalendarLimits[UCAL_YEAR][2]+1;
1155            while ((lowGood + 1) < highBad) {
1156                int32_t y = (lowGood + highBad) / 2;
1157                cal->set(UCAL_YEAR, y);
1158                if (cal->get(UCAL_YEAR, status) == y && cal->get(UCAL_ERA, status) == era) {
1159                    lowGood = y;
1160                } else {
1161                    highBad = y;
1162                    cal->setTime(d, status); // Restore original fields
1163                }
1164            }
1165
1166            delete cal;
1167            return lowGood;
1168        }
1169
1170    default:
1171        return Calendar::getActualMaximum(field,status);
1172    }
1173}
1174
1175
1176int32_t GregorianCalendar::handleGetExtendedYear() {
1177    // the year to return
1178    int32_t year = kEpochYear;
1179
1180    // year field to use
1181    int32_t yearField = UCAL_EXTENDED_YEAR;
1182
1183    // There are three separate fields which could be used to
1184    // derive the proper year.  Use the one most recently set.
1185    if (fStamp[yearField] < fStamp[UCAL_YEAR])
1186        yearField = UCAL_YEAR;
1187    if (fStamp[yearField] < fStamp[UCAL_YEAR_WOY])
1188        yearField = UCAL_YEAR_WOY;
1189
1190    // based on the "best" year field, get the year
1191    switch(yearField) {
1192    case UCAL_EXTENDED_YEAR:
1193        year = internalGet(UCAL_EXTENDED_YEAR, kEpochYear);
1194        break;
1195
1196    case UCAL_YEAR:
1197        {
1198            // The year defaults to the epoch start, the era to AD
1199            int32_t era = internalGet(UCAL_ERA, AD);
1200            if (era == BC) {
1201                year = 1 - internalGet(UCAL_YEAR, 1); // Convert to extended year
1202            } else {
1203                year = internalGet(UCAL_YEAR, kEpochYear);
1204            }
1205        }
1206        break;
1207
1208    case UCAL_YEAR_WOY:
1209        year = handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY), internalGet(UCAL_WEEK_OF_YEAR));
1210#if defined (U_DEBUG_CAL)
1211        //    if(internalGet(UCAL_YEAR_WOY) != year) {
1212        fprintf(stderr, "%s:%d: hGEYFWF[%d,%d] ->  %d\n",
1213            __FILE__, __LINE__,internalGet(UCAL_YEAR_WOY),internalGet(UCAL_WEEK_OF_YEAR),year);
1214        //}
1215#endif
1216        break;
1217
1218    default:
1219        year = kEpochYear;
1220    }
1221    return year;
1222}
1223
1224int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy, int32_t woy)
1225{
1226    // convert year to extended form
1227    int32_t era = internalGet(UCAL_ERA, AD);
1228    if(era == BC) {
1229        yearWoy = 1 - yearWoy;
1230    }
1231    return Calendar::handleGetExtendedYearFromWeekFields(yearWoy, woy);
1232}
1233
1234
1235// -------------------------------------
1236
1237UBool
1238GregorianCalendar::inDaylightTime(UErrorCode& status) const
1239{
1240    if (U_FAILURE(status) || !getTimeZone().useDaylightTime())
1241        return FALSE;
1242
1243    // Force an update of the state of the Calendar.
1244    ((GregorianCalendar*)this)->complete(status); // cast away const
1245
1246    return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE);
1247}
1248
1249// -------------------------------------
1250
1251/**
1252* Return the ERA.  We need a special method for this because the
1253* default ERA is AD, but a zero (unset) ERA is BC.
1254*/
1255int32_t
1256GregorianCalendar::internalGetEra() const {
1257    return isSet(UCAL_ERA) ? internalGet(UCAL_ERA) : (int32_t)AD;
1258}
1259
1260const char *
1261GregorianCalendar::getType() const {
1262    //static const char kGregorianType = "gregorian";
1263
1264    return "gregorian";
1265}
1266
1267/**
1268 * The system maintains a static default century start date and Year.  They are
1269 * initialized the first time they are used.  Once the system default century date
1270 * and year are set, they do not change.
1271 */
1272static UDate           gSystemDefaultCenturyStart       = DBL_MIN;
1273static int32_t         gSystemDefaultCenturyStartYear   = -1;
1274static icu::UInitOnce  gSystemDefaultCenturyInit        = U_INITONCE_INITIALIZER;
1275
1276
1277UBool GregorianCalendar::haveDefaultCentury() const
1278{
1279    return TRUE;
1280}
1281
1282static void U_CALLCONV
1283initializeSystemDefaultCentury()
1284{
1285    // initialize systemDefaultCentury and systemDefaultCenturyYear based
1286    // on the current time.  They'll be set to 80 years before
1287    // the current time.
1288    UErrorCode status = U_ZERO_ERROR;
1289    GregorianCalendar calendar(status);
1290    if (U_SUCCESS(status)) {
1291        calendar.setTime(Calendar::getNow(), status);
1292        calendar.add(UCAL_YEAR, -80, status);
1293
1294        gSystemDefaultCenturyStart = calendar.getTime(status);
1295        gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status);
1296    }
1297    // We have no recourse upon failure unless we want to propagate the failure
1298    // out.
1299}
1300
1301UDate GregorianCalendar::defaultCenturyStart() const {
1302    // lazy-evaluate systemDefaultCenturyStart
1303    umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
1304    return gSystemDefaultCenturyStart;
1305}
1306
1307int32_t GregorianCalendar::defaultCenturyStartYear() const {
1308    // lazy-evaluate systemDefaultCenturyStartYear
1309    umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
1310    return gSystemDefaultCenturyStartYear;
1311}
1312
1313U_NAMESPACE_END
1314
1315#endif /* #if !UCONFIG_NO_FORMATTING */
1316
1317//eof
1318