1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/IR/CallingConv.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include <cassert>
25#include <functional>
26
27namespace llvm {
28
29class BitVector;
30class MachineFunction;
31class RegScavenger;
32template<class T> class SmallVectorImpl;
33class VirtRegMap;
34class raw_ostream;
35
36class TargetRegisterClass {
37public:
38  typedef const MCPhysReg* iterator;
39  typedef const MCPhysReg* const_iterator;
40  typedef const MVT::SimpleValueType* vt_iterator;
41  typedef const TargetRegisterClass* const * sc_iterator;
42
43  // Instance variables filled by tablegen, do not use!
44  const MCRegisterClass *MC;
45  const vt_iterator VTs;
46  const uint32_t *SubClassMask;
47  const uint16_t *SuperRegIndices;
48  const sc_iterator SuperClasses;
49  ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
50
51  /// getID() - Return the register class ID number.
52  ///
53  unsigned getID() const { return MC->getID(); }
54
55  /// getName() - Return the register class name for debugging.
56  ///
57  const char *getName() const { return MC->getName(); }
58
59  /// begin/end - Return all of the registers in this class.
60  ///
61  iterator       begin() const { return MC->begin(); }
62  iterator         end() const { return MC->end(); }
63
64  /// getNumRegs - Return the number of registers in this class.
65  ///
66  unsigned getNumRegs() const { return MC->getNumRegs(); }
67
68  /// getRegister - Return the specified register in the class.
69  ///
70  unsigned getRegister(unsigned i) const {
71    return MC->getRegister(i);
72  }
73
74  /// contains - Return true if the specified register is included in this
75  /// register class.  This does not include virtual registers.
76  bool contains(unsigned Reg) const {
77    return MC->contains(Reg);
78  }
79
80  /// contains - Return true if both registers are in this class.
81  bool contains(unsigned Reg1, unsigned Reg2) const {
82    return MC->contains(Reg1, Reg2);
83  }
84
85  /// getSize - Return the size of the register in bytes, which is also the size
86  /// of a stack slot allocated to hold a spilled copy of this register.
87  unsigned getSize() const { return MC->getSize(); }
88
89  /// getAlignment - Return the minimum required alignment for a register of
90  /// this class.
91  unsigned getAlignment() const { return MC->getAlignment(); }
92
93  /// getCopyCost - Return the cost of copying a value between two registers in
94  /// this class. A negative number means the register class is very expensive
95  /// to copy e.g. status flag register classes.
96  int getCopyCost() const { return MC->getCopyCost(); }
97
98  /// isAllocatable - Return true if this register class may be used to create
99  /// virtual registers.
100  bool isAllocatable() const { return MC->isAllocatable(); }
101
102  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
103  ///
104  bool hasType(EVT vt) const {
105    for(int i = 0; VTs[i] != MVT::Other; ++i)
106      if (EVT(VTs[i]) == vt)
107        return true;
108    return false;
109  }
110
111  /// vt_begin / vt_end - Loop over all of the value types that can be
112  /// represented by values in this register class.
113  vt_iterator vt_begin() const {
114    return VTs;
115  }
116
117  vt_iterator vt_end() const {
118    vt_iterator I = VTs;
119    while (*I != MVT::Other) ++I;
120    return I;
121  }
122
123  /// hasSubClass - return true if the specified TargetRegisterClass
124  /// is a proper sub-class of this TargetRegisterClass.
125  bool hasSubClass(const TargetRegisterClass *RC) const {
126    return RC != this && hasSubClassEq(RC);
127  }
128
129  /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
130  /// class.
131  bool hasSubClassEq(const TargetRegisterClass *RC) const {
132    unsigned ID = RC->getID();
133    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
134  }
135
136  /// hasSuperClass - return true if the specified TargetRegisterClass is a
137  /// proper super-class of this TargetRegisterClass.
138  bool hasSuperClass(const TargetRegisterClass *RC) const {
139    return RC->hasSubClass(this);
140  }
141
142  /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
143  /// class.
144  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
145    return RC->hasSubClassEq(this);
146  }
147
148  /// getSubClassMask - Returns a bit vector of subclasses, including this one.
149  /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
150  /// use it.
151  const uint32_t *getSubClassMask() const {
152    return SubClassMask;
153  }
154
155  /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices
156  /// that project some super-register class into this register class. The list
157  /// has an entry for each Idx such that:
158  ///
159  ///   There exists SuperRC where:
160  ///     For all Reg in SuperRC:
161  ///       this->contains(Reg:Idx)
162  ///
163  const uint16_t *getSuperRegIndices() const {
164    return SuperRegIndices;
165  }
166
167  /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
168  /// classes are ordered by ID which is also a topological ordering from large
169  /// to small classes.  The list does NOT include the current class.
170  sc_iterator getSuperClasses() const {
171    return SuperClasses;
172  }
173
174  /// isASubClass - return true if this TargetRegisterClass is a subset
175  /// class of at least one other TargetRegisterClass.
176  bool isASubClass() const {
177    return SuperClasses[0] != nullptr;
178  }
179
180  /// getRawAllocationOrder - Returns the preferred order for allocating
181  /// registers from this register class in MF. The raw order comes directly
182  /// from the .td file and may include reserved registers that are not
183  /// allocatable. Register allocators should also make sure to allocate
184  /// callee-saved registers only after all the volatiles are used. The
185  /// RegisterClassInfo class provides filtered allocation orders with
186  /// callee-saved registers moved to the end.
187  ///
188  /// The MachineFunction argument can be used to tune the allocatable
189  /// registers based on the characteristics of the function, subtarget, or
190  /// other criteria.
191  ///
192  /// By default, this method returns all registers in the class.
193  ///
194  ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
195    return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
196  }
197};
198
199/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
200/// registers. These are used by codegen, not by MC.
201struct TargetRegisterInfoDesc {
202  unsigned CostPerUse;          // Extra cost of instructions using register.
203  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
204};
205
206/// Each TargetRegisterClass has a per register weight, and weight
207/// limit which must be less than the limits of its pressure sets.
208struct RegClassWeight {
209  unsigned RegWeight;
210  unsigned WeightLimit;
211};
212
213/// TargetRegisterInfo base class - We assume that the target defines a static
214/// array of TargetRegisterDesc objects that represent all of the machine
215/// registers that the target has.  As such, we simply have to track a pointer
216/// to this array so that we can turn register number into a register
217/// descriptor.
218///
219class TargetRegisterInfo : public MCRegisterInfo {
220public:
221  typedef const TargetRegisterClass * const * regclass_iterator;
222private:
223  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
224  const char *const *SubRegIndexNames;        // Names of subreg indexes.
225  // Pointer to array of lane masks, one per sub-reg index.
226  const unsigned *SubRegIndexLaneMasks;
227
228  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
229  unsigned CoveringLanes;
230
231protected:
232  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
233                     regclass_iterator RegClassBegin,
234                     regclass_iterator RegClassEnd,
235                     const char *const *SRINames,
236                     const unsigned *SRILaneMasks,
237                     unsigned CoveringLanes);
238  virtual ~TargetRegisterInfo();
239public:
240
241  // Register numbers can represent physical registers, virtual registers, and
242  // sometimes stack slots. The unsigned values are divided into these ranges:
243  //
244  //   0           Not a register, can be used as a sentinel.
245  //   [1;2^30)    Physical registers assigned by TableGen.
246  //   [2^30;2^31) Stack slots. (Rarely used.)
247  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
248  //
249  // Further sentinels can be allocated from the small negative integers.
250  // DenseMapInfo<unsigned> uses -1u and -2u.
251
252  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
253  /// frame index in a variable that normally holds a register. isStackSlot()
254  /// returns true if Reg is in the range used for stack slots.
255  ///
256  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
257  /// slots, so if a variable may contains a stack slot, always check
258  /// isStackSlot() first.
259  ///
260  static bool isStackSlot(unsigned Reg) {
261    return int(Reg) >= (1 << 30);
262  }
263
264  /// stackSlot2Index - Compute the frame index from a register value
265  /// representing a stack slot.
266  static int stackSlot2Index(unsigned Reg) {
267    assert(isStackSlot(Reg) && "Not a stack slot");
268    return int(Reg - (1u << 30));
269  }
270
271  /// index2StackSlot - Convert a non-negative frame index to a stack slot
272  /// register value.
273  static unsigned index2StackSlot(int FI) {
274    assert(FI >= 0 && "Cannot hold a negative frame index.");
275    return FI + (1u << 30);
276  }
277
278  /// isPhysicalRegister - Return true if the specified register number is in
279  /// the physical register namespace.
280  static bool isPhysicalRegister(unsigned Reg) {
281    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
282    return int(Reg) > 0;
283  }
284
285  /// isVirtualRegister - Return true if the specified register number is in
286  /// the virtual register namespace.
287  static bool isVirtualRegister(unsigned Reg) {
288    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
289    return int(Reg) < 0;
290  }
291
292  /// virtReg2Index - Convert a virtual register number to a 0-based index.
293  /// The first virtual register in a function will get the index 0.
294  static unsigned virtReg2Index(unsigned Reg) {
295    assert(isVirtualRegister(Reg) && "Not a virtual register");
296    return Reg & ~(1u << 31);
297  }
298
299  /// index2VirtReg - Convert a 0-based index to a virtual register number.
300  /// This is the inverse operation of VirtReg2IndexFunctor below.
301  static unsigned index2VirtReg(unsigned Index) {
302    return Index | (1u << 31);
303  }
304
305  /// getMinimalPhysRegClass - Returns the Register Class of a physical
306  /// register of the given type, picking the most sub register class of
307  /// the right type that contains this physreg.
308  const TargetRegisterClass *
309    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
310
311  /// getAllocatableClass - Return the maximal subclass of the given register
312  /// class that is alloctable, or NULL.
313  const TargetRegisterClass *
314    getAllocatableClass(const TargetRegisterClass *RC) const;
315
316  /// getAllocatableSet - Returns a bitset indexed by register number
317  /// indicating if a register is allocatable or not. If a register class is
318  /// specified, returns the subset for the class.
319  BitVector getAllocatableSet(const MachineFunction &MF,
320                              const TargetRegisterClass *RC = nullptr) const;
321
322  /// getCostPerUse - Return the additional cost of using this register instead
323  /// of other registers in its class.
324  unsigned getCostPerUse(unsigned RegNo) const {
325    return InfoDesc[RegNo].CostPerUse;
326  }
327
328  /// isInAllocatableClass - Return true if the register is in the allocation
329  /// of any register class.
330  bool isInAllocatableClass(unsigned RegNo) const {
331    return InfoDesc[RegNo].inAllocatableClass;
332  }
333
334  /// getSubRegIndexName - Return the human-readable symbolic target-specific
335  /// name for the specified SubRegIndex.
336  const char *getSubRegIndexName(unsigned SubIdx) const {
337    assert(SubIdx && SubIdx < getNumSubRegIndices() &&
338           "This is not a subregister index");
339    return SubRegIndexNames[SubIdx-1];
340  }
341
342  /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a
343  /// register that are covered by SubIdx.
344  ///
345  /// Lane masks for sub-register indices are similar to register units for
346  /// physical registers. The individual bits in a lane mask can't be assigned
347  /// any specific meaning. They can be used to check if two sub-register
348  /// indices overlap.
349  ///
350  /// If the target has a register such that:
351  ///
352  ///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
353  ///
354  /// then:
355  ///
356  ///   getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0
357  ///
358  /// The converse is not necessarily true. If two lane masks have a common
359  /// bit, the corresponding sub-registers may not overlap, but it can be
360  /// assumed that they usually will.
361  unsigned getSubRegIndexLaneMask(unsigned SubIdx) const {
362    // SubIdx == 0 is allowed, it has the lane mask ~0u.
363    assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
364    return SubRegIndexLaneMasks[SubIdx];
365  }
366
367  /// The lane masks returned by getSubRegIndexLaneMask() above can only be
368  /// used to determine if sub-registers overlap - they can't be used to
369  /// determine if a set of sub-registers completely cover another
370  /// sub-register.
371  ///
372  /// The X86 general purpose registers have two lanes corresponding to the
373  /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
374  /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
375  /// sub_32bit sub-register.
376  ///
377  /// On the other hand, the ARM NEON lanes fully cover their registers: The
378  /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
379  /// This is related to the CoveredBySubRegs property on register definitions.
380  ///
381  /// This function returns a bit mask of lanes that completely cover their
382  /// sub-registers. More precisely, given:
383  ///
384  ///   Covering = getCoveringLanes();
385  ///   MaskA = getSubRegIndexLaneMask(SubA);
386  ///   MaskB = getSubRegIndexLaneMask(SubB);
387  ///
388  /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
389  /// SubB.
390  unsigned getCoveringLanes() const { return CoveringLanes; }
391
392  /// regsOverlap - Returns true if the two registers are equal or alias each
393  /// other. The registers may be virtual register.
394  bool regsOverlap(unsigned regA, unsigned regB) const {
395    if (regA == regB) return true;
396    if (isVirtualRegister(regA) || isVirtualRegister(regB))
397      return false;
398
399    // Regunits are numerically ordered. Find a common unit.
400    MCRegUnitIterator RUA(regA, this);
401    MCRegUnitIterator RUB(regB, this);
402    do {
403      if (*RUA == *RUB) return true;
404      if (*RUA < *RUB) ++RUA;
405      else             ++RUB;
406    } while (RUA.isValid() && RUB.isValid());
407    return false;
408  }
409
410  /// hasRegUnit - Returns true if Reg contains RegUnit.
411  bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
412    for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
413      if (*Units == RegUnit)
414        return true;
415    return false;
416  }
417
418  /// getCalleeSavedRegs - Return a null-terminated list of all of the
419  /// callee saved registers on this target. The register should be in the
420  /// order of desired callee-save stack frame offset. The first register is
421  /// closest to the incoming stack pointer if stack grows down, and vice versa.
422  ///
423  virtual const MCPhysReg*
424  getCalleeSavedRegs(const MachineFunction *MF = nullptr) const = 0;
425
426  /// getCallPreservedMask - Return a mask of call-preserved registers for the
427  /// given calling convention on the current sub-target.  The mask should
428  /// include all call-preserved aliases.  This is used by the register
429  /// allocator to determine which registers can be live across a call.
430  ///
431  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
432  /// A set bit indicates that all bits of the corresponding register are
433  /// preserved across the function call.  The bit mask is expected to be
434  /// sub-register complete, i.e. if A is preserved, so are all its
435  /// sub-registers.
436  ///
437  /// Bits are numbered from the LSB, so the bit for physical register Reg can
438  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
439  ///
440  /// A NULL pointer means that no register mask will be used, and call
441  /// instructions should use implicit-def operands to indicate call clobbered
442  /// registers.
443  ///
444  virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
445    // The default mask clobbers everything.  All targets should override.
446    return nullptr;
447  }
448
449  /// getReservedRegs - Returns a bitset indexed by physical register number
450  /// indicating if a register is a special register that has particular uses
451  /// and should be considered unavailable at all times, e.g. SP, RA. This is
452  /// used by register scavenger to determine what registers are free.
453  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
454
455  /// getMatchingSuperReg - Return a super-register of the specified register
456  /// Reg so its sub-register of index SubIdx is Reg.
457  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
458                               const TargetRegisterClass *RC) const {
459    return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
460  }
461
462  /// getMatchingSuperRegClass - Return a subclass of the specified register
463  /// class A so that each register in it has a sub-register of the
464  /// specified sub-register index which is in the specified register class B.
465  ///
466  /// TableGen will synthesize missing A sub-classes.
467  virtual const TargetRegisterClass *
468  getMatchingSuperRegClass(const TargetRegisterClass *A,
469                           const TargetRegisterClass *B, unsigned Idx) const;
470
471  /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
472  /// supports the sub-register index Idx.
473  /// If no such sub-class exists, return NULL.
474  /// If all registers in RC already have an Idx sub-register, return RC.
475  ///
476  /// TableGen generates a version of this function that is good enough in most
477  /// cases.  Targets can override if they have constraints that TableGen
478  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
479  /// supported by the full GR32 register class in 64-bit mode, but only by the
480  /// GR32_ABCD regiister class in 32-bit mode.
481  ///
482  /// TableGen will synthesize missing RC sub-classes.
483  virtual const TargetRegisterClass *
484  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
485    assert(Idx == 0 && "Target has no sub-registers");
486    return RC;
487  }
488
489  /// composeSubRegIndices - Return the subregister index you get from composing
490  /// two subregister indices.
491  ///
492  /// The special null sub-register index composes as the identity.
493  ///
494  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
495  /// returns c. Note that composeSubRegIndices does not tell you about illegal
496  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
497  /// b, composeSubRegIndices doesn't tell you.
498  ///
499  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
500  /// ssub_0:S0 - ssub_3:S3 subregs.
501  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
502  ///
503  unsigned composeSubRegIndices(unsigned a, unsigned b) const {
504    if (!a) return b;
505    if (!b) return a;
506    return composeSubRegIndicesImpl(a, b);
507  }
508
509protected:
510  /// Overridden by TableGen in targets that have sub-registers.
511  virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
512    llvm_unreachable("Target has no sub-registers");
513  }
514
515public:
516  /// getCommonSuperRegClass - Find a common super-register class if it exists.
517  ///
518  /// Find a register class, SuperRC and two sub-register indices, PreA and
519  /// PreB, such that:
520  ///
521  ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
522  ///
523  ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
524  ///
525  ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
526  ///
527  /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
528  /// requirements, and there is no register class with a smaller spill size
529  /// that satisfies the requirements.
530  ///
531  /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
532  ///
533  /// Either of the PreA and PreB sub-register indices may be returned as 0. In
534  /// that case, the returned register class will be a sub-class of the
535  /// corresponding argument register class.
536  ///
537  /// The function returns NULL if no register class can be found.
538  ///
539  const TargetRegisterClass*
540  getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
541                         const TargetRegisterClass *RCB, unsigned SubB,
542                         unsigned &PreA, unsigned &PreB) const;
543
544  //===--------------------------------------------------------------------===//
545  // Register Class Information
546  //
547
548  /// Register class iterators
549  ///
550  regclass_iterator regclass_begin() const { return RegClassBegin; }
551  regclass_iterator regclass_end() const { return RegClassEnd; }
552
553  unsigned getNumRegClasses() const {
554    return (unsigned)(regclass_end()-regclass_begin());
555  }
556
557  /// getRegClass - Returns the register class associated with the enumeration
558  /// value.  See class MCOperandInfo.
559  const TargetRegisterClass *getRegClass(unsigned i) const {
560    assert(i < getNumRegClasses() && "Register Class ID out of range");
561    return RegClassBegin[i];
562  }
563
564  /// getCommonSubClass - find the largest common subclass of A and B. Return
565  /// NULL if there is no common subclass.
566  const TargetRegisterClass *
567  getCommonSubClass(const TargetRegisterClass *A,
568                    const TargetRegisterClass *B) const;
569
570  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
571  /// values.  If a target supports multiple different pointer register classes,
572  /// kind specifies which one is indicated.
573  virtual const TargetRegisterClass *
574  getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
575    llvm_unreachable("Target didn't implement getPointerRegClass!");
576  }
577
578  /// getCrossCopyRegClass - Returns a legal register class to copy a register
579  /// in the specified class to or from. If it is possible to copy the register
580  /// directly without using a cross register class copy, return the specified
581  /// RC. Returns NULL if it is not possible to copy between a two registers of
582  /// the specified class.
583  virtual const TargetRegisterClass *
584  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
585    return RC;
586  }
587
588  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
589  /// legal to use in the current sub-target and has the same spill size.
590  /// The returned register class can be used to create virtual registers which
591  /// means that all its registers can be copied and spilled.
592  virtual const TargetRegisterClass*
593  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
594    /// The default implementation is very conservative and doesn't allow the
595    /// register allocator to inflate register classes.
596    return RC;
597  }
598
599  /// getRegPressureLimit - Return the register pressure "high water mark" for
600  /// the specific register class. The scheduler is in high register pressure
601  /// mode (for the specific register class) if it goes over the limit.
602  ///
603  /// Note: this is the old register pressure model that relies on a manually
604  /// specified representative register class per value type.
605  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
606                                       MachineFunction &MF) const {
607    return 0;
608  }
609
610  /// Get the weight in units of pressure for this register class.
611  virtual const RegClassWeight &getRegClassWeight(
612    const TargetRegisterClass *RC) const = 0;
613
614  /// Get the weight in units of pressure for this register unit.
615  virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
616
617  /// Get the number of dimensions of register pressure.
618  virtual unsigned getNumRegPressureSets() const = 0;
619
620  /// Get the name of this register unit pressure set.
621  virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
622
623  /// Get the register unit pressure limit for this dimension.
624  /// This limit must be adjusted dynamically for reserved registers.
625  virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
626
627  /// Get the dimensions of register pressure impacted by this register class.
628  /// Returns a -1 terminated array of pressure set IDs.
629  virtual const int *getRegClassPressureSets(
630    const TargetRegisterClass *RC) const = 0;
631
632  /// Get the dimensions of register pressure impacted by this register unit.
633  /// Returns a -1 terminated array of pressure set IDs.
634  virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
635
636  /// Get a list of 'hint' registers that the register allocator should try
637  /// first when allocating a physical register for the virtual register
638  /// VirtReg. These registers are effectively moved to the front of the
639  /// allocation order.
640  ///
641  /// The Order argument is the allocation order for VirtReg's register class
642  /// as returned from RegisterClassInfo::getOrder(). The hint registers must
643  /// come from Order, and they must not be reserved.
644  ///
645  /// The default implementation of this function can resolve
646  /// target-independent hints provided to MRI::setRegAllocationHint with
647  /// HintType == 0. Targets that override this function should defer to the
648  /// default implementation if they have no reason to change the allocation
649  /// order for VirtReg. There may be target-independent hints.
650  virtual void getRegAllocationHints(unsigned VirtReg,
651                                     ArrayRef<MCPhysReg> Order,
652                                     SmallVectorImpl<MCPhysReg> &Hints,
653                                     const MachineFunction &MF,
654                                     const VirtRegMap *VRM = nullptr) const;
655
656  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
657  /// writing a register from RC in two consecutive instructions.
658  /// This can avoid pipeline stalls on certain architectures.
659  /// It does cause increased register pressure, though.
660  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
661    return false;
662  }
663
664  /// UpdateRegAllocHint - A callback to allow target a chance to update
665  /// register allocation hints when a register is "changed" (e.g. coalesced)
666  /// to another register. e.g. On ARM, some virtual registers should target
667  /// register pairs, if one of pair is coalesced to another register, the
668  /// allocation hint of the other half of the pair should be changed to point
669  /// to the new register.
670  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
671                                  MachineFunction &MF) const {
672    // Do nothing.
673  }
674
675  /// Allow the target to reverse allocation order of local live ranges. This
676  /// will generally allocate shorter local live ranges first. For targets with
677  /// many registers, this could reduce regalloc compile time by a large
678  /// factor. It is disabled by default for three reasons:
679  /// (1) Top-down allocation is simpler and easier to debug for targets that
680  /// don't benefit from reversing the order.
681  /// (2) Bottom-up allocation could result in poor evicition decisions on some
682  /// targets affecting the performance of compiled code.
683  /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
684  virtual bool reverseLocalAssignment() const { return false; }
685
686  /// Allow the target to override register assignment heuristics based on the
687  /// live range size. If this returns false, then local live ranges are always
688  /// assigned in order regardless of their size. This is a temporary hook for
689  /// debugging downstream codegen failures exposed by regalloc.
690  virtual bool mayOverrideLocalAssignment() const { return true; }
691
692  /// Allow the target to override the cost of using a callee-saved register for
693  /// the first time. Default value of 0 means we will use a callee-saved
694  /// register if it is available.
695  virtual unsigned getCSRFirstUseCost() const { return 0; }
696
697  /// requiresRegisterScavenging - returns true if the target requires (and can
698  /// make use of) the register scavenger.
699  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
700    return false;
701  }
702
703  /// useFPForScavengingIndex - returns true if the target wants to use
704  /// frame pointer based accesses to spill to the scavenger emergency spill
705  /// slot.
706  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
707    return true;
708  }
709
710  /// requiresFrameIndexScavenging - returns true if the target requires post
711  /// PEI scavenging of registers for materializing frame index constants.
712  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
713    return false;
714  }
715
716  /// requiresVirtualBaseRegisters - Returns true if the target wants the
717  /// LocalStackAllocation pass to be run and virtual base registers
718  /// used for more efficient stack access.
719  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
720    return false;
721  }
722
723  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
724  /// the stack frame of the given function for the specified register. e.g. On
725  /// x86, if the frame register is required, the first fixed stack object is
726  /// reserved as its spill slot. This tells PEI not to create a new stack frame
727  /// object for the given register. It should be called only after
728  /// processFunctionBeforeCalleeSavedScan().
729  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
730                                    int &FrameIdx) const {
731    return false;
732  }
733
734  /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked
735  /// after register allocation.
736  virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
737    return false;
738  }
739
740  /// needsStackRealignment - true if storage within the function requires the
741  /// stack pointer to be aligned more than the normal calling convention calls
742  /// for.
743  virtual bool needsStackRealignment(const MachineFunction &MF) const {
744    return false;
745  }
746
747  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
748  /// index in the instruction, if there is one.
749  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
750                                           int Idx) const {
751    return 0;
752  }
753
754  /// needsFrameBaseReg - Returns true if the instruction's frame index
755  /// reference would be better served by a base register other than FP
756  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
757  /// references it should create new base registers for.
758  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
759    return false;
760  }
761
762  /// materializeFrameBaseRegister - Insert defining instruction(s) for
763  /// BaseReg to be a pointer to FrameIdx before insertion point I.
764  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
765                                            unsigned BaseReg, int FrameIdx,
766                                            int64_t Offset) const {
767    llvm_unreachable("materializeFrameBaseRegister does not exist on this "
768                     "target");
769  }
770
771  /// resolveFrameIndex - Resolve a frame index operand of an instruction
772  /// to reference the indicated base register plus offset instead.
773  virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
774                                 int64_t Offset) const {
775    llvm_unreachable("resolveFrameIndex does not exist on this target");
776  }
777
778  /// isFrameOffsetLegal - Determine whether a given offset immediate is
779  /// encodable to resolve a frame index.
780  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
781                                  int64_t Offset) const {
782    llvm_unreachable("isFrameOffsetLegal does not exist on this target");
783  }
784
785
786  /// saveScavengerRegister - Spill the register so it can be used by the
787  /// register scavenger. Return true if the register was spilled, false
788  /// otherwise. If this function does not spill the register, the scavenger
789  /// will instead spill it to the emergency spill slot.
790  ///
791  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
792                                     MachineBasicBlock::iterator I,
793                                     MachineBasicBlock::iterator &UseMI,
794                                     const TargetRegisterClass *RC,
795                                     unsigned Reg) const {
796    return false;
797  }
798
799  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
800  /// frame indices from instructions which may use them.  The instruction
801  /// referenced by the iterator contains an MO_FrameIndex operand which must be
802  /// eliminated by this method.  This method may modify or replace the
803  /// specified instruction, as long as it keeps the iterator pointing at the
804  /// finished product.  SPAdj is the SP adjustment due to call frame setup
805  /// instruction.  FIOperandNum is the FI operand number.
806  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
807                                   int SPAdj, unsigned FIOperandNum,
808                                   RegScavenger *RS = nullptr) const = 0;
809
810  //===--------------------------------------------------------------------===//
811  /// Debug information queries.
812
813  /// getFrameRegister - This method should return the register used as a base
814  /// for values allocated in the current stack frame.
815  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
816};
817
818
819//===----------------------------------------------------------------------===//
820//                           SuperRegClassIterator
821//===----------------------------------------------------------------------===//
822//
823// Iterate over the possible super-registers for a given register class. The
824// iterator will visit a list of pairs (Idx, Mask) corresponding to the
825// possible classes of super-registers.
826//
827// Each bit mask will have at least one set bit, and each set bit in Mask
828// corresponds to a SuperRC such that:
829//
830//   For all Reg in SuperRC: Reg:Idx is in RC.
831//
832// The iterator can include (O, RC->getSubClassMask()) as the first entry which
833// also satisfies the above requirement, assuming Reg:0 == Reg.
834//
835class SuperRegClassIterator {
836  const unsigned RCMaskWords;
837  unsigned SubReg;
838  const uint16_t *Idx;
839  const uint32_t *Mask;
840
841public:
842  /// Create a SuperRegClassIterator that visits all the super-register classes
843  /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
844  SuperRegClassIterator(const TargetRegisterClass *RC,
845                        const TargetRegisterInfo *TRI,
846                        bool IncludeSelf = false)
847    : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
848      SubReg(0),
849      Idx(RC->getSuperRegIndices()),
850      Mask(RC->getSubClassMask()) {
851    if (!IncludeSelf)
852      ++*this;
853  }
854
855  /// Returns true if this iterator is still pointing at a valid entry.
856  bool isValid() const { return Idx; }
857
858  /// Returns the current sub-register index.
859  unsigned getSubReg() const { return SubReg; }
860
861  /// Returns the bit mask if register classes that getSubReg() projects into
862  /// RC.
863  const uint32_t *getMask() const { return Mask; }
864
865  /// Advance iterator to the next entry.
866  void operator++() {
867    assert(isValid() && "Cannot move iterator past end.");
868    Mask += RCMaskWords;
869    SubReg = *Idx++;
870    if (!SubReg)
871      Idx = nullptr;
872  }
873};
874
875// This is useful when building IndexedMaps keyed on virtual registers
876struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
877  unsigned operator()(unsigned Reg) const {
878    return TargetRegisterInfo::virtReg2Index(Reg);
879  }
880};
881
882/// PrintReg - Helper class for printing registers on a raw_ostream.
883/// Prints virtual and physical registers with or without a TRI instance.
884///
885/// The format is:
886///   %noreg          - NoRegister
887///   %vreg5          - a virtual register.
888///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
889///   %EAX            - a physical register
890///   %physreg17      - a physical register when no TRI instance given.
891///
892/// Usage: OS << PrintReg(Reg, TRI) << '\n';
893///
894class PrintReg {
895  const TargetRegisterInfo *TRI;
896  unsigned Reg;
897  unsigned SubIdx;
898public:
899  explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = nullptr,
900                    unsigned subidx = 0)
901    : TRI(tri), Reg(reg), SubIdx(subidx) {}
902  void print(raw_ostream&) const;
903};
904
905static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
906  PR.print(OS);
907  return OS;
908}
909
910/// PrintRegUnit - Helper class for printing register units on a raw_ostream.
911///
912/// Register units are named after their root registers:
913///
914///   AL      - Single root.
915///   FP0~ST7 - Dual roots.
916///
917/// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
918///
919class PrintRegUnit {
920protected:
921  const TargetRegisterInfo *TRI;
922  unsigned Unit;
923public:
924  PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
925    : TRI(tri), Unit(unit) {}
926  void print(raw_ostream&) const;
927};
928
929static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) {
930  PR.print(OS);
931  return OS;
932}
933
934/// PrintVRegOrUnit - It is often convenient to track virtual registers and
935/// physical register units in the same list.
936class PrintVRegOrUnit : protected PrintRegUnit {
937public:
938  PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *tri)
939    : PrintRegUnit(VRegOrUnit, tri) {}
940  void print(raw_ostream&) const;
941};
942
943static inline raw_ostream &operator<<(raw_ostream &OS,
944                                      const PrintVRegOrUnit &PR) {
945  PR.print(OS);
946  return OS;
947}
948
949} // End llvm namespace
950
951#endif
952