TargetRegisterInfo.h revision 30eae3c02244e18747f9f0dca6946d86d0ccb7f5
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include <cassert>
22#include <functional>
23
24namespace llvm {
25
26class BitVector;
27class MachineFunction;
28class MachineMove;
29class RegScavenger;
30
31/// TargetRegisterDesc - This record contains all of the information known about
32/// a particular register.  The AliasSet field (if not null) contains a pointer
33/// to a Zero terminated array of registers that this register aliases.  This is
34/// needed for architectures like X86 which have AL alias AX alias EAX.
35/// Registers that this does not apply to simply should set this to null.
36/// The SubRegs field is a zero terminated array of registers that are
37/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
38/// The SuperRegs field is a zero terminated array of registers that are
39/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
40/// of AX.
41///
42struct TargetRegisterDesc {
43  const char     *AsmName;      // Assembly language name for the register
44  const char     *Name;         // Printable name for the reg (for debugging)
45  const unsigned *AliasSet;     // Register Alias Set, described above
46  const unsigned *SubRegs;      // Sub-register set, described above
47  const unsigned *SuperRegs;    // Super-register set, described above
48};
49
50class TargetRegisterClass {
51public:
52  typedef const unsigned* iterator;
53  typedef const unsigned* const_iterator;
54
55  typedef const MVT* vt_iterator;
56  typedef const TargetRegisterClass* const * sc_iterator;
57private:
58  unsigned ID;
59  const char *Name;
60  bool  isSubClass;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
65  const int CopyCost;
66  const iterator RegsBegin, RegsEnd;
67public:
68  TargetRegisterClass(unsigned id,
69                      const char *name,
70                      const MVT *vts,
71                      const TargetRegisterClass * const *subcs,
72                      const TargetRegisterClass * const *supcs,
73                      unsigned RS, unsigned Al, int CC,
74                      iterator RB, iterator RE)
75    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
76    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {}
77  virtual ~TargetRegisterClass() {}     // Allow subclasses
78
79  /// getID() - Return the register class ID number.
80  ///
81  unsigned getID() const { return ID; }
82
83  /// getName() - Return the register class name for debugging.
84  ///
85  const char *getName() const { return Name; }
86
87  /// begin/end - Return all of the registers in this class.
88  ///
89  iterator       begin() const { return RegsBegin; }
90  iterator         end() const { return RegsEnd; }
91
92  /// getNumRegs - Return the number of registers in this class.
93  ///
94  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
95
96  /// getRegister - Return the specified register in the class.
97  ///
98  unsigned getRegister(unsigned i) const {
99    assert(i < getNumRegs() && "Register number out of range!");
100    return RegsBegin[i];
101  }
102
103  /// contains - Return true if the specified register is included in this
104  /// register class.
105  bool contains(unsigned Reg) const {
106    for (iterator I = begin(), E = end(); I != E; ++I)
107      if (*I == Reg) return true;
108    return false;
109  }
110
111  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
112  ///
113  bool hasType(MVT vt) const {
114    for(int i = 0; VTs[i] != MVT::Other; ++i)
115      if (VTs[i] == vt)
116        return true;
117    return false;
118  }
119
120  /// vt_begin / vt_end - Loop over all of the value types that can be
121  /// represented by values in this register class.
122  vt_iterator vt_begin() const {
123    return VTs;
124  }
125
126  vt_iterator vt_end() const {
127    vt_iterator I = VTs;
128    while (*I != MVT::Other) ++I;
129    return I;
130  }
131
132  /// hasSubClass - return true if the specified TargetRegisterClass is a
133  /// sub-register class of this TargetRegisterClass.
134  bool hasSubClass(const TargetRegisterClass *cs) const {
135    for (int i = 0; SubClasses[i] != NULL; ++i)
136      if (SubClasses[i] == cs)
137        return true;
138    return false;
139  }
140
141  /// subclasses_begin / subclasses_end - Loop over all of the sub-classes of
142  /// this register class.
143  sc_iterator subclasses_begin() const {
144    return SubClasses;
145  }
146
147  sc_iterator subclasses_end() const {
148    sc_iterator I = SubClasses;
149    while (*I != NULL) ++I;
150    return I;
151  }
152
153  /// hasSuperClass - return true if the specified TargetRegisterClass is a
154  /// super-register class of this TargetRegisterClass.
155  bool hasSuperClass(const TargetRegisterClass *cs) const {
156    for (int i = 0; SuperClasses[i] != NULL; ++i)
157      if (SuperClasses[i] == cs)
158        return true;
159    return false;
160  }
161
162  /// superclasses_begin / superclasses_end - Loop over all of the super-classes
163  /// of this register class.
164  sc_iterator superclasses_begin() const {
165    return SuperClasses;
166  }
167
168  sc_iterator superclasses_end() const {
169    sc_iterator I = SuperClasses;
170    while (*I != NULL) ++I;
171    return I;
172  }
173
174  /// isASubClass - return true if this TargetRegisterClass is a sub-class of at
175  /// least one other TargetRegisterClass.
176  bool isASubClass() const {
177    return SuperClasses[0] != 0;
178  }
179
180  /// allocation_order_begin/end - These methods define a range of registers
181  /// which specify the registers in this class that are valid to register
182  /// allocate, and the preferred order to allocate them in.  For example,
183  /// callee saved registers should be at the end of the list, because it is
184  /// cheaper to allocate caller saved registers.
185  ///
186  /// These methods take a MachineFunction argument, which can be used to tune
187  /// the allocatable registers based on the characteristics of the function.
188  /// One simple example is that the frame pointer register can be used if
189  /// frame-pointer-elimination is performed.
190  ///
191  /// By default, these methods return all registers in the class.
192  ///
193  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
194    return begin();
195  }
196  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
197    return end();
198  }
199
200
201
202  /// getSize - Return the size of the register in bytes, which is also the size
203  /// of a stack slot allocated to hold a spilled copy of this register.
204  unsigned getSize() const { return RegSize; }
205
206  /// getAlignment - Return the minimum required alignment for a register of
207  /// this class.
208  unsigned getAlignment() const { return Alignment; }
209
210  /// getCopyCost - Return the cost of copying a value between two registers in
211  /// this class. A negative number means the register class is very expensive
212  /// to copy e.g. status flag register classes.
213  int getCopyCost() const { return CopyCost; }
214};
215
216
217/// TargetRegisterInfo base class - We assume that the target defines a static
218/// array of TargetRegisterDesc objects that represent all of the machine
219/// registers that the target has.  As such, we simply have to track a pointer
220/// to this array so that we can turn register number into a register
221/// descriptor.
222///
223class TargetRegisterInfo {
224protected:
225  const unsigned* SubregHash;
226  const unsigned SubregHashSize;
227public:
228  typedef const TargetRegisterClass * const * regclass_iterator;
229private:
230  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
231  unsigned NumRegs;                           // Number of entries in the array
232
233  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
234
235  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
236protected:
237  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
238                     regclass_iterator RegClassBegin,
239                     regclass_iterator RegClassEnd,
240                     int CallFrameSetupOpcode = -1,
241                     int CallFrameDestroyOpcode = -1,
242                     const unsigned* subregs = 0,
243                     const unsigned subregsize = 0);
244  virtual ~TargetRegisterInfo();
245public:
246
247  enum {                        // Define some target independent constants
248    /// NoRegister - This physical register is not a real target register.  It
249    /// is useful as a sentinal.
250    NoRegister = 0,
251
252    /// FirstVirtualRegister - This is the first register number that is
253    /// considered to be a 'virtual' register, which is part of the SSA
254    /// namespace.  This must be the same for all targets, which means that each
255    /// target is limited to 1024 registers.
256    FirstVirtualRegister = 1024
257  };
258
259  /// isPhysicalRegister - Return true if the specified register number is in
260  /// the physical register namespace.
261  static bool isPhysicalRegister(unsigned Reg) {
262    assert(Reg && "this is not a register!");
263    return Reg < FirstVirtualRegister;
264  }
265
266  /// isVirtualRegister - Return true if the specified register number is in
267  /// the virtual register namespace.
268  static bool isVirtualRegister(unsigned Reg) {
269    assert(Reg && "this is not a register!");
270    return Reg >= FirstVirtualRegister;
271  }
272
273  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
274  /// register of the given type. If type is MVT::Other, then just return any
275  /// register class the register belongs to.
276  virtual const TargetRegisterClass *
277    getPhysicalRegisterRegClass(unsigned Reg, MVT VT = MVT::Other) const;
278
279  /// getAllocatableSet - Returns a bitset indexed by register number
280  /// indicating if a register is allocatable or not. If a register class is
281  /// specified, returns the subset for the class.
282  BitVector getAllocatableSet(MachineFunction &MF,
283                              const TargetRegisterClass *RC = NULL) const;
284
285  const TargetRegisterDesc &operator[](unsigned RegNo) const {
286    assert(RegNo < NumRegs &&
287           "Attempting to access record for invalid register number!");
288    return Desc[RegNo];
289  }
290
291  /// Provide a get method, equivalent to [], but more useful if we have a
292  /// pointer to this object.
293  ///
294  const TargetRegisterDesc &get(unsigned RegNo) const {
295    return operator[](RegNo);
296  }
297
298  /// getAliasSet - Return the set of registers aliased by the specified
299  /// register, or a null list of there are none.  The list returned is zero
300  /// terminated.
301  ///
302  const unsigned *getAliasSet(unsigned RegNo) const {
303    return get(RegNo).AliasSet;
304  }
305
306  /// getSubRegisters - Return the list of registers that are sub-registers of
307  /// the specified register, or a null list of there are none. The list
308  /// returned is zero terminated and sorted according to super-sub register
309  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
310  ///
311  const unsigned *getSubRegisters(unsigned RegNo) const {
312    return get(RegNo).SubRegs;
313  }
314
315  /// getSuperRegisters - Return the list of registers that are super-registers
316  /// of the specified register, or a null list of there are none. The list
317  /// returned is zero terminated and sorted according to super-sub register
318  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
319  ///
320  const unsigned *getSuperRegisters(unsigned RegNo) const {
321    return get(RegNo).SuperRegs;
322  }
323
324  /// getAsmName - Return the symbolic target-specific name for the
325  /// specified physical register.
326  const char *getAsmName(unsigned RegNo) const {
327    return get(RegNo).AsmName;
328  }
329
330  /// getName - Return the human-readable symbolic target-specific name for the
331  /// specified physical register.
332  const char *getName(unsigned RegNo) const {
333    return get(RegNo).Name;
334  }
335
336  /// getNumRegs - Return the number of registers this target has (useful for
337  /// sizing arrays holding per register information)
338  unsigned getNumRegs() const {
339    return NumRegs;
340  }
341
342  /// areAliases - Returns true if the two registers alias each other, false
343  /// otherwise
344  bool areAliases(unsigned regA, unsigned regB) const {
345    for (const unsigned *Alias = getAliasSet(regA); *Alias; ++Alias)
346      if (*Alias == regB) return true;
347    return false;
348  }
349
350  /// regsOverlap - Returns true if the two registers are equal or alias each
351  /// other. The registers may be virtual register.
352  bool regsOverlap(unsigned regA, unsigned regB) const {
353    if (regA == regB)
354      return true;
355
356    if (isVirtualRegister(regA) || isVirtualRegister(regB))
357      return false;
358    return areAliases(regA, regB);
359  }
360
361  /// isSubRegister - Returns true if regB is a sub-register of regA.
362  ///
363  bool isSubRegister(unsigned regA, unsigned regB) const {
364    // SubregHash is a simple quadratically probed hash table.
365    size_t index = (regA + regB * 37) & (SubregHashSize-1);
366    unsigned ProbeAmt = 2;
367    while (SubregHash[index*2] != 0 &&
368           SubregHash[index*2+1] != 0) {
369      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
370        return true;
371
372      index = (index + ProbeAmt) & (SubregHashSize-1);
373      ProbeAmt += 2;
374    }
375
376    return false;
377  }
378
379  /// isSuperRegister - Returns true if regB is a super-register of regA.
380  ///
381  bool isSuperRegister(unsigned regA, unsigned regB) const {
382    for (const unsigned *SR = getSuperRegisters(regA); *SR; ++SR)
383      if (*SR == regB) return true;
384    return false;
385  }
386
387  /// getCalleeSavedRegs - Return a null-terminated list of all of the
388  /// callee saved registers on this target. The register should be in the
389  /// order of desired callee-save stack frame offset. The first register is
390  /// closed to the incoming stack pointer if stack grows down, and vice versa.
391  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
392                                                                      const = 0;
393
394  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
395  /// register classes to spill each callee saved register with.  The order and
396  /// length of this list match the getCalleeSaveRegs() list.
397  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
398                                            const MachineFunction *MF) const =0;
399
400  /// getReservedRegs - Returns a bitset indexed by physical register number
401  /// indicating if a register is a special register that has particular uses
402  /// and should be considered unavailable at all times, e.g. SP, RA. This is
403  /// used by register scavenger to determine what registers are free.
404  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
405
406  /// getSubReg - Returns the physical register number of sub-register "Index"
407  /// for physical register RegNo. Return zero if the sub-register does not
408  /// exist.
409  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
410
411  //===--------------------------------------------------------------------===//
412  // Register Class Information
413  //
414
415  /// Register class iterators
416  ///
417  regclass_iterator regclass_begin() const { return RegClassBegin; }
418  regclass_iterator regclass_end() const { return RegClassEnd; }
419
420  unsigned getNumRegClasses() const {
421    return (unsigned)(regclass_end()-regclass_begin());
422  }
423
424  /// getRegClass - Returns the register class associated with the enumeration
425  /// value.  See class TargetOperandInfo.
426  const TargetRegisterClass *getRegClass(unsigned i) const {
427    assert(i <= getNumRegClasses() && "Register Class ID out of range");
428    return i ? RegClassBegin[i - 1] : NULL;
429  }
430
431  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
432  /// values.
433  virtual const TargetRegisterClass *getPointerRegClass() const {
434    assert(0 && "Target didn't implement getPointerRegClass!");
435    return 0; // Must return a value in order to compile with VS 2005
436  }
437
438  /// getCrossCopyRegClass - Returns a legal register class to copy a register
439  /// in the specified class to or from. Returns NULL if it is possible to copy
440  /// between a two registers of the specified class.
441  virtual const TargetRegisterClass *
442  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
443    return NULL;
444  }
445
446  /// targetHandlesStackFrameRounding - Returns true if the target is
447  /// responsible for rounding up the stack frame (probably at emitPrologue
448  /// time).
449  virtual bool targetHandlesStackFrameRounding() const {
450    return false;
451  }
452
453  /// requiresRegisterScavenging - returns true if the target requires (and can
454  /// make use of) the register scavenger.
455  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
456    return false;
457  }
458
459  /// hasFP - Return true if the specified function should have a dedicated
460  /// frame pointer register. For most targets this is true only if the function
461  /// has variable sized allocas or if frame pointer elimination is disabled.
462  virtual bool hasFP(const MachineFunction &MF) const = 0;
463
464  // hasReservedCallFrame - Under normal circumstances, when a frame pointer is
465  // not required, we reserve argument space for call sites in the function
466  // immediately on entry to the current function. This eliminates the need for
467  // add/sub sp brackets around call sites. Returns true if the call frame is
468  // included as part of the stack frame.
469  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
470    return !hasFP(MF);
471  }
472
473  // needsStackRealignment - true if storage within the function requires the
474  // stack pointer to be aligned more than the normal calling convention calls
475  // for.
476  virtual bool needsStackRealignment(const MachineFunction &MF) const {
477    return false;
478  }
479
480  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
481  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
482  /// targets use pseudo instructions in order to abstract away the difference
483  /// between operating with a frame pointer and operating without, through the
484  /// use of these two instructions.
485  ///
486  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
487  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
488
489  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
490  /// code insertion to eliminate call frame setup and destroy pseudo
491  /// instructions (but only if the Target is using them).  It is responsible
492  /// for eliminating these instructions, replacing them with concrete
493  /// instructions.  This method need only be implemented if using call frame
494  /// setup/destroy pseudo instructions.
495  ///
496  virtual void
497  eliminateCallFramePseudoInstr(MachineFunction &MF,
498                                MachineBasicBlock &MBB,
499                                MachineBasicBlock::iterator MI) const {
500    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
501           "eliminateCallFramePseudoInstr must be implemented if using"
502           " call frame setup/destroy pseudo instructions!");
503    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
504  }
505
506  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
507  /// before PrologEpilogInserter scans the physical registers used to determine
508  /// what callee saved registers should be spilled. This method is optional.
509  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
510                                                RegScavenger *RS = NULL) const {
511
512  }
513
514  /// processFunctionBeforeFrameFinalized - This method is called immediately
515  /// before the specified functions frame layout (MF.getFrameInfo()) is
516  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
517  /// replaced with direct constants.  This method is optional.
518  ///
519  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
520  }
521
522  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
523  /// frame indices from instructions which may use them.  The instruction
524  /// referenced by the iterator contains an MO_FrameIndex operand which must be
525  /// eliminated by this method.  This method may modify or replace the
526  /// specified instruction, as long as it keeps the iterator pointing the the
527  /// finished product. SPAdj is the SP adjustment due to call frame setup
528  /// instruction.
529  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
530                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
531
532  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
533  /// the function.
534  virtual void emitPrologue(MachineFunction &MF) const = 0;
535  virtual void emitEpilogue(MachineFunction &MF,
536                            MachineBasicBlock &MBB) const = 0;
537
538  //===--------------------------------------------------------------------===//
539  /// Debug information queries.
540
541  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
542  /// number.  Returns -1 if there is no equivalent value.  The second
543  /// parameter allows targets to use different numberings for EH info and
544  /// debugging info.
545  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
546
547  /// getFrameRegister - This method should return the register used as a base
548  /// for values allocated in the current stack frame.
549  virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
550
551  /// getFrameIndexOffset - Returns the displacement from the frame register to
552  /// the stack frame of the specified index.
553  virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
554
555  /// getRARegister - This method should return the register where the return
556  /// address can be found.
557  virtual unsigned getRARegister() const = 0;
558
559  /// getInitialFrameState - Returns a list of machine moves that are assumed
560  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
561  /// the beginning of the function.)
562  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
563};
564
565// This is useful when building IndexedMaps keyed on virtual registers
566struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
567  unsigned operator()(unsigned Reg) const {
568    return Reg - TargetRegisterInfo::FirstVirtualRegister;
569  }
570};
571
572} // End llvm namespace
573
574#endif
575