TargetRegisterInfo.h revision 33464912237efaa0ed7060829e66b59055bdd48b
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31template<class T> class SmallVectorImpl;
32
33/// TargetRegisterDesc - This record contains all of the information known about
34/// a particular register.  The AliasSet field (if not null) contains a pointer
35/// to a Zero terminated array of registers that this register aliases.  This is
36/// needed for architectures like X86 which have AL alias AX alias EAX.
37/// Registers that this does not apply to simply should set this to null.
38/// The SubRegs field is a zero terminated array of registers that are
39/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
40/// The SuperRegs field is a zero terminated array of registers that are
41/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
42/// of AX.
43///
44struct TargetRegisterDesc {
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *AliasSet;     // Register Alias Set, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49};
50
51class TargetRegisterClass {
52public:
53  typedef const unsigned* iterator;
54  typedef const unsigned* const_iterator;
55
56  typedef const EVT* vt_iterator;
57  typedef const TargetRegisterClass* const * sc_iterator;
58private:
59  unsigned ID;
60  const char *Name;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const sc_iterator SubRegClasses;
65  const sc_iterator SuperRegClasses;
66  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
67  const int CopyCost;
68  const iterator RegsBegin, RegsEnd;
69  DenseSet<unsigned> RegSet;
70public:
71  TargetRegisterClass(unsigned id,
72                      const char *name,
73                      const EVT *vts,
74                      const TargetRegisterClass * const *subcs,
75                      const TargetRegisterClass * const *supcs,
76                      const TargetRegisterClass * const *subregcs,
77                      const TargetRegisterClass * const *superregcs,
78                      unsigned RS, unsigned Al, int CC,
79                      iterator RB, iterator RE)
80    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
81    SubRegClasses(subregcs), SuperRegClasses(superregcs),
82    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
83      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
84        RegSet.insert(*I);
85    }
86  virtual ~TargetRegisterClass() {}     // Allow subclasses
87
88  /// getID() - Return the register class ID number.
89  ///
90  unsigned getID() const { return ID; }
91
92  /// getName() - Return the register class name for debugging.
93  ///
94  const char *getName() const { return Name; }
95
96  /// begin/end - Return all of the registers in this class.
97  ///
98  iterator       begin() const { return RegsBegin; }
99  iterator         end() const { return RegsEnd; }
100
101  /// getNumRegs - Return the number of registers in this class.
102  ///
103  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
104
105  /// getRegister - Return the specified register in the class.
106  ///
107  unsigned getRegister(unsigned i) const {
108    assert(i < getNumRegs() && "Register number out of range!");
109    return RegsBegin[i];
110  }
111
112  /// contains - Return true if the specified register is included in this
113  /// register class.  This does not include virtual registers.
114  bool contains(unsigned Reg) const {
115    return RegSet.count(Reg);
116  }
117
118  /// contains - Return true if both registers are in this class.
119  bool contains(unsigned Reg1, unsigned Reg2) const {
120    return contains(Reg1) && contains(Reg2);
121  }
122
123  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
124  ///
125  bool hasType(EVT vt) const {
126    for(int i = 0; VTs[i] != MVT::Other; ++i)
127      if (VTs[i] == vt)
128        return true;
129    return false;
130  }
131
132  /// vt_begin / vt_end - Loop over all of the value types that can be
133  /// represented by values in this register class.
134  vt_iterator vt_begin() const {
135    return VTs;
136  }
137
138  vt_iterator vt_end() const {
139    vt_iterator I = VTs;
140    while (*I != MVT::Other) ++I;
141    return I;
142  }
143
144  /// subregclasses_begin / subregclasses_end - Loop over all of
145  /// the subreg register classes of this register class.
146  sc_iterator subregclasses_begin() const {
147    return SubRegClasses;
148  }
149
150  sc_iterator subregclasses_end() const {
151    sc_iterator I = SubRegClasses;
152    while (*I != NULL) ++I;
153    return I;
154  }
155
156  /// getSubRegisterRegClass - Return the register class of subregisters with
157  /// index SubIdx, or NULL if no such class exists.
158  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
159    assert(SubIdx>0 && "Invalid subregister index");
160    return SubRegClasses[SubIdx-1];
161  }
162
163  /// superregclasses_begin / superregclasses_end - Loop over all of
164  /// the superreg register classes of this register class.
165  sc_iterator superregclasses_begin() const {
166    return SuperRegClasses;
167  }
168
169  sc_iterator superregclasses_end() const {
170    sc_iterator I = SuperRegClasses;
171    while (*I != NULL) ++I;
172    return I;
173  }
174
175  /// hasSubClass - return true if the specified TargetRegisterClass
176  /// is a proper subset of this TargetRegisterClass.
177  bool hasSubClass(const TargetRegisterClass *cs) const {
178    for (int i = 0; SubClasses[i] != NULL; ++i)
179      if (SubClasses[i] == cs)
180        return true;
181    return false;
182  }
183
184  /// subclasses_begin / subclasses_end - Loop over all of the classes
185  /// that are proper subsets of this register class.
186  sc_iterator subclasses_begin() const {
187    return SubClasses;
188  }
189
190  sc_iterator subclasses_end() const {
191    sc_iterator I = SubClasses;
192    while (*I != NULL) ++I;
193    return I;
194  }
195
196  /// hasSuperClass - return true if the specified TargetRegisterClass is a
197  /// proper superset of this TargetRegisterClass.
198  bool hasSuperClass(const TargetRegisterClass *cs) const {
199    for (int i = 0; SuperClasses[i] != NULL; ++i)
200      if (SuperClasses[i] == cs)
201        return true;
202    return false;
203  }
204
205  /// superclasses_begin / superclasses_end - Loop over all of the classes
206  /// that are proper supersets of this register class.
207  sc_iterator superclasses_begin() const {
208    return SuperClasses;
209  }
210
211  sc_iterator superclasses_end() const {
212    sc_iterator I = SuperClasses;
213    while (*I != NULL) ++I;
214    return I;
215  }
216
217  /// isASubClass - return true if this TargetRegisterClass is a subset
218  /// class of at least one other TargetRegisterClass.
219  bool isASubClass() const {
220    return SuperClasses[0] != 0;
221  }
222
223  /// allocation_order_begin/end - These methods define a range of registers
224  /// which specify the registers in this class that are valid to register
225  /// allocate, and the preferred order to allocate them in.  For example,
226  /// callee saved registers should be at the end of the list, because it is
227  /// cheaper to allocate caller saved registers.
228  ///
229  /// These methods take a MachineFunction argument, which can be used to tune
230  /// the allocatable registers based on the characteristics of the function,
231  /// subtarget, or other criteria.
232  ///
233  /// Register allocators should account for the fact that an allocation
234  /// order iterator may return a reserved register and always check
235  /// if the register is allocatable (getAllocatableSet()) before using it.
236  ///
237  /// By default, these methods return all registers in the class.
238  ///
239  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
240    return begin();
241  }
242  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
243    return end();
244  }
245
246  /// getSize - Return the size of the register in bytes, which is also the size
247  /// of a stack slot allocated to hold a spilled copy of this register.
248  unsigned getSize() const { return RegSize; }
249
250  /// getAlignment - Return the minimum required alignment for a register of
251  /// this class.
252  unsigned getAlignment() const { return Alignment; }
253
254  /// getCopyCost - Return the cost of copying a value between two registers in
255  /// this class. A negative number means the register class is very expensive
256  /// to copy e.g. status flag register classes.
257  int getCopyCost() const { return CopyCost; }
258};
259
260
261/// TargetRegisterInfo base class - We assume that the target defines a static
262/// array of TargetRegisterDesc objects that represent all of the machine
263/// registers that the target has.  As such, we simply have to track a pointer
264/// to this array so that we can turn register number into a register
265/// descriptor.
266///
267class TargetRegisterInfo {
268protected:
269  const unsigned* SubregHash;
270  const unsigned SubregHashSize;
271  const unsigned* AliasesHash;
272  const unsigned AliasesHashSize;
273public:
274  typedef const TargetRegisterClass * const * regclass_iterator;
275private:
276  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
277  const char *const *SubRegIndexNames;        // Names of subreg indexes.
278  unsigned NumRegs;                           // Number of entries in the array
279
280  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
281
282  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
283
284protected:
285  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
286                     regclass_iterator RegClassBegin,
287                     regclass_iterator RegClassEnd,
288                     const char *const *subregindexnames,
289                     int CallFrameSetupOpcode = -1,
290                     int CallFrameDestroyOpcode = -1,
291                     const unsigned* subregs = 0,
292                     const unsigned subregsize = 0,
293                     const unsigned* aliases = 0,
294                     const unsigned aliasessize = 0);
295  virtual ~TargetRegisterInfo();
296public:
297
298  enum {                        // Define some target independent constants
299    /// NoRegister - This physical register is not a real target register.  It
300    /// is useful as a sentinal.
301    NoRegister = 0,
302
303    /// FirstVirtualRegister - This is the first register number that is
304    /// considered to be a 'virtual' register, which is part of the SSA
305    /// namespace.  This must be the same for all targets, which means that each
306    /// target is limited to this fixed number of registers.
307    FirstVirtualRegister = 16384
308  };
309
310  /// isPhysicalRegister - Return true if the specified register number is in
311  /// the physical register namespace.
312  static bool isPhysicalRegister(unsigned Reg) {
313    assert(Reg && "this is not a register!");
314    return Reg < FirstVirtualRegister;
315  }
316
317  /// isVirtualRegister - Return true if the specified register number is in
318  /// the virtual register namespace.
319  static bool isVirtualRegister(unsigned Reg) {
320    assert(Reg && "this is not a register!");
321    return Reg >= FirstVirtualRegister;
322  }
323
324  /// getMinimalPhysRegClass - Returns the Register Class of a physical
325  /// register of the given type, picking the most sub register class of
326  /// the right type that contains this physreg.
327  const TargetRegisterClass *
328    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
329
330  /// getAllocatableSet - Returns a bitset indexed by register number
331  /// indicating if a register is allocatable or not. If a register class is
332  /// specified, returns the subset for the class.
333  BitVector getAllocatableSet(const MachineFunction &MF,
334                              const TargetRegisterClass *RC = NULL) const;
335
336  const TargetRegisterDesc &operator[](unsigned RegNo) const {
337    assert(RegNo < NumRegs &&
338           "Attempting to access record for invalid register number!");
339    return Desc[RegNo];
340  }
341
342  /// Provide a get method, equivalent to [], but more useful if we have a
343  /// pointer to this object.
344  ///
345  const TargetRegisterDesc &get(unsigned RegNo) const {
346    return operator[](RegNo);
347  }
348
349  /// getAliasSet - Return the set of registers aliased by the specified
350  /// register, or a null list of there are none.  The list returned is zero
351  /// terminated.
352  ///
353  const unsigned *getAliasSet(unsigned RegNo) const {
354    return get(RegNo).AliasSet;
355  }
356
357  /// getSubRegisters - Return the list of registers that are sub-registers of
358  /// the specified register, or a null list of there are none. The list
359  /// returned is zero terminated and sorted according to super-sub register
360  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
361  ///
362  const unsigned *getSubRegisters(unsigned RegNo) const {
363    return get(RegNo).SubRegs;
364  }
365
366  /// getSuperRegisters - Return the list of registers that are super-registers
367  /// of the specified register, or a null list of there are none. The list
368  /// returned is zero terminated and sorted according to super-sub register
369  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
370  ///
371  const unsigned *getSuperRegisters(unsigned RegNo) const {
372    return get(RegNo).SuperRegs;
373  }
374
375  /// getName - Return the human-readable symbolic target-specific name for the
376  /// specified physical register.
377  const char *getName(unsigned RegNo) const {
378    return get(RegNo).Name;
379  }
380
381  /// getNumRegs - Return the number of registers this target has (useful for
382  /// sizing arrays holding per register information)
383  unsigned getNumRegs() const {
384    return NumRegs;
385  }
386
387  /// getSubRegIndexName - Return the human-readable symbolic target-specific
388  /// name for the specified SubRegIndex.
389  const char *getSubRegIndexName(unsigned SubIdx) const {
390    assert(SubIdx && "This is not a subregister index");
391    return SubRegIndexNames[SubIdx-1];
392  }
393
394  /// regsOverlap - Returns true if the two registers are equal or alias each
395  /// other. The registers may be virtual register.
396  bool regsOverlap(unsigned regA, unsigned regB) const {
397    if (regA == regB)
398      return true;
399
400    if (isVirtualRegister(regA) || isVirtualRegister(regB))
401      return false;
402
403    // regA and regB are distinct physical registers. Do they alias?
404    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
405    unsigned ProbeAmt = 0;
406    while (AliasesHash[index*2] != 0 &&
407           AliasesHash[index*2+1] != 0) {
408      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
409        return true;
410
411      index = (index + ProbeAmt) & (AliasesHashSize-1);
412      ProbeAmt += 2;
413    }
414
415    return false;
416  }
417
418  /// isSubRegister - Returns true if regB is a sub-register of regA.
419  ///
420  bool isSubRegister(unsigned regA, unsigned regB) const {
421    // SubregHash is a simple quadratically probed hash table.
422    size_t index = (regA + regB * 37) & (SubregHashSize-1);
423    unsigned ProbeAmt = 2;
424    while (SubregHash[index*2] != 0 &&
425           SubregHash[index*2+1] != 0) {
426      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
427        return true;
428
429      index = (index + ProbeAmt) & (SubregHashSize-1);
430      ProbeAmt += 2;
431    }
432
433    return false;
434  }
435
436  /// isSuperRegister - Returns true if regB is a super-register of regA.
437  ///
438  bool isSuperRegister(unsigned regA, unsigned regB) const {
439    return isSubRegister(regB, regA);
440  }
441
442  /// getCalleeSavedRegs - Return a null-terminated list of all of the
443  /// callee saved registers on this target. The register should be in the
444  /// order of desired callee-save stack frame offset. The first register is
445  /// closed to the incoming stack pointer if stack grows down, and vice versa.
446  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
447                                                                      const = 0;
448
449
450  /// getReservedRegs - Returns a bitset indexed by physical register number
451  /// indicating if a register is a special register that has particular uses
452  /// and should be considered unavailable at all times, e.g. SP, RA. This is
453  /// used by register scavenger to determine what registers are free.
454  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
455
456  /// getSubReg - Returns the physical register number of sub-register "Index"
457  /// for physical register RegNo. Return zero if the sub-register does not
458  /// exist.
459  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
460
461  /// getSubRegIndex - For a given register pair, return the sub-register index
462  /// if the second register is a sub-register of the first. Return zero
463  /// otherwise.
464  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
465
466  /// getMatchingSuperReg - Return a super-register of the specified register
467  /// Reg so its sub-register of index SubIdx is Reg.
468  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
469                               const TargetRegisterClass *RC) const {
470    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
471      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
472        return SR;
473    return 0;
474  }
475
476  /// canCombineSubRegIndices - Given a register class and a list of
477  /// subregister indices, return true if it's possible to combine the
478  /// subregister indices into one that corresponds to a larger
479  /// subregister. Return the new subregister index by reference. Note the
480  /// new index may be zero if the given subregisters can be combined to
481  /// form the whole register.
482  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
483                                       SmallVectorImpl<unsigned> &SubIndices,
484                                       unsigned &NewSubIdx) const {
485    return 0;
486  }
487
488  /// getMatchingSuperRegClass - Return a subclass of the specified register
489  /// class A so that each register in it has a sub-register of the
490  /// specified sub-register index which is in the specified register class B.
491  virtual const TargetRegisterClass *
492  getMatchingSuperRegClass(const TargetRegisterClass *A,
493                           const TargetRegisterClass *B, unsigned Idx) const {
494    return 0;
495  }
496
497  /// composeSubRegIndices - Return the subregister index you get from composing
498  /// two subregister indices.
499  ///
500  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
501  /// returns c. Note that composeSubRegIndices does not tell you about illegal
502  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
503  /// b, composeSubRegIndices doesn't tell you.
504  ///
505  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
506  /// ssub_0:S0 - ssub_3:S3 subregs.
507  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
508  ///
509  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
510    // This default implementation is correct for most targets.
511    return b;
512  }
513
514  //===--------------------------------------------------------------------===//
515  // Register Class Information
516  //
517
518  /// Register class iterators
519  ///
520  regclass_iterator regclass_begin() const { return RegClassBegin; }
521  regclass_iterator regclass_end() const { return RegClassEnd; }
522
523  unsigned getNumRegClasses() const {
524    return (unsigned)(regclass_end()-regclass_begin());
525  }
526
527  /// getRegClass - Returns the register class associated with the enumeration
528  /// value.  See class TargetOperandInfo.
529  const TargetRegisterClass *getRegClass(unsigned i) const {
530    assert(i < getNumRegClasses() && "Register Class ID out of range");
531    return RegClassBegin[i];
532  }
533
534  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
535  /// values.  If a target supports multiple different pointer register classes,
536  /// kind specifies which one is indicated.
537  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
538    assert(0 && "Target didn't implement getPointerRegClass!");
539    return 0; // Must return a value in order to compile with VS 2005
540  }
541
542  /// getCrossCopyRegClass - Returns a legal register class to copy a register
543  /// in the specified class to or from. Returns NULL if it is possible to copy
544  /// between a two registers of the specified class.
545  virtual const TargetRegisterClass *
546  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
547    return NULL;
548  }
549
550  /// getAllocationOrder - Returns the register allocation order for a specified
551  /// register class in the form of a pair of TargetRegisterClass iterators.
552  virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
553  getAllocationOrder(const TargetRegisterClass *RC,
554                     unsigned HintType, unsigned HintReg,
555                     const MachineFunction &MF) const {
556    return std::make_pair(RC->allocation_order_begin(MF),
557                          RC->allocation_order_end(MF));
558  }
559
560  /// ResolveRegAllocHint - Resolves the specified register allocation hint
561  /// to a physical register. Returns the physical register if it is successful.
562  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
563                                       const MachineFunction &MF) const {
564    if (Type == 0 && Reg && isPhysicalRegister(Reg))
565      return Reg;
566    return 0;
567  }
568
569  /// UpdateRegAllocHint - A callback to allow target a chance to update
570  /// register allocation hints when a register is "changed" (e.g. coalesced)
571  /// to another register. e.g. On ARM, some virtual registers should target
572  /// register pairs, if one of pair is coalesced to another register, the
573  /// allocation hint of the other half of the pair should be changed to point
574  /// to the new register.
575  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
576                                  MachineFunction &MF) const {
577    // Do nothing.
578  }
579
580  /// requiresRegisterScavenging - returns true if the target requires (and can
581  /// make use of) the register scavenger.
582  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
583    return false;
584  }
585
586  /// requiresFrameIndexScavenging - returns true if the target requires post
587  /// PEI scavenging of registers for materializing frame index constants.
588  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
589    return false;
590  }
591
592  /// requiresVirtualBaseRegisters - Returns true if the target wants the
593  /// LocalStackAllocation pass to be run and virtual base registers
594  /// used for more efficient stack access.
595  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
596    return false;
597  }
598
599  /// hasFP - Return true if the specified function should have a dedicated
600  /// frame pointer register. For most targets this is true only if the function
601  /// has variable sized allocas or if frame pointer elimination is disabled.
602  virtual bool hasFP(const MachineFunction &MF) const = 0;
603
604  /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
605  /// not required, we reserve argument space for call sites in the function
606  /// immediately on entry to the current function. This eliminates the need for
607  /// add/sub sp brackets around call sites. Returns true if the call frame is
608  /// included as part of the stack frame.
609  virtual bool hasReservedCallFrame(const MachineFunction &MF) const {
610    return !hasFP(MF);
611  }
612
613  /// canSimplifyCallFramePseudos - When possible, it's best to simplify the
614  /// call frame pseudo ops before doing frame index elimination. This is
615  /// possible only when frame index references between the pseudos won't
616  /// need adjusting for the call frame adjustments. Normally, that's true
617  /// if the function has a reserved call frame or a frame pointer. Some
618  /// targets (Thumb2, for example) may have more complicated criteria,
619  /// however, and can override this behavior.
620  virtual bool canSimplifyCallFramePseudos(const MachineFunction &MF) const {
621    return hasReservedCallFrame(MF) || hasFP(MF);
622  }
623
624  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
625  /// the stack frame of the given function for the specified register. e.g. On
626  /// x86, if the frame register is required, the first fixed stack object is
627  /// reserved as its spill slot. This tells PEI not to create a new stack frame
628  /// object for the given register. It should be called only after
629  /// processFunctionBeforeCalleeSavedScan().
630  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
631                                    int &FrameIdx) const {
632    return false;
633  }
634
635  /// needsStackRealignment - true if storage within the function requires the
636  /// stack pointer to be aligned more than the normal calling convention calls
637  /// for.
638  virtual bool needsStackRealignment(const MachineFunction &MF) const {
639    return false;
640  }
641
642  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
643  /// index in the instruction, if the is one.
644  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
645                                           int Idx) const {
646    return 0;
647  }
648
649  /// needsFrameBaseReg - Returns true if the instruction's frame index
650  /// reference would be better served by a base register other than FP
651  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
652  /// references it should create new base registers for.
653  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
654    return false;
655  }
656
657  /// materializeFrameBaseRegister - Insert defining instruction(s) for
658  /// BaseReg to be a pointer to FrameIdx before insertion point I.
659  virtual void materializeFrameBaseRegister(MachineBasicBlock::iterator I,
660                                            unsigned BaseReg, int FrameIdx,
661                                            int64_t Offset) const {
662    assert(0 && "materializeFrameBaseRegister does not exist on this target");
663  }
664
665  /// resolveFrameIndex - Resolve a frame index operand of an instruction
666  /// to reference the indicated base register plus offset instead.
667  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
668                                 unsigned BaseReg, int64_t Offset) const {
669    assert(0 && "resolveFrameIndex does not exist on this target");
670  }
671
672  /// isFrameOffsetLegal - Determine whether a given offset immediate is
673  /// encodable to resolve a frame index.
674  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
675                                  int64_t Offset) const {
676    assert(0 && "isFrameOffsetLegal does not exist on this target");
677    return false; // Must return a value in order to compile with VS 2005
678  }
679
680  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
681  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
682  /// targets use pseudo instructions in order to abstract away the difference
683  /// between operating with a frame pointer and operating without, through the
684  /// use of these two instructions.
685  ///
686  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
687  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
688
689  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
690  /// code insertion to eliminate call frame setup and destroy pseudo
691  /// instructions (but only if the Target is using them).  It is responsible
692  /// for eliminating these instructions, replacing them with concrete
693  /// instructions.  This method need only be implemented if using call frame
694  /// setup/destroy pseudo instructions.
695  ///
696  virtual void
697  eliminateCallFramePseudoInstr(MachineFunction &MF,
698                                MachineBasicBlock &MBB,
699                                MachineBasicBlock::iterator MI) const {
700    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
701           "eliminateCallFramePseudoInstr must be implemented if using"
702           " call frame setup/destroy pseudo instructions!");
703    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
704  }
705
706  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
707  /// before PrologEpilogInserter scans the physical registers used to determine
708  /// what callee saved registers should be spilled. This method is optional.
709  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
710                                                RegScavenger *RS = NULL) const {
711
712  }
713
714  /// processFunctionBeforeFrameFinalized - This method is called immediately
715  /// before the specified function's frame layout (MF.getFrameInfo()) is
716  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
717  /// replaced with direct constants.  This method is optional.
718  ///
719  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
720  }
721
722  /// saveScavengerRegister - Spill the register so it can be used by the
723  /// register scavenger. Return true if the register was spilled, false
724  /// otherwise. If this function does not spill the register, the scavenger
725  /// will instead spill it to the emergency spill slot.
726  ///
727  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
728                                     MachineBasicBlock::iterator I,
729                                     MachineBasicBlock::iterator &UseMI,
730                                     const TargetRegisterClass *RC,
731                                     unsigned Reg) const {
732    return false;
733  }
734
735  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
736  /// frame indices from instructions which may use them.  The instruction
737  /// referenced by the iterator contains an MO_FrameIndex operand which must be
738  /// eliminated by this method.  This method may modify or replace the
739  /// specified instruction, as long as it keeps the iterator pointing at the
740  /// finished product. SPAdj is the SP adjustment due to call frame setup
741  /// instruction.
742  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
743                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
744
745  //===--------------------------------------------------------------------===//
746  /// Debug information queries.
747
748  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
749  /// number.  Returns -1 if there is no equivalent value.  The second
750  /// parameter allows targets to use different numberings for EH info and
751  /// debugging info.
752  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
753
754  /// getFrameRegister - This method should return the register used as a base
755  /// for values allocated in the current stack frame.
756  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
757
758  /// getFrameIndexOffset - Returns the displacement from the frame register to
759  /// the stack frame of the specified index.
760  virtual int getFrameIndexOffset(const MachineFunction &MF, int FI) const;
761
762  /// getFrameIndexReference - This method should return the base register
763  /// and offset used to reference a frame index location. The offset is
764  /// returned directly, and the base register is returned via FrameReg.
765  virtual int getFrameIndexReference(const MachineFunction &MF, int FI,
766                                     unsigned &FrameReg) const {
767    // By default, assume all frame indices are referenced via whatever
768    // getFrameRegister() says. The target can override this if it's doing
769    // something different.
770    FrameReg = getFrameRegister(MF);
771    return getFrameIndexOffset(MF, FI);
772  }
773
774  /// getRARegister - This method should return the register where the return
775  /// address can be found.
776  virtual unsigned getRARegister() const = 0;
777
778  /// getInitialFrameState - Returns a list of machine moves that are assumed
779  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
780  /// the beginning of the function.)
781  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
782};
783
784
785// This is useful when building IndexedMaps keyed on virtual registers
786struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
787  unsigned operator()(unsigned Reg) const {
788    return Reg - TargetRegisterInfo::FirstVirtualRegister;
789  }
790};
791
792/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
793/// if there is no common subclass.
794const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
795                                             const TargetRegisterClass *B);
796
797} // End llvm namespace
798
799#endif
800