TargetRegisterInfo.h revision 33d9e89e5f8d7656e50353b014d5bb1b52f15e13
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/MC/MCRegisterInfo.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/CallingConv.h"
24#include <cassert>
25#include <functional>
26
27namespace llvm {
28
29class BitVector;
30class MachineFunction;
31class RegScavenger;
32template<class T> class SmallVectorImpl;
33class raw_ostream;
34
35class TargetRegisterClass {
36public:
37  typedef const uint16_t* iterator;
38  typedef const uint16_t* const_iterator;
39  typedef const MVT::SimpleValueType* vt_iterator;
40  typedef const TargetRegisterClass* const * sc_iterator;
41
42  // Instance variables filled by tablegen, do not use!
43  const MCRegisterClass *MC;
44  const vt_iterator VTs;
45  const unsigned *SubClassMask;
46  const sc_iterator SuperClasses;
47  const sc_iterator SuperRegClasses;
48  ArrayRef<uint16_t> (*OrderFunc)(const MachineFunction&);
49
50  /// getID() - Return the register class ID number.
51  ///
52  unsigned getID() const { return MC->getID(); }
53
54  /// getName() - Return the register class name for debugging.
55  ///
56  const char *getName() const { return MC->getName(); }
57
58  /// begin/end - Return all of the registers in this class.
59  ///
60  iterator       begin() const { return MC->begin(); }
61  iterator         end() const { return MC->end(); }
62
63  /// getNumRegs - Return the number of registers in this class.
64  ///
65  unsigned getNumRegs() const { return MC->getNumRegs(); }
66
67  /// getRegister - Return the specified register in the class.
68  ///
69  unsigned getRegister(unsigned i) const {
70    return MC->getRegister(i);
71  }
72
73  /// contains - Return true if the specified register is included in this
74  /// register class.  This does not include virtual registers.
75  bool contains(unsigned Reg) const {
76    return MC->contains(Reg);
77  }
78
79  /// contains - Return true if both registers are in this class.
80  bool contains(unsigned Reg1, unsigned Reg2) const {
81    return MC->contains(Reg1, Reg2);
82  }
83
84  /// getSize - Return the size of the register in bytes, which is also the size
85  /// of a stack slot allocated to hold a spilled copy of this register.
86  unsigned getSize() const { return MC->getSize(); }
87
88  /// getAlignment - Return the minimum required alignment for a register of
89  /// this class.
90  unsigned getAlignment() const { return MC->getAlignment(); }
91
92  /// getCopyCost - Return the cost of copying a value between two registers in
93  /// this class. A negative number means the register class is very expensive
94  /// to copy e.g. status flag register classes.
95  int getCopyCost() const { return MC->getCopyCost(); }
96
97  /// isAllocatable - Return true if this register class may be used to create
98  /// virtual registers.
99  bool isAllocatable() const { return MC->isAllocatable(); }
100
101  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
102  ///
103  bool hasType(EVT vt) const {
104    for(int i = 0; VTs[i] != MVT::Other; ++i)
105      if (EVT(VTs[i]) == vt)
106        return true;
107    return false;
108  }
109
110  /// vt_begin / vt_end - Loop over all of the value types that can be
111  /// represented by values in this register class.
112  vt_iterator vt_begin() const {
113    return VTs;
114  }
115
116  vt_iterator vt_end() const {
117    vt_iterator I = VTs;
118    while (*I != MVT::Other) ++I;
119    return I;
120  }
121
122  /// superregclasses_begin / superregclasses_end - Loop over all of
123  /// the superreg register classes of this register class.
124  sc_iterator superregclasses_begin() const {
125    return SuperRegClasses;
126  }
127
128  sc_iterator superregclasses_end() const {
129    sc_iterator I = SuperRegClasses;
130    while (*I != NULL) ++I;
131    return I;
132  }
133
134  /// hasSubClass - return true if the specified TargetRegisterClass
135  /// is a proper sub-class of this TargetRegisterClass.
136  bool hasSubClass(const TargetRegisterClass *RC) const {
137    return RC != this && hasSubClassEq(RC);
138  }
139
140  /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
141  /// class.
142  bool hasSubClassEq(const TargetRegisterClass *RC) const {
143    unsigned ID = RC->getID();
144    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
145  }
146
147  /// hasSuperClass - return true if the specified TargetRegisterClass is a
148  /// proper super-class of this TargetRegisterClass.
149  bool hasSuperClass(const TargetRegisterClass *RC) const {
150    return RC->hasSubClass(this);
151  }
152
153  /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
154  /// class.
155  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
156    return RC->hasSubClassEq(this);
157  }
158
159  /// getSubClassMask - Returns a bit vector of subclasses, including this one.
160  /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
161  /// use it.
162  const uint32_t *getSubClassMask() const {
163    return SubClassMask;
164  }
165
166  /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
167  /// classes are ordered by ID which is also a topological ordering from large
168  /// to small classes.  The list does NOT include the current class.
169  sc_iterator getSuperClasses() const {
170    return SuperClasses;
171  }
172
173  /// isASubClass - return true if this TargetRegisterClass is a subset
174  /// class of at least one other TargetRegisterClass.
175  bool isASubClass() const {
176    return SuperClasses[0] != 0;
177  }
178
179  /// getRawAllocationOrder - Returns the preferred order for allocating
180  /// registers from this register class in MF. The raw order comes directly
181  /// from the .td file and may include reserved registers that are not
182  /// allocatable. Register allocators should also make sure to allocate
183  /// callee-saved registers only after all the volatiles are used. The
184  /// RegisterClassInfo class provides filtered allocation orders with
185  /// callee-saved registers moved to the end.
186  ///
187  /// The MachineFunction argument can be used to tune the allocatable
188  /// registers based on the characteristics of the function, subtarget, or
189  /// other criteria.
190  ///
191  /// By default, this method returns all registers in the class.
192  ///
193  ArrayRef<uint16_t> getRawAllocationOrder(const MachineFunction &MF) const {
194    return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
195  }
196};
197
198/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
199/// registers. These are used by codegen, not by MC.
200struct TargetRegisterInfoDesc {
201  unsigned CostPerUse;          // Extra cost of instructions using register.
202  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
203};
204
205/// Each TargetRegisterClass has a per register weight, and weight
206/// limit which must be less than the limits of its pressure sets.
207struct RegClassWeight {
208  unsigned RegWeight;
209  unsigned WeightLimit;
210};
211
212/// TargetRegisterInfo base class - We assume that the target defines a static
213/// array of TargetRegisterDesc objects that represent all of the machine
214/// registers that the target has.  As such, we simply have to track a pointer
215/// to this array so that we can turn register number into a register
216/// descriptor.
217///
218class TargetRegisterInfo : public MCRegisterInfo {
219public:
220  typedef const TargetRegisterClass * const * regclass_iterator;
221private:
222  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
223  const char *const *SubRegIndexNames;        // Names of subreg indexes.
224  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
225
226protected:
227  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
228                     regclass_iterator RegClassBegin,
229                     regclass_iterator RegClassEnd,
230                     const char *const *subregindexnames);
231  virtual ~TargetRegisterInfo();
232public:
233
234  // Register numbers can represent physical registers, virtual registers, and
235  // sometimes stack slots. The unsigned values are divided into these ranges:
236  //
237  //   0           Not a register, can be used as a sentinel.
238  //   [1;2^30)    Physical registers assigned by TableGen.
239  //   [2^30;2^31) Stack slots. (Rarely used.)
240  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
241  //
242  // Further sentinels can be allocated from the small negative integers.
243  // DenseMapInfo<unsigned> uses -1u and -2u.
244
245  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
246  /// frame index in a variable that normally holds a register. isStackSlot()
247  /// returns true if Reg is in the range used for stack slots.
248  ///
249  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
250  /// slots, so if a variable may contains a stack slot, always check
251  /// isStackSlot() first.
252  ///
253  static bool isStackSlot(unsigned Reg) {
254    return int(Reg) >= (1 << 30);
255  }
256
257  /// stackSlot2Index - Compute the frame index from a register value
258  /// representing a stack slot.
259  static int stackSlot2Index(unsigned Reg) {
260    assert(isStackSlot(Reg) && "Not a stack slot");
261    return int(Reg - (1u << 30));
262  }
263
264  /// index2StackSlot - Convert a non-negative frame index to a stack slot
265  /// register value.
266  static unsigned index2StackSlot(int FI) {
267    assert(FI >= 0 && "Cannot hold a negative frame index.");
268    return FI + (1u << 30);
269  }
270
271  /// isPhysicalRegister - Return true if the specified register number is in
272  /// the physical register namespace.
273  static bool isPhysicalRegister(unsigned Reg) {
274    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
275    return int(Reg) > 0;
276  }
277
278  /// isVirtualRegister - Return true if the specified register number is in
279  /// the virtual register namespace.
280  static bool isVirtualRegister(unsigned Reg) {
281    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
282    return int(Reg) < 0;
283  }
284
285  /// virtReg2Index - Convert a virtual register number to a 0-based index.
286  /// The first virtual register in a function will get the index 0.
287  static unsigned virtReg2Index(unsigned Reg) {
288    assert(isVirtualRegister(Reg) && "Not a virtual register");
289    return Reg & ~(1u << 31);
290  }
291
292  /// index2VirtReg - Convert a 0-based index to a virtual register number.
293  /// This is the inverse operation of VirtReg2IndexFunctor below.
294  static unsigned index2VirtReg(unsigned Index) {
295    return Index | (1u << 31);
296  }
297
298  /// getMinimalPhysRegClass - Returns the Register Class of a physical
299  /// register of the given type, picking the most sub register class of
300  /// the right type that contains this physreg.
301  const TargetRegisterClass *
302    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
303
304  /// getAllocatableSet - Returns a bitset indexed by register number
305  /// indicating if a register is allocatable or not. If a register class is
306  /// specified, returns the subset for the class.
307  BitVector getAllocatableSet(const MachineFunction &MF,
308                              const TargetRegisterClass *RC = NULL) const;
309
310  /// getCostPerUse - Return the additional cost of using this register instead
311  /// of other registers in its class.
312  unsigned getCostPerUse(unsigned RegNo) const {
313    return InfoDesc[RegNo].CostPerUse;
314  }
315
316  /// isInAllocatableClass - Return true if the register is in the allocation
317  /// of any register class.
318  bool isInAllocatableClass(unsigned RegNo) const {
319    return InfoDesc[RegNo].inAllocatableClass;
320  }
321
322  /// getSubRegIndexName - Return the human-readable symbolic target-specific
323  /// name for the specified SubRegIndex.
324  const char *getSubRegIndexName(unsigned SubIdx) const {
325    assert(SubIdx && "This is not a subregister index");
326    return SubRegIndexNames[SubIdx-1];
327  }
328
329  /// regsOverlap - Returns true if the two registers are equal or alias each
330  /// other. The registers may be virtual register.
331  bool regsOverlap(unsigned regA, unsigned regB) const {
332    if (regA == regB) return true;
333    if (isVirtualRegister(regA) || isVirtualRegister(regB))
334      return false;
335    for (const uint16_t *regList = getOverlaps(regA)+1; *regList; ++regList) {
336      if (*regList == regB) return true;
337    }
338    return false;
339  }
340
341  /// isSubRegister - Returns true if regB is a sub-register of regA.
342  ///
343  bool isSubRegister(unsigned regA, unsigned regB) const {
344    return isSuperRegister(regB, regA);
345  }
346
347  /// isSuperRegister - Returns true if regB is a super-register of regA.
348  ///
349  bool isSuperRegister(unsigned regA, unsigned regB) const {
350    for (const uint16_t *regList = getSuperRegisters(regA); *regList;++regList){
351      if (*regList == regB) return true;
352    }
353    return false;
354  }
355
356  /// getCalleeSavedRegs - Return a null-terminated list of all of the
357  /// callee saved registers on this target. The register should be in the
358  /// order of desired callee-save stack frame offset. The first register is
359  /// closest to the incoming stack pointer if stack grows down, and vice versa.
360  ///
361  virtual const uint16_t* getCalleeSavedRegs(const MachineFunction *MF = 0)
362                                                                      const = 0;
363
364  /// getCallPreservedMask - Return a mask of call-preserved registers for the
365  /// given calling convention on the current sub-target.  The mask should
366  /// include all call-preserved aliases.  This is used by the register
367  /// allocator to determine which registers can be live across a call.
368  ///
369  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
370  /// A set bit indicates that all bits of the corresponding register are
371  /// preserved across the function call.  The bit mask is expected to be
372  /// sub-register complete, i.e. if A is preserved, so are all its
373  /// sub-registers.
374  ///
375  /// Bits are numbered from the LSB, so the bit for physical register Reg can
376  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
377  ///
378  /// A NULL pointer means that no register mask will be used, and call
379  /// instructions should use implicit-def operands to indicate call clobbered
380  /// registers.
381  ///
382  virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
383    // The default mask clobbers everything.  All targets should override.
384    return 0;
385  }
386
387  /// getReservedRegs - Returns a bitset indexed by physical register number
388  /// indicating if a register is a special register that has particular uses
389  /// and should be considered unavailable at all times, e.g. SP, RA. This is
390  /// used by register scavenger to determine what registers are free.
391  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
392
393  /// getMatchingSuperReg - Return a super-register of the specified register
394  /// Reg so its sub-register of index SubIdx is Reg.
395  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
396                               const TargetRegisterClass *RC) const {
397    return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
398  }
399
400  /// canCombineSubRegIndices - Given a register class and a list of
401  /// subregister indices, return true if it's possible to combine the
402  /// subregister indices into one that corresponds to a larger
403  /// subregister. Return the new subregister index by reference. Note the
404  /// new index may be zero if the given subregisters can be combined to
405  /// form the whole register.
406  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
407                                       SmallVectorImpl<unsigned> &SubIndices,
408                                       unsigned &NewSubIdx) const {
409    return 0;
410  }
411
412  /// getMatchingSuperRegClass - Return a subclass of the specified register
413  /// class A so that each register in it has a sub-register of the
414  /// specified sub-register index which is in the specified register class B.
415  ///
416  /// TableGen will synthesize missing A sub-classes.
417  virtual const TargetRegisterClass *
418  getMatchingSuperRegClass(const TargetRegisterClass *A,
419                           const TargetRegisterClass *B, unsigned Idx) const =0;
420
421  /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
422  /// supports the sub-register index Idx.
423  /// If no such sub-class exists, return NULL.
424  /// If all registers in RC already have an Idx sub-register, return RC.
425  ///
426  /// TableGen generates a version of this function that is good enough in most
427  /// cases.  Targets can override if they have constraints that TableGen
428  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
429  /// supported by the full GR32 register class in 64-bit mode, but only by the
430  /// GR32_ABCD regiister class in 32-bit mode.
431  ///
432  /// TableGen will synthesize missing RC sub-classes.
433  virtual const TargetRegisterClass *
434  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const =0;
435
436  /// composeSubRegIndices - Return the subregister index you get from composing
437  /// two subregister indices.
438  ///
439  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
440  /// returns c. Note that composeSubRegIndices does not tell you about illegal
441  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
442  /// b, composeSubRegIndices doesn't tell you.
443  ///
444  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
445  /// ssub_0:S0 - ssub_3:S3 subregs.
446  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
447  ///
448  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
449    // This default implementation is correct for most targets.
450    return b;
451  }
452
453  //===--------------------------------------------------------------------===//
454  // Register Class Information
455  //
456
457  /// Register class iterators
458  ///
459  regclass_iterator regclass_begin() const { return RegClassBegin; }
460  regclass_iterator regclass_end() const { return RegClassEnd; }
461
462  unsigned getNumRegClasses() const {
463    return (unsigned)(regclass_end()-regclass_begin());
464  }
465
466  /// getRegClass - Returns the register class associated with the enumeration
467  /// value.  See class MCOperandInfo.
468  const TargetRegisterClass *getRegClass(unsigned i) const {
469    assert(i < getNumRegClasses() && "Register Class ID out of range");
470    return RegClassBegin[i];
471  }
472
473  /// getCommonSubClass - find the largest common subclass of A and B. Return
474  /// NULL if there is no common subclass.
475  const TargetRegisterClass *
476  getCommonSubClass(const TargetRegisterClass *A,
477                    const TargetRegisterClass *B) const;
478
479  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
480  /// values.  If a target supports multiple different pointer register classes,
481  /// kind specifies which one is indicated.
482  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
483    llvm_unreachable("Target didn't implement getPointerRegClass!");
484  }
485
486  /// getCrossCopyRegClass - Returns a legal register class to copy a register
487  /// in the specified class to or from. If it is possible to copy the register
488  /// directly without using a cross register class copy, return the specified
489  /// RC. Returns NULL if it is not possible to copy between a two registers of
490  /// the specified class.
491  virtual const TargetRegisterClass *
492  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
493    return RC;
494  }
495
496  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
497  /// legal to use in the current sub-target and has the same spill size.
498  /// The returned register class can be used to create virtual registers which
499  /// means that all its registers can be copied and spilled.
500  virtual const TargetRegisterClass*
501  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
502    /// The default implementation is very conservative and doesn't allow the
503    /// register allocator to inflate register classes.
504    return RC;
505  }
506
507  /// getRegPressureLimit - Return the register pressure "high water mark" for
508  /// the specific register class. The scheduler is in high register pressure
509  /// mode (for the specific register class) if it goes over the limit.
510  ///
511  /// Note: this is the old register pressure model that relies on a manually
512  /// specified representative register class per value type.
513  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
514                                       MachineFunction &MF) const {
515    return 0;
516  }
517
518  /// Get the weight in units of pressure for this register class.
519  virtual const RegClassWeight &getRegClassWeight(
520    const TargetRegisterClass *RC) const = 0;
521
522  /// Get the number of dimensions of register pressure.
523  virtual unsigned getNumRegPressureSets() const = 0;
524
525  /// Get the register unit pressure limit for this dimension.
526  /// This limit must be adjusted dynamically for reserved registers.
527  virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
528
529  /// Get the dimensions of register pressure impacted by this register class.
530  /// Returns a -1 terminated array of pressure set IDs.
531  virtual const int *getRegClassPressureSets(
532    const TargetRegisterClass *RC) const = 0;
533
534  /// getRawAllocationOrder - Returns the register allocation order for a
535  /// specified register class with a target-dependent hint. The returned list
536  /// may contain reserved registers that cannot be allocated.
537  ///
538  /// Register allocators need only call this function to resolve
539  /// target-dependent hints, but it should work without hinting as well.
540  virtual ArrayRef<uint16_t>
541  getRawAllocationOrder(const TargetRegisterClass *RC,
542                        unsigned HintType, unsigned HintReg,
543                        const MachineFunction &MF) const {
544    return RC->getRawAllocationOrder(MF);
545  }
546
547  /// ResolveRegAllocHint - Resolves the specified register allocation hint
548  /// to a physical register. Returns the physical register if it is successful.
549  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
550                                       const MachineFunction &MF) const {
551    if (Type == 0 && Reg && isPhysicalRegister(Reg))
552      return Reg;
553    return 0;
554  }
555
556  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
557  /// writing a register from RC in two consecutive instructions.
558  /// This can avoid pipeline stalls on certain architectures.
559  /// It does cause increased register pressure, though.
560  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
561    return false;
562  }
563
564  /// UpdateRegAllocHint - A callback to allow target a chance to update
565  /// register allocation hints when a register is "changed" (e.g. coalesced)
566  /// to another register. e.g. On ARM, some virtual registers should target
567  /// register pairs, if one of pair is coalesced to another register, the
568  /// allocation hint of the other half of the pair should be changed to point
569  /// to the new register.
570  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
571                                  MachineFunction &MF) const {
572    // Do nothing.
573  }
574
575  /// requiresRegisterScavenging - returns true if the target requires (and can
576  /// make use of) the register scavenger.
577  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
578    return false;
579  }
580
581  /// useFPForScavengingIndex - returns true if the target wants to use
582  /// frame pointer based accesses to spill to the scavenger emergency spill
583  /// slot.
584  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
585    return true;
586  }
587
588  /// requiresFrameIndexScavenging - returns true if the target requires post
589  /// PEI scavenging of registers for materializing frame index constants.
590  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
591    return false;
592  }
593
594  /// requiresVirtualBaseRegisters - Returns true if the target wants the
595  /// LocalStackAllocation pass to be run and virtual base registers
596  /// used for more efficient stack access.
597  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
598    return false;
599  }
600
601  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
602  /// the stack frame of the given function for the specified register. e.g. On
603  /// x86, if the frame register is required, the first fixed stack object is
604  /// reserved as its spill slot. This tells PEI not to create a new stack frame
605  /// object for the given register. It should be called only after
606  /// processFunctionBeforeCalleeSavedScan().
607  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
608                                    int &FrameIdx) const {
609    return false;
610  }
611
612  /// needsStackRealignment - true if storage within the function requires the
613  /// stack pointer to be aligned more than the normal calling convention calls
614  /// for.
615  virtual bool needsStackRealignment(const MachineFunction &MF) const {
616    return false;
617  }
618
619  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
620  /// index in the instruction, if there is one.
621  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
622                                           int Idx) const {
623    return 0;
624  }
625
626  /// needsFrameBaseReg - Returns true if the instruction's frame index
627  /// reference would be better served by a base register other than FP
628  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
629  /// references it should create new base registers for.
630  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
631    return false;
632  }
633
634  /// materializeFrameBaseRegister - Insert defining instruction(s) for
635  /// BaseReg to be a pointer to FrameIdx before insertion point I.
636  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
637                                            unsigned BaseReg, int FrameIdx,
638                                            int64_t Offset) const {
639    llvm_unreachable("materializeFrameBaseRegister does not exist on this "
640                     "target");
641  }
642
643  /// resolveFrameIndex - Resolve a frame index operand of an instruction
644  /// to reference the indicated base register plus offset instead.
645  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
646                                 unsigned BaseReg, int64_t Offset) const {
647    llvm_unreachable("resolveFrameIndex does not exist on this target");
648  }
649
650  /// isFrameOffsetLegal - Determine whether a given offset immediate is
651  /// encodable to resolve a frame index.
652  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
653                                  int64_t Offset) const {
654    llvm_unreachable("isFrameOffsetLegal does not exist on this target");
655  }
656
657  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
658  /// code insertion to eliminate call frame setup and destroy pseudo
659  /// instructions (but only if the Target is using them).  It is responsible
660  /// for eliminating these instructions, replacing them with concrete
661  /// instructions.  This method need only be implemented if using call frame
662  /// setup/destroy pseudo instructions.
663  ///
664  virtual void
665  eliminateCallFramePseudoInstr(MachineFunction &MF,
666                                MachineBasicBlock &MBB,
667                                MachineBasicBlock::iterator MI) const {
668    llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
669                     "target!");
670  }
671
672
673  /// saveScavengerRegister - Spill the register so it can be used by the
674  /// register scavenger. Return true if the register was spilled, false
675  /// otherwise. If this function does not spill the register, the scavenger
676  /// will instead spill it to the emergency spill slot.
677  ///
678  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
679                                     MachineBasicBlock::iterator I,
680                                     MachineBasicBlock::iterator &UseMI,
681                                     const TargetRegisterClass *RC,
682                                     unsigned Reg) const {
683    return false;
684  }
685
686  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
687  /// frame indices from instructions which may use them.  The instruction
688  /// referenced by the iterator contains an MO_FrameIndex operand which must be
689  /// eliminated by this method.  This method may modify or replace the
690  /// specified instruction, as long as it keeps the iterator pointing at the
691  /// finished product. SPAdj is the SP adjustment due to call frame setup
692  /// instruction.
693  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
694                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
695
696  //===--------------------------------------------------------------------===//
697  /// Debug information queries.
698
699  /// getFrameRegister - This method should return the register used as a base
700  /// for values allocated in the current stack frame.
701  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
702
703  /// getCompactUnwindRegNum - This function maps the register to the number for
704  /// compact unwind encoding. Return -1 if the register isn't valid.
705  virtual int getCompactUnwindRegNum(unsigned, bool) const {
706    return -1;
707  }
708};
709
710
711// This is useful when building IndexedMaps keyed on virtual registers
712struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
713  unsigned operator()(unsigned Reg) const {
714    return TargetRegisterInfo::virtReg2Index(Reg);
715  }
716};
717
718/// PrintReg - Helper class for printing registers on a raw_ostream.
719/// Prints virtual and physical registers with or without a TRI instance.
720///
721/// The format is:
722///   %noreg          - NoRegister
723///   %vreg5          - a virtual register.
724///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
725///   %EAX            - a physical register
726///   %physreg17      - a physical register when no TRI instance given.
727///
728/// Usage: OS << PrintReg(Reg, TRI) << '\n';
729///
730class PrintReg {
731  const TargetRegisterInfo *TRI;
732  unsigned Reg;
733  unsigned SubIdx;
734public:
735  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
736    : TRI(tri), Reg(reg), SubIdx(subidx) {}
737  void print(raw_ostream&) const;
738};
739
740static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
741  PR.print(OS);
742  return OS;
743}
744
745} // End llvm namespace
746
747#endif
748