TargetRegisterInfo.h revision 3ca15c989ca0e09085648771db368d8c94ee1f19
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include <cassert>
22#include <functional>
23
24namespace llvm {
25
26class BitVector;
27class MachineFunction;
28class MachineMove;
29class RegScavenger;
30
31/// TargetRegisterDesc - This record contains all of the information known about
32/// a particular register.  The AliasSet field (if not null) contains a pointer
33/// to a Zero terminated array of registers that this register aliases.  This is
34/// needed for architectures like X86 which have AL alias AX alias EAX.
35/// Registers that this does not apply to simply should set this to null.
36/// The SubRegs field is a zero terminated array of registers that are
37/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
38/// The SuperRegs field is a zero terminated array of registers that are
39/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
40/// of AX.
41///
42struct TargetRegisterDesc {
43  const char     *AsmName;      // Assembly language name for the register
44  const char     *Name;         // Printable name for the reg (for debugging)
45  const unsigned *AliasSet;     // Register Alias Set, described above
46  const unsigned *SubRegs;      // Sub-register set, described above
47  const unsigned *SuperRegs;    // Super-register set, described above
48};
49
50class TargetRegisterClass {
51public:
52  typedef const unsigned* iterator;
53  typedef const unsigned* const_iterator;
54
55  typedef const MVT* vt_iterator;
56  typedef const TargetRegisterClass* const * sc_iterator;
57private:
58  unsigned ID;
59  const char *Name;
60  bool  isSubClass;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
65  const int CopyCost;
66  const iterator RegsBegin, RegsEnd;
67public:
68  TargetRegisterClass(unsigned id,
69                      const char *name,
70                      const MVT *vts,
71                      const TargetRegisterClass * const *subcs,
72                      const TargetRegisterClass * const *supcs,
73                      unsigned RS, unsigned Al, int CC,
74                      iterator RB, iterator RE)
75    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
76    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {}
77  virtual ~TargetRegisterClass() {}     // Allow subclasses
78
79  /// getID() - Return the register class ID number.
80  ///
81  unsigned getID() const { return ID; }
82
83  /// getName() - Return the register class name for debugging.
84  ///
85  const char *getName() const { return Name; }
86
87  /// begin/end - Return all of the registers in this class.
88  ///
89  iterator       begin() const { return RegsBegin; }
90  iterator         end() const { return RegsEnd; }
91
92  /// getNumRegs - Return the number of registers in this class.
93  ///
94  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
95
96  /// getRegister - Return the specified register in the class.
97  ///
98  unsigned getRegister(unsigned i) const {
99    assert(i < getNumRegs() && "Register number out of range!");
100    return RegsBegin[i];
101  }
102
103  /// contains - Return true if the specified register is included in this
104  /// register class.
105  bool contains(unsigned Reg) const {
106    for (iterator I = begin(), E = end(); I != E; ++I)
107      if (*I == Reg) return true;
108    return false;
109  }
110
111  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
112  ///
113  bool hasType(MVT vt) const {
114    for(int i = 0; VTs[i] != MVT::Other; ++i)
115      if (VTs[i] == vt)
116        return true;
117    return false;
118  }
119
120  /// vt_begin / vt_end - Loop over all of the value types that can be
121  /// represented by values in this register class.
122  vt_iterator vt_begin() const {
123    return VTs;
124  }
125
126  vt_iterator vt_end() const {
127    vt_iterator I = VTs;
128    while (*I != MVT::Other) ++I;
129    return I;
130  }
131
132  /// hasSubClass - return true if the specified TargetRegisterClass is a
133  /// sub-register class of this TargetRegisterClass.
134  bool hasSubClass(const TargetRegisterClass *cs) const {
135    for (int i = 0; SubClasses[i] != NULL; ++i)
136      if (SubClasses[i] == cs)
137        return true;
138    return false;
139  }
140
141  /// subclasses_begin / subclasses_end - Loop over all of the sub-classes of
142  /// this register class.
143  sc_iterator subclasses_begin() const {
144    return SubClasses;
145  }
146
147  sc_iterator subclasses_end() const {
148    sc_iterator I = SubClasses;
149    while (*I != NULL) ++I;
150    return I;
151  }
152
153  /// hasSuperClass - return true if the specified TargetRegisterClass is a
154  /// super-register class of this TargetRegisterClass.
155  bool hasSuperClass(const TargetRegisterClass *cs) const {
156    for (int i = 0; SuperClasses[i] != NULL; ++i)
157      if (SuperClasses[i] == cs)
158        return true;
159    return false;
160  }
161
162  /// superclasses_begin / superclasses_end - Loop over all of the super-classes
163  /// of this register class.
164  sc_iterator superclasses_begin() const {
165    return SuperClasses;
166  }
167
168  sc_iterator superclasses_end() const {
169    sc_iterator I = SuperClasses;
170    while (*I != NULL) ++I;
171    return I;
172  }
173
174  /// isASubClass - return true if this TargetRegisterClass is a sub-class of at
175  /// least one other TargetRegisterClass.
176  bool isASubClass() const {
177    return SuperClasses[0] != 0;
178  }
179
180  /// allocation_order_begin/end - These methods define a range of registers
181  /// which specify the registers in this class that are valid to register
182  /// allocate, and the preferred order to allocate them in.  For example,
183  /// callee saved registers should be at the end of the list, because it is
184  /// cheaper to allocate caller saved registers.
185  ///
186  /// These methods take a MachineFunction argument, which can be used to tune
187  /// the allocatable registers based on the characteristics of the function.
188  /// One simple example is that the frame pointer register can be used if
189  /// frame-pointer-elimination is performed.
190  ///
191  /// By default, these methods return all registers in the class.
192  ///
193  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
194    return begin();
195  }
196  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
197    return end();
198  }
199
200
201
202  /// getSize - Return the size of the register in bytes, which is also the size
203  /// of a stack slot allocated to hold a spilled copy of this register.
204  unsigned getSize() const { return RegSize; }
205
206  /// getAlignment - Return the minimum required alignment for a register of
207  /// this class.
208  unsigned getAlignment() const { return Alignment; }
209
210  /// getCopyCost - Return the cost of copying a value between two registers in
211  /// this class. A negative number means the register class is very expensive
212  /// to copy e.g. status flag register classes.
213  int getCopyCost() const { return CopyCost; }
214};
215
216
217/// TargetRegisterInfo base class - We assume that the target defines a static
218/// array of TargetRegisterDesc objects that represent all of the machine
219/// registers that the target has.  As such, we simply have to track a pointer
220/// to this array so that we can turn register number into a register
221/// descriptor.
222///
223class TargetRegisterInfo {
224protected:
225  const unsigned* SubregHash;
226  const unsigned SubregHashSize;
227  const unsigned* SuperregHash;
228  const unsigned SuperregHashSize;
229  const unsigned* AliasesHash;
230  const unsigned AliasesHashSize;
231public:
232  typedef const TargetRegisterClass * const * regclass_iterator;
233private:
234  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
235  unsigned NumRegs;                           // Number of entries in the array
236
237  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
238
239  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
240protected:
241  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
242                     regclass_iterator RegClassBegin,
243                     regclass_iterator RegClassEnd,
244                     int CallFrameSetupOpcode = -1,
245                     int CallFrameDestroyOpcode = -1,
246                     const unsigned* subregs = 0,
247                     const unsigned subregsize = 0,
248		     const unsigned* superregs = 0,
249		     const unsigned superregsize = 0,
250		     const unsigned* aliases = 0,
251		     const unsigned aliasessize = 0);
252  virtual ~TargetRegisterInfo();
253public:
254
255  enum {                        // Define some target independent constants
256    /// NoRegister - This physical register is not a real target register.  It
257    /// is useful as a sentinal.
258    NoRegister = 0,
259
260    /// FirstVirtualRegister - This is the first register number that is
261    /// considered to be a 'virtual' register, which is part of the SSA
262    /// namespace.  This must be the same for all targets, which means that each
263    /// target is limited to 1024 registers.
264    FirstVirtualRegister = 1024
265  };
266
267  /// isPhysicalRegister - Return true if the specified register number is in
268  /// the physical register namespace.
269  static bool isPhysicalRegister(unsigned Reg) {
270    assert(Reg && "this is not a register!");
271    return Reg < FirstVirtualRegister;
272  }
273
274  /// isVirtualRegister - Return true if the specified register number is in
275  /// the virtual register namespace.
276  static bool isVirtualRegister(unsigned Reg) {
277    assert(Reg && "this is not a register!");
278    return Reg >= FirstVirtualRegister;
279  }
280
281  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
282  /// register of the given type. If type is MVT::Other, then just return any
283  /// register class the register belongs to.
284  virtual const TargetRegisterClass *
285    getPhysicalRegisterRegClass(unsigned Reg, MVT VT = MVT::Other) const;
286
287  /// getAllocatableSet - Returns a bitset indexed by register number
288  /// indicating if a register is allocatable or not. If a register class is
289  /// specified, returns the subset for the class.
290  BitVector getAllocatableSet(MachineFunction &MF,
291                              const TargetRegisterClass *RC = NULL) const;
292
293  const TargetRegisterDesc &operator[](unsigned RegNo) const {
294    assert(RegNo < NumRegs &&
295           "Attempting to access record for invalid register number!");
296    return Desc[RegNo];
297  }
298
299  /// Provide a get method, equivalent to [], but more useful if we have a
300  /// pointer to this object.
301  ///
302  const TargetRegisterDesc &get(unsigned RegNo) const {
303    return operator[](RegNo);
304  }
305
306  /// getAliasSet - Return the set of registers aliased by the specified
307  /// register, or a null list of there are none.  The list returned is zero
308  /// terminated.
309  ///
310  const unsigned *getAliasSet(unsigned RegNo) const {
311    return get(RegNo).AliasSet;
312  }
313
314  /// getSubRegisters - Return the list of registers that are sub-registers of
315  /// the specified register, or a null list of there are none. The list
316  /// returned is zero terminated and sorted according to super-sub register
317  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
318  ///
319  const unsigned *getSubRegisters(unsigned RegNo) const {
320    return get(RegNo).SubRegs;
321  }
322
323  /// getSuperRegisters - Return the list of registers that are super-registers
324  /// of the specified register, or a null list of there are none. The list
325  /// returned is zero terminated and sorted according to super-sub register
326  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
327  ///
328  const unsigned *getSuperRegisters(unsigned RegNo) const {
329    return get(RegNo).SuperRegs;
330  }
331
332  /// getAsmName - Return the symbolic target-specific name for the
333  /// specified physical register.
334  const char *getAsmName(unsigned RegNo) const {
335    return get(RegNo).AsmName;
336  }
337
338  /// getName - Return the human-readable symbolic target-specific name for the
339  /// specified physical register.
340  const char *getName(unsigned RegNo) const {
341    return get(RegNo).Name;
342  }
343
344  /// getNumRegs - Return the number of registers this target has (useful for
345  /// sizing arrays holding per register information)
346  unsigned getNumRegs() const {
347    return NumRegs;
348  }
349
350  /// areAliases - Returns true if the two registers alias each other, false
351  /// otherwise
352  bool areAliases(unsigned regA, unsigned regB) const {
353    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
354    unsigned ProbeAmt = 0;
355    while (AliasesHash[index*2] != 0 &&
356	   AliasesHash[index*2+1] != 0) {
357      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
358	return true;
359
360      index = (index + ProbeAmt) & (AliasesHashSize-1);
361      ProbeAmt += 2;
362    }
363
364    return false;
365  }
366
367  /// regsOverlap - Returns true if the two registers are equal or alias each
368  /// other. The registers may be virtual register.
369  bool regsOverlap(unsigned regA, unsigned regB) const {
370    if (regA == regB)
371      return true;
372
373    if (isVirtualRegister(regA) || isVirtualRegister(regB))
374      return false;
375    return areAliases(regA, regB);
376  }
377
378  /// isSubRegister - Returns true if regB is a sub-register of regA.
379  ///
380  bool isSubRegister(unsigned regA, unsigned regB) const {
381    // SubregHash is a simple quadratically probed hash table.
382    size_t index = (regA + regB * 37) & (SubregHashSize-1);
383    unsigned ProbeAmt = 2;
384    while (SubregHash[index*2] != 0 &&
385           SubregHash[index*2+1] != 0) {
386      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
387        return true;
388
389      index = (index + ProbeAmt) & (SubregHashSize-1);
390      ProbeAmt += 2;
391    }
392
393    return false;
394  }
395
396  /// isSuperRegister - Returns true if regB is a super-register of regA.
397  ///
398  bool isSuperRegister(unsigned regA, unsigned regB) const {
399    // SuperregHash is a simple quadratically probed hash table.
400    size_t index = (regA + regB * 37) & (SuperregHashSize-1);
401    unsigned ProbeAmt = 2;
402    while (SuperregHash[index*2] != 0 &&
403           SuperregHash[index*2+1] != 0) {
404      if (SuperregHash[index*2] == regA && SuperregHash[index*2+1] == regB)
405        return true;
406
407      index = (index + ProbeAmt) & (SuperregHashSize-1);
408      ProbeAmt += 2;
409    }
410
411    return false;
412  }
413
414  /// getCalleeSavedRegs - Return a null-terminated list of all of the
415  /// callee saved registers on this target. The register should be in the
416  /// order of desired callee-save stack frame offset. The first register is
417  /// closed to the incoming stack pointer if stack grows down, and vice versa.
418  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
419                                                                      const = 0;
420
421  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
422  /// register classes to spill each callee saved register with.  The order and
423  /// length of this list match the getCalleeSaveRegs() list.
424  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
425                                            const MachineFunction *MF) const =0;
426
427  /// getReservedRegs - Returns a bitset indexed by physical register number
428  /// indicating if a register is a special register that has particular uses
429  /// and should be considered unavailable at all times, e.g. SP, RA. This is
430  /// used by register scavenger to determine what registers are free.
431  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
432
433  /// getSubReg - Returns the physical register number of sub-register "Index"
434  /// for physical register RegNo. Return zero if the sub-register does not
435  /// exist.
436  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
437
438  //===--------------------------------------------------------------------===//
439  // Register Class Information
440  //
441
442  /// Register class iterators
443  ///
444  regclass_iterator regclass_begin() const { return RegClassBegin; }
445  regclass_iterator regclass_end() const { return RegClassEnd; }
446
447  unsigned getNumRegClasses() const {
448    return (unsigned)(regclass_end()-regclass_begin());
449  }
450
451  /// getRegClass - Returns the register class associated with the enumeration
452  /// value.  See class TargetOperandInfo.
453  const TargetRegisterClass *getRegClass(unsigned i) const {
454    assert(i <= getNumRegClasses() && "Register Class ID out of range");
455    return i ? RegClassBegin[i - 1] : NULL;
456  }
457
458  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
459  /// values.
460  virtual const TargetRegisterClass *getPointerRegClass() const {
461    assert(0 && "Target didn't implement getPointerRegClass!");
462    return 0; // Must return a value in order to compile with VS 2005
463  }
464
465  /// getCrossCopyRegClass - Returns a legal register class to copy a register
466  /// in the specified class to or from. Returns NULL if it is possible to copy
467  /// between a two registers of the specified class.
468  virtual const TargetRegisterClass *
469  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
470    return NULL;
471  }
472
473  /// targetHandlesStackFrameRounding - Returns true if the target is
474  /// responsible for rounding up the stack frame (probably at emitPrologue
475  /// time).
476  virtual bool targetHandlesStackFrameRounding() const {
477    return false;
478  }
479
480  /// requiresRegisterScavenging - returns true if the target requires (and can
481  /// make use of) the register scavenger.
482  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
483    return false;
484  }
485
486  /// hasFP - Return true if the specified function should have a dedicated
487  /// frame pointer register. For most targets this is true only if the function
488  /// has variable sized allocas or if frame pointer elimination is disabled.
489  virtual bool hasFP(const MachineFunction &MF) const = 0;
490
491  // hasReservedCallFrame - Under normal circumstances, when a frame pointer is
492  // not required, we reserve argument space for call sites in the function
493  // immediately on entry to the current function. This eliminates the need for
494  // add/sub sp brackets around call sites. Returns true if the call frame is
495  // included as part of the stack frame.
496  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
497    return !hasFP(MF);
498  }
499
500  // needsStackRealignment - true if storage within the function requires the
501  // stack pointer to be aligned more than the normal calling convention calls
502  // for.
503  virtual bool needsStackRealignment(const MachineFunction &MF) const {
504    return false;
505  }
506
507  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
508  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
509  /// targets use pseudo instructions in order to abstract away the difference
510  /// between operating with a frame pointer and operating without, through the
511  /// use of these two instructions.
512  ///
513  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
514  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
515
516  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
517  /// code insertion to eliminate call frame setup and destroy pseudo
518  /// instructions (but only if the Target is using them).  It is responsible
519  /// for eliminating these instructions, replacing them with concrete
520  /// instructions.  This method need only be implemented if using call frame
521  /// setup/destroy pseudo instructions.
522  ///
523  virtual void
524  eliminateCallFramePseudoInstr(MachineFunction &MF,
525                                MachineBasicBlock &MBB,
526                                MachineBasicBlock::iterator MI) const {
527    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
528           "eliminateCallFramePseudoInstr must be implemented if using"
529           " call frame setup/destroy pseudo instructions!");
530    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
531  }
532
533  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
534  /// before PrologEpilogInserter scans the physical registers used to determine
535  /// what callee saved registers should be spilled. This method is optional.
536  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
537                                                RegScavenger *RS = NULL) const {
538
539  }
540
541  /// processFunctionBeforeFrameFinalized - This method is called immediately
542  /// before the specified functions frame layout (MF.getFrameInfo()) is
543  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
544  /// replaced with direct constants.  This method is optional.
545  ///
546  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
547  }
548
549  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
550  /// frame indices from instructions which may use them.  The instruction
551  /// referenced by the iterator contains an MO_FrameIndex operand which must be
552  /// eliminated by this method.  This method may modify or replace the
553  /// specified instruction, as long as it keeps the iterator pointing the the
554  /// finished product. SPAdj is the SP adjustment due to call frame setup
555  /// instruction.
556  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
557                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
558
559  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
560  /// the function.
561  virtual void emitPrologue(MachineFunction &MF) const = 0;
562  virtual void emitEpilogue(MachineFunction &MF,
563                            MachineBasicBlock &MBB) const = 0;
564
565  //===--------------------------------------------------------------------===//
566  /// Debug information queries.
567
568  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
569  /// number.  Returns -1 if there is no equivalent value.  The second
570  /// parameter allows targets to use different numberings for EH info and
571  /// debugging info.
572  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
573
574  /// getFrameRegister - This method should return the register used as a base
575  /// for values allocated in the current stack frame.
576  virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
577
578  /// getFrameIndexOffset - Returns the displacement from the frame register to
579  /// the stack frame of the specified index.
580  virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
581
582  /// getRARegister - This method should return the register where the return
583  /// address can be found.
584  virtual unsigned getRARegister() const = 0;
585
586  /// getInitialFrameState - Returns a list of machine moves that are assumed
587  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
588  /// the beginning of the function.)
589  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
590};
591
592// This is useful when building IndexedMaps keyed on virtual registers
593struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
594  unsigned operator()(unsigned Reg) const {
595    return Reg - TargetRegisterInfo::FirstVirtualRegister;
596  }
597};
598
599} // End llvm namespace
600
601#endif
602