TargetRegisterInfo.h revision 605041e5a81fbb18769b0613dcd14e0cff32b5ee
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include <cassert>
23#include <functional>
24#include <set>
25
26namespace llvm {
27
28class BitVector;
29class MachineFunction;
30class MachineInstr;
31class MachineMove;
32class RegScavenger;
33class SDNode;
34class SelectionDAG;
35class TargetRegisterClass;
36class Type;
37
38/// TargetRegisterDesc - This record contains all of the information known about
39/// a particular register.  The AliasSet field (if not null) contains a pointer
40/// to a Zero terminated array of registers that this register aliases.  This is
41/// needed for architectures like X86 which have AL alias AX alias EAX.
42/// Registers that this does not apply to simply should set this to null.
43/// The SubRegs field is a zero terminated array of registers that are
44/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
45/// The SuperRegs field is a zero terminated array of registers that are
46/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
47/// of AX.
48///
49struct TargetRegisterDesc {
50  const char     *AsmName;      // Assembly language name for the register
51  const char     *Name;         // Printable name for the reg (for debugging)
52  const unsigned *AliasSet;     // Register Alias Set, described above
53  const unsigned *SubRegs;      // Sub-register set, described above
54  const unsigned *SuperRegs;    // Super-register set, described above
55};
56
57class TargetRegisterClass {
58public:
59  typedef const unsigned* iterator;
60  typedef const unsigned* const_iterator;
61
62  typedef const MVT* vt_iterator;
63  typedef const TargetRegisterClass* const * sc_iterator;
64private:
65  unsigned ID;
66  bool  isSubClass;
67  const vt_iterator VTs;
68  const sc_iterator SubClasses;
69  const sc_iterator SuperClasses;
70  const sc_iterator SubRegClasses;
71  const sc_iterator SuperRegClasses;
72  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
73  const int CopyCost;
74  const iterator RegsBegin, RegsEnd;
75public:
76  TargetRegisterClass(unsigned id,
77                      const MVT *vts,
78                      const TargetRegisterClass * const *subcs,
79                      const TargetRegisterClass * const *supcs,
80                      const TargetRegisterClass * const *subregcs,
81                      const TargetRegisterClass * const *superregcs,
82                      unsigned RS, unsigned Al, int CC,
83                      iterator RB, iterator RE)
84    : ID(id), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
85    SubRegClasses(subregcs), SuperRegClasses(superregcs),
86    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {}
87  virtual ~TargetRegisterClass() {}     // Allow subclasses
88
89  /// getID() - Return the register class ID number.
90  ///
91  unsigned getID() const { return ID; }
92
93  /// begin/end - Return all of the registers in this class.
94  ///
95  iterator       begin() const { return RegsBegin; }
96  iterator         end() const { return RegsEnd; }
97
98  /// getNumRegs - Return the number of registers in this class.
99  ///
100  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
101
102  /// getRegister - Return the specified register in the class.
103  ///
104  unsigned getRegister(unsigned i) const {
105    assert(i < getNumRegs() && "Register number out of range!");
106    return RegsBegin[i];
107  }
108
109  /// contains - Return true if the specified register is included in this
110  /// register class.
111  bool contains(unsigned Reg) const {
112    for (iterator I = begin(), E = end(); I != E; ++I)
113      if (*I == Reg) return true;
114    return false;
115  }
116
117  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
118  ///
119  bool hasType(MVT vt) const {
120    for(int i = 0; VTs[i] != MVT::Other; ++i)
121      if (VTs[i] == vt)
122        return true;
123    return false;
124  }
125
126  /// vt_begin / vt_end - Loop over all of the value types that can be
127  /// represented by values in this register class.
128  vt_iterator vt_begin() const {
129    return VTs;
130  }
131
132  vt_iterator vt_end() const {
133    vt_iterator I = VTs;
134    while (*I != MVT::Other) ++I;
135    return I;
136  }
137
138  /// hasSubClass - return true if the specified TargetRegisterClass is a
139  /// sub-register class of this TargetRegisterClass.
140  bool hasSubClass(const TargetRegisterClass *cs) const {
141    for (int i = 0; SubClasses[i] != NULL; ++i)
142      if (SubClasses[i] == cs)
143        return true;
144    return false;
145  }
146
147  /// subclasses_begin / subclasses_end - Loop over all of the sub-classes of
148  /// this register class.
149  sc_iterator subclasses_begin() const {
150    return SubClasses;
151  }
152
153  sc_iterator subclasses_end() const {
154    sc_iterator I = SubClasses;
155    while (*I != NULL) ++I;
156    return I;
157  }
158
159  /// hasSuperClass - return true if the specified TargetRegisterClass is a
160  /// super-register class of this TargetRegisterClass.
161  bool hasSuperClass(const TargetRegisterClass *cs) const {
162    for (int i = 0; SuperClasses[i] != NULL; ++i)
163      if (SuperClasses[i] == cs)
164        return true;
165    return false;
166  }
167
168  /// superclasses_begin / superclasses_end - Loop over all of the super-classes
169  /// of this register class.
170  sc_iterator superclasses_begin() const {
171    return SuperClasses;
172  }
173
174  sc_iterator superclasses_end() const {
175    sc_iterator I = SuperClasses;
176    while (*I != NULL) ++I;
177    return I;
178  }
179
180  /// hasSubRegClass - return true if the specified TargetRegisterClass is a
181  /// class of a sub-register class for this TargetRegisterClass.
182  bool hasSubRegClass(const TargetRegisterClass *cs) const {
183    for (int i = 0; SubRegClasses[i] != NULL; ++i)
184      if (SubRegClasses[i] == cs)
185        return true;
186    return false;
187  }
188
189  /// hasClassForSubReg - return true if the specified TargetRegisterClass is a
190  /// class of a sub-register class for this TargetRegisterClass.
191  bool hasClassForSubReg(unsigned SubReg) const {
192    --SubReg;
193    for (unsigned i = 0; SubRegClasses[i] != NULL; ++i)
194      if (i == SubReg)
195        return true;
196    return false;
197  }
198
199  /// getClassForSubReg - return theTargetRegisterClass for the sub-register
200  /// at idx for this TargetRegisterClass.
201  sc_iterator getClassForSubReg(unsigned SubReg) const {
202    --SubReg;
203    for (unsigned i = 0; SubRegClasses[i] != NULL; ++i)
204      if (i == SubReg)
205        return &SubRegClasses[i];
206    assert(0 && "Invalid subregister index for register class");
207    return NULL;
208  }
209
210  /// subregclasses_begin / subregclasses_end - Loop over all of
211  /// the subregister classes of this register class.
212  sc_iterator subregclasses_begin() const {
213    return SubRegClasses;
214  }
215
216  sc_iterator subregclasses_end() const {
217    sc_iterator I = SubRegClasses;
218    while (*I != NULL) ++I;
219    return I;
220  }
221
222  /// superregclasses_begin / superregclasses_end - Loop over all of
223  /// the superregister classes of this register class.
224  sc_iterator superregclasses_begin() const {
225    return SuperRegClasses;
226  }
227
228  sc_iterator superregclasses_end() const {
229    sc_iterator I = SuperRegClasses;
230    while (*I != NULL) ++I;
231    return I;
232  }
233
234  /// allocation_order_begin/end - These methods define a range of registers
235  /// which specify the registers in this class that are valid to register
236  /// allocate, and the preferred order to allocate them in.  For example,
237  /// callee saved registers should be at the end of the list, because it is
238  /// cheaper to allocate caller saved registers.
239  ///
240  /// These methods take a MachineFunction argument, which can be used to tune
241  /// the allocatable registers based on the characteristics of the function.
242  /// One simple example is that the frame pointer register can be used if
243  /// frame-pointer-elimination is performed.
244  ///
245  /// By default, these methods return all registers in the class.
246  ///
247  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
248    return begin();
249  }
250  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
251    return end();
252  }
253
254
255
256  /// getSize - Return the size of the register in bytes, which is also the size
257  /// of a stack slot allocated to hold a spilled copy of this register.
258  unsigned getSize() const { return RegSize; }
259
260  /// getAlignment - Return the minimum required alignment for a register of
261  /// this class.
262  unsigned getAlignment() const { return Alignment; }
263
264  /// getCopyCost - Return the cost of copying a value between two registers in
265  /// this class.
266  int getCopyCost() const { return CopyCost; }
267};
268
269
270/// TargetRegisterInfo base class - We assume that the target defines a static
271/// array of TargetRegisterDesc objects that represent all of the machine
272/// registers that the target has.  As such, we simply have to track a pointer
273/// to this array so that we can turn register number into a register
274/// descriptor.
275///
276class TargetRegisterInfo {
277protected:
278  const unsigned* SubregHash;
279  const unsigned SubregHashSize;
280public:
281  typedef const TargetRegisterClass * const * regclass_iterator;
282private:
283  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
284  unsigned NumRegs;                           // Number of entries in the array
285
286  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
287
288  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
289protected:
290  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
291                     regclass_iterator RegClassBegin,
292                     regclass_iterator RegClassEnd,
293                     int CallFrameSetupOpcode = -1,
294                     int CallFrameDestroyOpcode = -1,
295                     const unsigned* subregs = 0,
296                     const unsigned subregsize = 0);
297  virtual ~TargetRegisterInfo();
298public:
299
300  enum {                        // Define some target independent constants
301    /// NoRegister - This physical register is not a real target register.  It
302    /// is useful as a sentinal.
303    NoRegister = 0,
304
305    /// FirstVirtualRegister - This is the first register number that is
306    /// considered to be a 'virtual' register, which is part of the SSA
307    /// namespace.  This must be the same for all targets, which means that each
308    /// target is limited to 1024 registers.
309    FirstVirtualRegister = 1024
310  };
311
312  /// isPhysicalRegister - Return true if the specified register number is in
313  /// the physical register namespace.
314  static bool isPhysicalRegister(unsigned Reg) {
315    assert(Reg && "this is not a register!");
316    return Reg < FirstVirtualRegister;
317  }
318
319  /// isVirtualRegister - Return true if the specified register number is in
320  /// the virtual register namespace.
321  static bool isVirtualRegister(unsigned Reg) {
322    assert(Reg && "this is not a register!");
323    return Reg >= FirstVirtualRegister;
324  }
325
326  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
327  /// register of the given type. If type is MVT::Other, then just return any
328  /// register class the register belongs to.
329  const TargetRegisterClass *getPhysicalRegisterRegClass(unsigned Reg,
330                                          MVT VT = MVT::Other) const;
331
332  /// getAllocatableSet - Returns a bitset indexed by register number
333  /// indicating if a register is allocatable or not. If a register class is
334  /// specified, returns the subset for the class.
335  BitVector getAllocatableSet(MachineFunction &MF,
336                              const TargetRegisterClass *RC = NULL) const;
337
338  const TargetRegisterDesc &operator[](unsigned RegNo) const {
339    assert(RegNo < NumRegs &&
340           "Attempting to access record for invalid register number!");
341    return Desc[RegNo];
342  }
343
344  /// Provide a get method, equivalent to [], but more useful if we have a
345  /// pointer to this object.
346  ///
347  const TargetRegisterDesc &get(unsigned RegNo) const {
348    return operator[](RegNo);
349  }
350
351  /// getAliasSet - Return the set of registers aliased by the specified
352  /// register, or a null list of there are none.  The list returned is zero
353  /// terminated.
354  ///
355  const unsigned *getAliasSet(unsigned RegNo) const {
356    return get(RegNo).AliasSet;
357  }
358
359  /// getSubRegisters - Return the list of registers that are sub-registers of
360  /// the specified register, or a null list of there are none. The list
361  /// returned is zero terminated and sorted according to super-sub register
362  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
363  ///
364  const unsigned *getSubRegisters(unsigned RegNo) const {
365    return get(RegNo).SubRegs;
366  }
367
368  /// getSuperRegisters - Return the list of registers that are super-registers
369  /// of the specified register, or a null list of there are none. The list
370  /// returned is zero terminated and sorted according to super-sub register
371  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
372  ///
373  const unsigned *getSuperRegisters(unsigned RegNo) const {
374    return get(RegNo).SuperRegs;
375  }
376
377  /// getAsmName - Return the symbolic target-specific name for the
378  /// specified physical register.
379  const char *getAsmName(unsigned RegNo) const {
380    return get(RegNo).AsmName;
381  }
382
383  /// getName - Return the human-readable symbolic target-specific name for the
384  /// specified physical register.
385  const char *getName(unsigned RegNo) const {
386    return get(RegNo).Name;
387  }
388
389  /// getNumRegs - Return the number of registers this target has (useful for
390  /// sizing arrays holding per register information)
391  unsigned getNumRegs() const {
392    return NumRegs;
393  }
394
395  /// areAliases - Returns true if the two registers alias each other, false
396  /// otherwise
397  bool areAliases(unsigned regA, unsigned regB) const {
398    for (const unsigned *Alias = getAliasSet(regA); *Alias; ++Alias)
399      if (*Alias == regB) return true;
400    return false;
401  }
402
403  /// regsOverlap - Returns true if the two registers are equal or alias each
404  /// other. The registers may be virtual register.
405  bool regsOverlap(unsigned regA, unsigned regB) const {
406    if (regA == regB)
407      return true;
408
409    if (isVirtualRegister(regA) || isVirtualRegister(regB))
410      return false;
411    return areAliases(regA, regB);
412  }
413
414  /// isSubRegister - Returns true if regB is a sub-register of regA.
415  ///
416  bool isSubRegister(unsigned regA, unsigned regB) const {
417    // SubregHash is a simple quadratically probed hash table.
418    size_t index = (regA + regB * 37) & (SubregHashSize-1);
419    unsigned ProbeAmt = 2;
420    while (SubregHash[index*2] != 0 &&
421           SubregHash[index*2+1] != 0) {
422      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
423        return true;
424
425      index = (index + ProbeAmt) & (SubregHashSize-1);
426      ProbeAmt += 2;
427    }
428
429    return false;
430  }
431
432  /// isSuperRegister - Returns true if regB is a super-register of regA.
433  ///
434  bool isSuperRegister(unsigned regA, unsigned regB) const {
435    for (const unsigned *SR = getSuperRegisters(regA); *SR; ++SR)
436      if (*SR == regB) return true;
437    return false;
438  }
439
440  /// getCalleeSavedRegs - Return a null-terminated list of all of the
441  /// callee saved registers on this target. The register should be in the
442  /// order of desired callee-save stack frame offset. The first register is
443  /// closed to the incoming stack pointer if stack grows down, and vice versa.
444  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
445                                                                      const = 0;
446
447  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
448  /// register classes to spill each callee saved register with.  The order and
449  /// length of this list match the getCalleeSaveRegs() list.
450  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
451                                            const MachineFunction *MF) const =0;
452
453  /// getReservedRegs - Returns a bitset indexed by physical register number
454  /// indicating if a register is a special register that has particular uses
455  /// and should be considered unavailable at all times, e.g. SP, RA. This is
456  /// used by register scavenger to determine what registers are free.
457  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
458
459  /// getSubReg - Returns the physical register number of sub-register "Index"
460  /// for physical register RegNo.
461  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
462
463  //===--------------------------------------------------------------------===//
464  // Register Class Information
465  //
466
467  /// Register class iterators
468  ///
469  regclass_iterator regclass_begin() const { return RegClassBegin; }
470  regclass_iterator regclass_end() const { return RegClassEnd; }
471
472  unsigned getNumRegClasses() const {
473    return (unsigned)(regclass_end()-regclass_begin());
474  }
475
476  /// getRegClass - Returns the register class associated with the enumeration
477  /// value.  See class TargetOperandInfo.
478  const TargetRegisterClass *getRegClass(unsigned i) const {
479    assert(i <= getNumRegClasses() && "Register Class ID out of range");
480    return i ? RegClassBegin[i - 1] : NULL;
481  }
482
483  //===--------------------------------------------------------------------===//
484  // Interfaces used by the register allocator and stack frame
485  // manipulation passes to move data around between registers,
486  // immediates and memory.  FIXME: Move these to TargetInstrInfo.h.
487  //
488
489  /// getCrossCopyRegClass - Returns a legal register class to copy a register
490  /// in the specified class to or from. Returns NULL if it is possible to copy
491  /// between a two registers of the specified class.
492  virtual const TargetRegisterClass *
493  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
494    return NULL;
495  }
496
497  /// targetHandlesStackFrameRounding - Returns true if the target is
498  /// responsible for rounding up the stack frame (probably at emitPrologue
499  /// time).
500  virtual bool targetHandlesStackFrameRounding() const {
501    return false;
502  }
503
504  /// requiresRegisterScavenging - returns true if the target requires (and can
505  /// make use of) the register scavenger.
506  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
507    return false;
508  }
509
510  /// hasFP - Return true if the specified function should have a dedicated
511  /// frame pointer register. For most targets this is true only if the function
512  /// has variable sized allocas or if frame pointer elimination is disabled.
513  virtual bool hasFP(const MachineFunction &MF) const = 0;
514
515  // hasReservedCallFrame - Under normal circumstances, when a frame pointer is
516  // not required, we reserve argument space for call sites in the function
517  // immediately on entry to the current function. This eliminates the need for
518  // add/sub sp brackets around call sites. Returns true if the call frame is
519  // included as part of the stack frame.
520  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
521    return !hasFP(MF);
522  }
523
524  // needsStackRealignment - true if storage within the function requires the
525  // stack pointer to be aligned more than the normal calling convention calls
526  // for.
527  virtual bool needsStackRealignment(const MachineFunction &MF) const {
528    return false;
529  }
530
531  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
532  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
533  /// targets use pseudo instructions in order to abstract away the difference
534  /// between operating with a frame pointer and operating without, through the
535  /// use of these two instructions.
536  ///
537  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
538  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
539
540
541  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
542  /// code insertion to eliminate call frame setup and destroy pseudo
543  /// instructions (but only if the Target is using them).  It is responsible
544  /// for eliminating these instructions, replacing them with concrete
545  /// instructions.  This method need only be implemented if using call frame
546  /// setup/destroy pseudo instructions.
547  ///
548  virtual void
549  eliminateCallFramePseudoInstr(MachineFunction &MF,
550                                MachineBasicBlock &MBB,
551                                MachineBasicBlock::iterator MI) const {
552    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
553           "eliminateCallFramePseudoInstr must be implemented if using"
554           " call frame setup/destroy pseudo instructions!");
555    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
556  }
557
558  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
559  /// before PrologEpilogInserter scans the physical registers used to determine
560  /// what callee saved registers should be spilled. This method is optional.
561  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
562                                                RegScavenger *RS = NULL) const {
563
564  }
565
566  /// processFunctionBeforeFrameFinalized - This method is called immediately
567  /// before the specified functions frame layout (MF.getFrameInfo()) is
568  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
569  /// replaced with direct constants.  This method is optional.
570  ///
571  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
572  }
573
574  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
575  /// frame indices from instructions which may use them.  The instruction
576  /// referenced by the iterator contains an MO_FrameIndex operand which must be
577  /// eliminated by this method.  This method may modify or replace the
578  /// specified instruction, as long as it keeps the iterator pointing the the
579  /// finished product. SPAdj is the SP adjustment due to call frame setup
580  /// instruction. The return value is the number of instructions added to
581  /// (negative if removed from) the basic block.
582  ///
583  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
584                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
585
586  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
587  /// the function. The return value is the number of instructions
588  /// added to (negative if removed from) the basic block (entry for prologue).
589  ///
590  virtual void emitPrologue(MachineFunction &MF) const = 0;
591  virtual void emitEpilogue(MachineFunction &MF,
592                            MachineBasicBlock &MBB) const = 0;
593
594  //===--------------------------------------------------------------------===//
595  /// Debug information queries.
596
597  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
598  /// number.  Returns -1 if there is no equivalent value.  The second
599  /// parameter allows targets to use different numberings for EH info and
600  /// deubgging info.
601  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
602
603  /// getFrameRegister - This method should return the register used as a base
604  /// for values allocated in the current stack frame.
605  virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
606
607  /// getFrameIndexOffset - Returns the displacement from the frame register to
608  /// the stack frame of the specified index.
609  virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
610
611  /// getRARegister - This method should return the register where the return
612  /// address can be found.
613  virtual unsigned getRARegister() const = 0;
614
615  /// getInitialFrameState - Returns a list of machine moves that are assumed
616  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
617  /// the beginning of the function.)
618  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
619};
620
621// This is useful when building IndexedMaps keyed on virtual registers
622struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
623  unsigned operator()(unsigned Reg) const {
624    return Reg - TargetRegisterInfo::FirstVirtualRegister;
625  }
626};
627
628} // End llvm namespace
629
630#endif
631