TargetRegisterInfo.h revision 74ab84c31ef64538a1b56e1f282e49303412ad17
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineInstr;
30class MachineMove;
31class RegScavenger;
32class SDNode;
33class SelectionDAG;
34class TargetRegisterClass;
35class Type;
36
37/// TargetRegisterDesc - This record contains all of the information known about
38/// a particular register.  The AliasSet field (if not null) contains a pointer
39/// to a Zero terminated array of registers that this register aliases.  This is
40/// needed for architectures like X86 which have AL alias AX alias EAX.
41/// Registers that this does not apply to simply should set this to null.
42/// The SubRegs field is a zero terminated array of registers that are
43/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
44/// The ImmsubRegs field is a subset of SubRegs. It includes only the immediate
45/// sub-registers. e.g. EAX has only one immediate sub-register of AX, not AH,
46/// AL which are immediate sub-registers of AX. The SuperRegs field is a zero
47/// terminated array of registers that are super-registers of the specific
48/// register, e.g. RAX, EAX, are super-registers of AX.
49///
50struct TargetRegisterDesc {
51  const char     *AsmName;      // Assembly language name for the register
52  const char     *PrintableName;// Printable name for the reg (for debugging)
53  const unsigned *AliasSet;     // Register Alias Set, described above
54  const unsigned *SubRegs;      // Sub-register set, described above
55  const unsigned *ImmSubRegs;   // Immediate sub-register set, described above
56  const unsigned *SuperRegs;    // Super-register set, described above
57};
58
59class TargetRegisterClass {
60public:
61  typedef const unsigned* iterator;
62  typedef const unsigned* const_iterator;
63
64  typedef const MVT::ValueType* vt_iterator;
65  typedef const TargetRegisterClass* const * sc_iterator;
66private:
67  unsigned ID;
68  bool  isSubClass;
69  const vt_iterator VTs;
70  const sc_iterator SubClasses;
71  const sc_iterator SuperClasses;
72  const sc_iterator SubRegClasses;
73  const sc_iterator SuperRegClasses;
74  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
75  const int CopyCost;
76  const iterator RegsBegin, RegsEnd;
77public:
78  TargetRegisterClass(unsigned id,
79                      const MVT::ValueType *vts,
80                      const TargetRegisterClass * const *subcs,
81                      const TargetRegisterClass * const *supcs,
82                      const TargetRegisterClass * const *subregcs,
83                      const TargetRegisterClass * const *superregcs,
84                      unsigned RS, unsigned Al, int CC,
85                      iterator RB, iterator RE)
86    : ID(id), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
87    SubRegClasses(subregcs), SuperRegClasses(superregcs),
88    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {}
89  virtual ~TargetRegisterClass() {}     // Allow subclasses
90
91  /// getID() - Return the register class ID number.
92  ///
93  unsigned getID() const { return ID; }
94
95  /// begin/end - Return all of the registers in this class.
96  ///
97  iterator       begin() const { return RegsBegin; }
98  iterator         end() const { return RegsEnd; }
99
100  /// getNumRegs - Return the number of registers in this class.
101  ///
102  unsigned getNumRegs() const { return RegsEnd-RegsBegin; }
103
104  /// getRegister - Return the specified register in the class.
105  ///
106  unsigned getRegister(unsigned i) const {
107    assert(i < getNumRegs() && "Register number out of range!");
108    return RegsBegin[i];
109  }
110
111  /// contains - Return true if the specified register is included in this
112  /// register class.
113  bool contains(unsigned Reg) const {
114    for (iterator I = begin(), E = end(); I != E; ++I)
115      if (*I == Reg) return true;
116    return false;
117  }
118
119  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
120  ///
121  bool hasType(MVT::ValueType vt) const {
122    for(int i = 0; VTs[i] != MVT::Other; ++i)
123      if (VTs[i] == vt)
124        return true;
125    return false;
126  }
127
128  /// vt_begin / vt_end - Loop over all of the value types that can be
129  /// represented by values in this register class.
130  vt_iterator vt_begin() const {
131    return VTs;
132  }
133
134  vt_iterator vt_end() const {
135    vt_iterator I = VTs;
136    while (*I != MVT::Other) ++I;
137    return I;
138  }
139
140  /// hasSubClass - return true if the specified TargetRegisterClass is a
141  /// sub-register class of this TargetRegisterClass.
142  bool hasSubClass(const TargetRegisterClass *cs) const {
143    for (int i = 0; SubClasses[i] != NULL; ++i)
144      if (SubClasses[i] == cs)
145        return true;
146    return false;
147  }
148
149  /// subclasses_begin / subclasses_end - Loop over all of the sub-classes of
150  /// this register class.
151  sc_iterator subclasses_begin() const {
152    return SubClasses;
153  }
154
155  sc_iterator subclasses_end() const {
156    sc_iterator I = SubClasses;
157    while (*I != NULL) ++I;
158    return I;
159  }
160
161  /// hasSuperClass - return true if the specified TargetRegisterClass is a
162  /// super-register class of this TargetRegisterClass.
163  bool hasSuperClass(const TargetRegisterClass *cs) const {
164    for (int i = 0; SuperClasses[i] != NULL; ++i)
165      if (SuperClasses[i] == cs)
166        return true;
167    return false;
168  }
169
170  /// superclasses_begin / superclasses_end - Loop over all of the super-classes
171  /// of this register class.
172  sc_iterator superclasses_begin() const {
173    return SuperClasses;
174  }
175
176  sc_iterator superclasses_end() const {
177    sc_iterator I = SuperClasses;
178    while (*I != NULL) ++I;
179    return I;
180  }
181
182  /// hasSubRegClass - return true if the specified TargetRegisterClass is a
183  /// class of a sub-register class for this TargetRegisterClass.
184  bool hasSubRegClass(const TargetRegisterClass *cs) const {
185    for (int i = 0; SubRegClasses[i] != NULL; ++i)
186      if (SubRegClasses[i] == cs)
187        return true;
188    return false;
189  }
190
191  /// hasClassForSubReg - return true if the specified TargetRegisterClass is a
192  /// class of a sub-register class for this TargetRegisterClass.
193  bool hasClassForSubReg(unsigned SubReg) const {
194    --SubReg;
195    for (unsigned i = 0; SubRegClasses[i] != NULL; ++i)
196      if (i == SubReg)
197        return true;
198    return false;
199  }
200
201  /// getClassForSubReg - return theTargetRegisterClass for the sub-register
202  /// at idx for this TargetRegisterClass.
203  sc_iterator getClassForSubReg(unsigned SubReg) const {
204    --SubReg;
205    for (unsigned i = 0; SubRegClasses[i] != NULL; ++i)
206      if (i == SubReg)
207        return &SubRegClasses[i];
208    assert(0 && "Invalid subregister index for register class");
209    return NULL;
210  }
211
212  /// subregclasses_begin / subregclasses_end - Loop over all of
213  /// the subregister classes of this register class.
214  sc_iterator subregclasses_begin() const {
215    return SubRegClasses;
216  }
217
218  sc_iterator subregclasses_end() const {
219    sc_iterator I = SubRegClasses;
220    while (*I != NULL) ++I;
221    return I;
222  }
223
224  /// superregclasses_begin / superregclasses_end - Loop over all of
225  /// the superregister classes of this register class.
226  sc_iterator superregclasses_begin() const {
227    return SuperRegClasses;
228  }
229
230  sc_iterator superregclasses_end() const {
231    sc_iterator I = SuperRegClasses;
232    while (*I != NULL) ++I;
233    return I;
234  }
235
236  /// allocation_order_begin/end - These methods define a range of registers
237  /// which specify the registers in this class that are valid to register
238  /// allocate, and the preferred order to allocate them in.  For example,
239  /// callee saved registers should be at the end of the list, because it is
240  /// cheaper to allocate caller saved registers.
241  ///
242  /// These methods take a MachineFunction argument, which can be used to tune
243  /// the allocatable registers based on the characteristics of the function.
244  /// One simple example is that the frame pointer register can be used if
245  /// frame-pointer-elimination is performed.
246  ///
247  /// By default, these methods return all registers in the class.
248  ///
249  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
250    return begin();
251  }
252  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
253    return end();
254  }
255
256
257
258  /// getSize - Return the size of the register in bytes, which is also the size
259  /// of a stack slot allocated to hold a spilled copy of this register.
260  unsigned getSize() const { return RegSize; }
261
262  /// getAlignment - Return the minimum required alignment for a register of
263  /// this class.
264  unsigned getAlignment() const { return Alignment; }
265
266  /// getCopyCost - Return the cost of copying a value between two registers in
267  /// this class.
268  int getCopyCost() const { return CopyCost; }
269};
270
271
272/// TargetRegisterInfo base class - We assume that the target defines a static
273/// array of TargetRegisterDesc objects that represent all of the machine
274/// registers that the target has.  As such, we simply have to track a pointer
275/// to this array so that we can turn register number into a register
276/// descriptor.
277///
278class TargetRegisterInfo {
279public:
280  typedef const TargetRegisterClass * const * regclass_iterator;
281private:
282  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
283  unsigned NumRegs;                           // Number of entries in the array
284
285  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
286
287  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
288protected:
289  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
290                     regclass_iterator RegClassBegin,
291                     regclass_iterator RegClassEnd,
292                     int CallFrameSetupOpcode = -1,
293                     int CallFrameDestroyOpcode = -1);
294  virtual ~TargetRegisterInfo();
295public:
296
297  enum {                        // Define some target independent constants
298    /// NoRegister - This physical register is not a real target register.  It
299    /// is useful as a sentinal.
300    NoRegister = 0,
301
302    /// FirstVirtualRegister - This is the first register number that is
303    /// considered to be a 'virtual' register, which is part of the SSA
304    /// namespace.  This must be the same for all targets, which means that each
305    /// target is limited to 1024 registers.
306    FirstVirtualRegister = 1024
307  };
308
309  /// isPhysicalRegister - Return true if the specified register number is in
310  /// the physical register namespace.
311  static bool isPhysicalRegister(unsigned Reg) {
312    assert(Reg && "this is not a register!");
313    return Reg < FirstVirtualRegister;
314  }
315
316  /// isVirtualRegister - Return true if the specified register number is in
317  /// the virtual register namespace.
318  static bool isVirtualRegister(unsigned Reg) {
319    assert(Reg && "this is not a register!");
320    return Reg >= FirstVirtualRegister;
321  }
322
323  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
324  /// register of the given type.
325  const TargetRegisterClass *getPhysicalRegisterRegClass(MVT::ValueType VT,
326                                                         unsigned Reg) const;
327
328  /// getAllocatableSet - Returns a bitset indexed by register number
329  /// indicating if a register is allocatable or not. If a register class is
330  /// specified, returns the subset for the class.
331  BitVector getAllocatableSet(MachineFunction &MF,
332                              const TargetRegisterClass *RC = NULL) const;
333
334  const TargetRegisterDesc &operator[](unsigned RegNo) const {
335    assert(RegNo < NumRegs &&
336           "Attempting to access record for invalid register number!");
337    return Desc[RegNo];
338  }
339
340  /// Provide a get method, equivalent to [], but more useful if we have a
341  /// pointer to this object.
342  ///
343  const TargetRegisterDesc &get(unsigned RegNo) const {
344    return operator[](RegNo);
345  }
346
347  /// getAliasSet - Return the set of registers aliased by the specified
348  /// register, or a null list of there are none.  The list returned is zero
349  /// terminated.
350  ///
351  const unsigned *getAliasSet(unsigned RegNo) const {
352    return get(RegNo).AliasSet;
353  }
354
355  /// getSubRegisters - Return the set of registers that are sub-registers of
356  /// the specified register, or a null list of there are none. The list
357  /// returned is zero terminated.
358  ///
359  const unsigned *getSubRegisters(unsigned RegNo) const {
360    return get(RegNo).SubRegs;
361  }
362
363  /// getImmediateSubRegisters - Return the set of registers that are immediate
364  /// sub-registers of the specified register, or a null list of there are none.
365  /// The list returned is zero terminated.
366  ///
367  const unsigned *getImmediateSubRegisters(unsigned RegNo) const {
368    return get(RegNo).ImmSubRegs;
369  }
370
371  /// getSuperRegisters - Return the set of registers that are super-registers
372  /// of the specified register, or a null list of there are none. The list
373  /// returned is zero terminated.
374  ///
375  const unsigned *getSuperRegisters(unsigned RegNo) const {
376    return get(RegNo).SuperRegs;
377  }
378
379  /// getAsmName - Return the symbolic target specific name for the
380  /// specified physical register.
381  const char *getAsmName(unsigned RegNo) const {
382    return get(RegNo).AsmName;
383  }
384
385  /// getPrintableName - Return the human-readable symbolic target specific name
386  /// for the specified physical register.
387  const char *getPrintableName(unsigned RegNo) const {
388    return get(RegNo).PrintableName;
389  }
390
391  /// getNumRegs - Return the number of registers this target has (useful for
392  /// sizing arrays holding per register information)
393  unsigned getNumRegs() const {
394    return NumRegs;
395  }
396
397  /// areAliases - Returns true if the two registers alias each other, false
398  /// otherwise
399  bool areAliases(unsigned regA, unsigned regB) const {
400    for (const unsigned *Alias = getAliasSet(regA); *Alias; ++Alias)
401      if (*Alias == regB) return true;
402    return false;
403  }
404
405  /// regsOverlap - Returns true if the two registers are equal or alias each
406  /// other. The registers may be virtual register.
407  bool regsOverlap(unsigned regA, unsigned regB) const {
408    if (regA == regB)
409      return true;
410
411    if (isVirtualRegister(regA) || isVirtualRegister(regB))
412      return false;
413    return areAliases(regA, regB);
414  }
415
416  /// isSubRegister - Returns true if regB is a sub-register of regA.
417  ///
418  bool isSubRegister(unsigned regA, unsigned regB) const {
419    for (const unsigned *SR = getSubRegisters(regA); *SR; ++SR)
420      if (*SR == regB) return true;
421    return false;
422  }
423
424  /// isSuperRegister - Returns true if regB is a super-register of regA.
425  ///
426  bool isSuperRegister(unsigned regA, unsigned regB) const {
427    for (const unsigned *SR = getSuperRegisters(regA); *SR; ++SR)
428      if (*SR == regB) return true;
429    return false;
430  }
431
432  /// getCalleeSavedRegs - Return a null-terminated list of all of the
433  /// callee saved registers on this target. The register should be in the
434  /// order of desired callee-save stack frame offset. The first register is
435  /// closed to the incoming stack pointer if stack grows down, and vice versa.
436  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
437                                                                      const = 0;
438
439  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
440  /// register classes to spill each callee saved register with.  The order and
441  /// length of this list match the getCalleeSaveRegs() list.
442  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
443                                            const MachineFunction *MF) const =0;
444
445  /// getReservedRegs - Returns a bitset indexed by physical register number
446  /// indicating if a register is a special register that has particular uses
447  /// and should be considered unavailable at all times, e.g. SP, RA. This is
448  /// used by register scavenger to determine what registers are free.
449  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
450
451  /// getSubReg - Returns the physical register number of sub-register "Index"
452  /// for physical register RegNo.
453  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
454
455  //===--------------------------------------------------------------------===//
456  // Register Class Information
457  //
458
459  /// Register class iterators
460  ///
461  regclass_iterator regclass_begin() const { return RegClassBegin; }
462  regclass_iterator regclass_end() const { return RegClassEnd; }
463
464  unsigned getNumRegClasses() const {
465    return regclass_end()-regclass_begin();
466  }
467
468  /// getRegClass - Returns the register class associated with the enumeration
469  /// value.  See class TargetOperandInfo.
470  const TargetRegisterClass *getRegClass(unsigned i) const {
471    assert(i <= getNumRegClasses() && "Register Class ID out of range");
472    return i ? RegClassBegin[i - 1] : NULL;
473  }
474
475  //===--------------------------------------------------------------------===//
476  // Interfaces used by the register allocator and stack frame
477  // manipulation passes to move data around between registers,
478  // immediates and memory.  FIXME: Move these to TargetInstrInfo.h.
479  //
480
481  /// getCrossCopyRegClass - Returns a legal register class to copy a register
482  /// in the specified class to or from. Returns NULL if it is possible to copy
483  /// between a two registers of the specified class.
484  virtual const TargetRegisterClass *
485  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
486    return NULL;
487  }
488
489  /// reMaterialize - Re-issue the specified 'original' instruction at the
490  /// specific location targeting a new destination register.
491  virtual void reMaterialize(MachineBasicBlock &MBB,
492                             MachineBasicBlock::iterator MI,
493                             unsigned DestReg,
494                             const MachineInstr *Orig) const = 0;
495
496  /// targetHandlesStackFrameRounding - Returns true if the target is
497  /// responsible for rounding up the stack frame (probably at emitPrologue
498  /// time).
499  virtual bool targetHandlesStackFrameRounding() const {
500    return false;
501  }
502
503  /// requiresRegisterScavenging - returns true if the target requires (and can
504  /// make use of) the register scavenger.
505  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
506    return false;
507  }
508
509  /// hasFP - Return true if the specified function should have a dedicated
510  /// frame pointer register. For most targets this is true only if the function
511  /// has variable sized allocas or if frame pointer elimination is disabled.
512  virtual bool hasFP(const MachineFunction &MF) const = 0;
513
514  // hasReservedCallFrame - Under normal circumstances, when a frame pointer is
515  // not required, we reserve argument space for call sites in the function
516  // immediately on entry to the current function. This eliminates the need for
517  // add/sub sp brackets around call sites. Returns true if the call frame is
518  // included as part of the stack frame.
519  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
520    return !hasFP(MF);
521  }
522
523  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
524  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
525  /// targets use pseudo instructions in order to abstract away the difference
526  /// between operating with a frame pointer and operating without, through the
527  /// use of these two instructions.
528  ///
529  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
530  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
531
532
533  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
534  /// code insertion to eliminate call frame setup and destroy pseudo
535  /// instructions (but only if the Target is using them).  It is responsible
536  /// for eliminating these instructions, replacing them with concrete
537  /// instructions.  This method need only be implemented if using call frame
538  /// setup/destroy pseudo instructions.
539  ///
540  virtual void
541  eliminateCallFramePseudoInstr(MachineFunction &MF,
542                                MachineBasicBlock &MBB,
543                                MachineBasicBlock::iterator MI) const {
544    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
545           "eliminateCallFramePseudoInstr must be implemented if using"
546           " call frame setup/destroy pseudo instructions!");
547    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
548  }
549
550  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
551  /// before PrologEpilogInserter scans the physical registers used to determine
552  /// what callee saved registers should be spilled. This method is optional.
553  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
554                                                RegScavenger *RS = NULL) const {
555
556  }
557
558  /// processFunctionBeforeFrameFinalized - This method is called immediately
559  /// before the specified functions frame layout (MF.getFrameInfo()) is
560  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
561  /// replaced with direct constants.  This method is optional.
562  ///
563  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
564  }
565
566  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
567  /// frame indices from instructions which may use them.  The instruction
568  /// referenced by the iterator contains an MO_FrameIndex operand which must be
569  /// eliminated by this method.  This method may modify or replace the
570  /// specified instruction, as long as it keeps the iterator pointing the the
571  /// finished product. SPAdj is the SP adjustment due to call frame setup
572  /// instruction. The return value is the number of instructions added to
573  /// (negative if removed from) the basic block.
574  ///
575  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
576                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
577
578  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
579  /// the function. The return value is the number of instructions
580  /// added to (negative if removed from) the basic block (entry for prologue).
581  ///
582  virtual void emitPrologue(MachineFunction &MF) const = 0;
583  virtual void emitEpilogue(MachineFunction &MF,
584                            MachineBasicBlock &MBB) const = 0;
585
586  //===--------------------------------------------------------------------===//
587  /// Debug information queries.
588
589  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
590  /// number.  Returns -1 if there is no equivalent value.  The second
591  /// parameter allows targets to use different numberings for EH info and
592  /// deubgging info.
593  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
594
595  /// getFrameRegister - This method should return the register used as a base
596  /// for values allocated in the current stack frame.
597  virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
598
599  /// getFrameIndexOffset - Returns the displacement from the frame register to
600  /// the stack frame of the specified index.
601  virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
602
603  /// getRARegister - This method should return the register where the return
604  /// address can be found.
605  virtual unsigned getRARegister() const = 0;
606
607  /// getInitialFrameState - Returns a list of machine moves that are assumed
608  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
609  /// the beginning of the function.)
610  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
611};
612
613// This is useful when building IndexedMaps keyed on virtual registers
614struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
615  unsigned operator()(unsigned Reg) const {
616    return Reg - TargetRegisterInfo::FirstVirtualRegister;
617  }
618};
619
620} // End llvm namespace
621
622#endif
623