TargetRegisterInfo.h revision 9ebfbf8b9fd5f982e0db9293808bd32168615ba9
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/MC/MCRegisterInfo.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/CallingConv.h"
24#include <cassert>
25#include <functional>
26
27namespace llvm {
28
29class BitVector;
30class MachineFunction;
31class RegScavenger;
32template<class T> class SmallVectorImpl;
33class raw_ostream;
34
35class TargetRegisterClass {
36public:
37  typedef const uint16_t* iterator;
38  typedef const uint16_t* const_iterator;
39  typedef const MVT::SimpleValueType* vt_iterator;
40  typedef const TargetRegisterClass* const * sc_iterator;
41
42  // Instance variables filled by tablegen, do not use!
43  const MCRegisterClass *MC;
44  const vt_iterator VTs;
45  const unsigned *SubClassMask;
46  const sc_iterator SuperClasses;
47  const sc_iterator SuperRegClasses;
48  ArrayRef<uint16_t> (*OrderFunc)(const MachineFunction&);
49
50  /// getID() - Return the register class ID number.
51  ///
52  unsigned getID() const { return MC->getID(); }
53
54  /// getName() - Return the register class name for debugging.
55  ///
56  const char *getName() const { return MC->getName(); }
57
58  /// begin/end - Return all of the registers in this class.
59  ///
60  iterator       begin() const { return MC->begin(); }
61  iterator         end() const { return MC->end(); }
62
63  /// getNumRegs - Return the number of registers in this class.
64  ///
65  unsigned getNumRegs() const { return MC->getNumRegs(); }
66
67  /// getRegister - Return the specified register in the class.
68  ///
69  unsigned getRegister(unsigned i) const {
70    return MC->getRegister(i);
71  }
72
73  /// contains - Return true if the specified register is included in this
74  /// register class.  This does not include virtual registers.
75  bool contains(unsigned Reg) const {
76    return MC->contains(Reg);
77  }
78
79  /// contains - Return true if both registers are in this class.
80  bool contains(unsigned Reg1, unsigned Reg2) const {
81    return MC->contains(Reg1, Reg2);
82  }
83
84  /// getSize - Return the size of the register in bytes, which is also the size
85  /// of a stack slot allocated to hold a spilled copy of this register.
86  unsigned getSize() const { return MC->getSize(); }
87
88  /// getAlignment - Return the minimum required alignment for a register of
89  /// this class.
90  unsigned getAlignment() const { return MC->getAlignment(); }
91
92  /// getCopyCost - Return the cost of copying a value between two registers in
93  /// this class. A negative number means the register class is very expensive
94  /// to copy e.g. status flag register classes.
95  int getCopyCost() const { return MC->getCopyCost(); }
96
97  /// isAllocatable - Return true if this register class may be used to create
98  /// virtual registers.
99  bool isAllocatable() const { return MC->isAllocatable(); }
100
101  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
102  ///
103  bool hasType(EVT vt) const {
104    for(int i = 0; VTs[i] != MVT::Other; ++i)
105      if (EVT(VTs[i]) == vt)
106        return true;
107    return false;
108  }
109
110  /// vt_begin / vt_end - Loop over all of the value types that can be
111  /// represented by values in this register class.
112  vt_iterator vt_begin() const {
113    return VTs;
114  }
115
116  vt_iterator vt_end() const {
117    vt_iterator I = VTs;
118    while (*I != MVT::Other) ++I;
119    return I;
120  }
121
122  /// superregclasses_begin / superregclasses_end - Loop over all of
123  /// the superreg register classes of this register class.
124  sc_iterator superregclasses_begin() const {
125    return SuperRegClasses;
126  }
127
128  sc_iterator superregclasses_end() const {
129    sc_iterator I = SuperRegClasses;
130    while (*I != NULL) ++I;
131    return I;
132  }
133
134  /// hasSubClass - return true if the specified TargetRegisterClass
135  /// is a proper sub-class of this TargetRegisterClass.
136  bool hasSubClass(const TargetRegisterClass *RC) const {
137    return RC != this && hasSubClassEq(RC);
138  }
139
140  /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
141  /// class.
142  bool hasSubClassEq(const TargetRegisterClass *RC) const {
143    unsigned ID = RC->getID();
144    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
145  }
146
147  /// hasSuperClass - return true if the specified TargetRegisterClass is a
148  /// proper super-class of this TargetRegisterClass.
149  bool hasSuperClass(const TargetRegisterClass *RC) const {
150    return RC->hasSubClass(this);
151  }
152
153  /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
154  /// class.
155  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
156    return RC->hasSubClassEq(this);
157  }
158
159  /// getSubClassMask - Returns a bit vector of subclasses, including this one.
160  /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
161  /// use it.
162  const uint32_t *getSubClassMask() const {
163    return SubClassMask;
164  }
165
166  /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
167  /// classes are ordered by ID which is also a topological ordering from large
168  /// to small classes.  The list does NOT include the current class.
169  sc_iterator getSuperClasses() const {
170    return SuperClasses;
171  }
172
173  /// isASubClass - return true if this TargetRegisterClass is a subset
174  /// class of at least one other TargetRegisterClass.
175  bool isASubClass() const {
176    return SuperClasses[0] != 0;
177  }
178
179  /// getRawAllocationOrder - Returns the preferred order for allocating
180  /// registers from this register class in MF. The raw order comes directly
181  /// from the .td file and may include reserved registers that are not
182  /// allocatable. Register allocators should also make sure to allocate
183  /// callee-saved registers only after all the volatiles are used. The
184  /// RegisterClassInfo class provides filtered allocation orders with
185  /// callee-saved registers moved to the end.
186  ///
187  /// The MachineFunction argument can be used to tune the allocatable
188  /// registers based on the characteristics of the function, subtarget, or
189  /// other criteria.
190  ///
191  /// By default, this method returns all registers in the class.
192  ///
193  ArrayRef<uint16_t> getRawAllocationOrder(const MachineFunction &MF) const {
194    return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
195  }
196};
197
198/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
199/// registers. These are used by codegen, not by MC.
200struct TargetRegisterInfoDesc {
201  unsigned CostPerUse;          // Extra cost of instructions using register.
202  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
203};
204
205/// TargetRegisterInfo base class - We assume that the target defines a static
206/// array of TargetRegisterDesc objects that represent all of the machine
207/// registers that the target has.  As such, we simply have to track a pointer
208/// to this array so that we can turn register number into a register
209/// descriptor.
210///
211class TargetRegisterInfo : public MCRegisterInfo {
212public:
213  typedef const TargetRegisterClass * const * regclass_iterator;
214private:
215  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
216  const char *const *SubRegIndexNames;        // Names of subreg indexes.
217  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
218
219protected:
220  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
221                     regclass_iterator RegClassBegin,
222                     regclass_iterator RegClassEnd,
223                     const char *const *subregindexnames);
224  virtual ~TargetRegisterInfo();
225public:
226
227  // Register numbers can represent physical registers, virtual registers, and
228  // sometimes stack slots. The unsigned values are divided into these ranges:
229  //
230  //   0           Not a register, can be used as a sentinel.
231  //   [1;2^30)    Physical registers assigned by TableGen.
232  //   [2^30;2^31) Stack slots. (Rarely used.)
233  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
234  //
235  // Further sentinels can be allocated from the small negative integers.
236  // DenseMapInfo<unsigned> uses -1u and -2u.
237
238  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
239  /// frame index in a variable that normally holds a register. isStackSlot()
240  /// returns true if Reg is in the range used for stack slots.
241  ///
242  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
243  /// slots, so if a variable may contains a stack slot, always check
244  /// isStackSlot() first.
245  ///
246  static bool isStackSlot(unsigned Reg) {
247    return int(Reg) >= (1 << 30);
248  }
249
250  /// stackSlot2Index - Compute the frame index from a register value
251  /// representing a stack slot.
252  static int stackSlot2Index(unsigned Reg) {
253    assert(isStackSlot(Reg) && "Not a stack slot");
254    return int(Reg - (1u << 30));
255  }
256
257  /// index2StackSlot - Convert a non-negative frame index to a stack slot
258  /// register value.
259  static unsigned index2StackSlot(int FI) {
260    assert(FI >= 0 && "Cannot hold a negative frame index.");
261    return FI + (1u << 30);
262  }
263
264  /// isPhysicalRegister - Return true if the specified register number is in
265  /// the physical register namespace.
266  static bool isPhysicalRegister(unsigned Reg) {
267    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
268    return int(Reg) > 0;
269  }
270
271  /// isVirtualRegister - Return true if the specified register number is in
272  /// the virtual register namespace.
273  static bool isVirtualRegister(unsigned Reg) {
274    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
275    return int(Reg) < 0;
276  }
277
278  /// virtReg2Index - Convert a virtual register number to a 0-based index.
279  /// The first virtual register in a function will get the index 0.
280  static unsigned virtReg2Index(unsigned Reg) {
281    assert(isVirtualRegister(Reg) && "Not a virtual register");
282    return Reg & ~(1u << 31);
283  }
284
285  /// index2VirtReg - Convert a 0-based index to a virtual register number.
286  /// This is the inverse operation of VirtReg2IndexFunctor below.
287  static unsigned index2VirtReg(unsigned Index) {
288    return Index | (1u << 31);
289  }
290
291  /// getMinimalPhysRegClass - Returns the Register Class of a physical
292  /// register of the given type, picking the most sub register class of
293  /// the right type that contains this physreg.
294  const TargetRegisterClass *
295    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
296
297  /// getAllocatableSet - Returns a bitset indexed by register number
298  /// indicating if a register is allocatable or not. If a register class is
299  /// specified, returns the subset for the class.
300  BitVector getAllocatableSet(const MachineFunction &MF,
301                              const TargetRegisterClass *RC = NULL) const;
302
303  /// getCostPerUse - Return the additional cost of using this register instead
304  /// of other registers in its class.
305  unsigned getCostPerUse(unsigned RegNo) const {
306    return InfoDesc[RegNo].CostPerUse;
307  }
308
309  /// isInAllocatableClass - Return true if the register is in the allocation
310  /// of any register class.
311  bool isInAllocatableClass(unsigned RegNo) const {
312    return InfoDesc[RegNo].inAllocatableClass;
313  }
314
315  /// getSubRegIndexName - Return the human-readable symbolic target-specific
316  /// name for the specified SubRegIndex.
317  const char *getSubRegIndexName(unsigned SubIdx) const {
318    assert(SubIdx && "This is not a subregister index");
319    return SubRegIndexNames[SubIdx-1];
320  }
321
322  /// regsOverlap - Returns true if the two registers are equal or alias each
323  /// other. The registers may be virtual register.
324  bool regsOverlap(unsigned regA, unsigned regB) const {
325    if (regA == regB) return true;
326    if (isVirtualRegister(regA) || isVirtualRegister(regB))
327      return false;
328    for (const uint16_t *regList = getOverlaps(regA)+1; *regList; ++regList) {
329      if (*regList == regB) return true;
330    }
331    return false;
332  }
333
334  /// isSubRegister - Returns true if regB is a sub-register of regA.
335  ///
336  bool isSubRegister(unsigned regA, unsigned regB) const {
337    return isSuperRegister(regB, regA);
338  }
339
340  /// isSuperRegister - Returns true if regB is a super-register of regA.
341  ///
342  bool isSuperRegister(unsigned regA, unsigned regB) const {
343    for (const uint16_t *regList = getSuperRegisters(regA); *regList;++regList){
344      if (*regList == regB) return true;
345    }
346    return false;
347  }
348
349  /// getCalleeSavedRegs - Return a null-terminated list of all of the
350  /// callee saved registers on this target. The register should be in the
351  /// order of desired callee-save stack frame offset. The first register is
352  /// closest to the incoming stack pointer if stack grows down, and vice versa.
353  ///
354  virtual const uint16_t* getCalleeSavedRegs(const MachineFunction *MF = 0)
355                                                                      const = 0;
356
357  /// getCallPreservedMask - Return a mask of call-preserved registers for the
358  /// given calling convention on the current sub-target.  The mask should
359  /// include all call-preserved aliases.  This is used by the register
360  /// allocator to determine which registers can be live across a call.
361  ///
362  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
363  /// A set bit indicates that all bits of the corresponding register are
364  /// preserved across the function call.  The bit mask is expected to be
365  /// sub-register complete, i.e. if A is preserved, so are all its
366  /// sub-registers.
367  ///
368  /// Bits are numbered from the LSB, so the bit for physical register Reg can
369  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
370  ///
371  /// A NULL pointer means that no register mask will be used, and call
372  /// instructions should use implicit-def operands to indicate call clobbered
373  /// registers.
374  ///
375  virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
376    // The default mask clobbers everything.  All targets should override.
377    return 0;
378  }
379
380  /// getReservedRegs - Returns a bitset indexed by physical register number
381  /// indicating if a register is a special register that has particular uses
382  /// and should be considered unavailable at all times, e.g. SP, RA. This is
383  /// used by register scavenger to determine what registers are free.
384  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
385
386  /// getMatchingSuperReg - Return a super-register of the specified register
387  /// Reg so its sub-register of index SubIdx is Reg.
388  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
389                               const TargetRegisterClass *RC) const {
390    for (const uint16_t *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
391      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
392        return SR;
393    return 0;
394  }
395
396  /// canCombineSubRegIndices - Given a register class and a list of
397  /// subregister indices, return true if it's possible to combine the
398  /// subregister indices into one that corresponds to a larger
399  /// subregister. Return the new subregister index by reference. Note the
400  /// new index may be zero if the given subregisters can be combined to
401  /// form the whole register.
402  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
403                                       SmallVectorImpl<unsigned> &SubIndices,
404                                       unsigned &NewSubIdx) const {
405    return 0;
406  }
407
408  /// getMatchingSuperRegClass - Return a subclass of the specified register
409  /// class A so that each register in it has a sub-register of the
410  /// specified sub-register index which is in the specified register class B.
411  ///
412  /// TableGen will synthesize missing A sub-classes.
413  virtual const TargetRegisterClass *
414  getMatchingSuperRegClass(const TargetRegisterClass *A,
415                           const TargetRegisterClass *B, unsigned Idx) const =0;
416
417  /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
418  /// supports the sub-register index Idx.
419  /// If no such sub-class exists, return NULL.
420  /// If all registers in RC already have an Idx sub-register, return RC.
421  ///
422  /// TableGen generates a version of this function that is good enough in most
423  /// cases.  Targets can override if they have constraints that TableGen
424  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
425  /// supported by the full GR32 register class in 64-bit mode, but only by the
426  /// GR32_ABCD regiister class in 32-bit mode.
427  ///
428  /// TableGen will synthesize missing RC sub-classes.
429  virtual const TargetRegisterClass *
430  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const =0;
431
432  /// composeSubRegIndices - Return the subregister index you get from composing
433  /// two subregister indices.
434  ///
435  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
436  /// returns c. Note that composeSubRegIndices does not tell you about illegal
437  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
438  /// b, composeSubRegIndices doesn't tell you.
439  ///
440  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
441  /// ssub_0:S0 - ssub_3:S3 subregs.
442  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
443  ///
444  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
445    // This default implementation is correct for most targets.
446    return b;
447  }
448
449  //===--------------------------------------------------------------------===//
450  // Register Class Information
451  //
452
453  /// Register class iterators
454  ///
455  regclass_iterator regclass_begin() const { return RegClassBegin; }
456  regclass_iterator regclass_end() const { return RegClassEnd; }
457
458  unsigned getNumRegClasses() const {
459    return (unsigned)(regclass_end()-regclass_begin());
460  }
461
462  /// getRegClass - Returns the register class associated with the enumeration
463  /// value.  See class MCOperandInfo.
464  const TargetRegisterClass *getRegClass(unsigned i) const {
465    assert(i < getNumRegClasses() && "Register Class ID out of range");
466    return RegClassBegin[i];
467  }
468
469  /// getCommonSubClass - find the largest common subclass of A and B. Return
470  /// NULL if there is no common subclass.
471  const TargetRegisterClass *
472  getCommonSubClass(const TargetRegisterClass *A,
473                    const TargetRegisterClass *B) const;
474
475  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
476  /// values.  If a target supports multiple different pointer register classes,
477  /// kind specifies which one is indicated.
478  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
479    llvm_unreachable("Target didn't implement getPointerRegClass!");
480  }
481
482  /// getCrossCopyRegClass - Returns a legal register class to copy a register
483  /// in the specified class to or from. If it is possible to copy the register
484  /// directly without using a cross register class copy, return the specified
485  /// RC. Returns NULL if it is not possible to copy between a two registers of
486  /// the specified class.
487  virtual const TargetRegisterClass *
488  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
489    return RC;
490  }
491
492  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
493  /// legal to use in the current sub-target and has the same spill size.
494  /// The returned register class can be used to create virtual registers which
495  /// means that all its registers can be copied and spilled.
496  virtual const TargetRegisterClass*
497  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
498    /// The default implementation is very conservative and doesn't allow the
499    /// register allocator to inflate register classes.
500    return RC;
501  }
502
503  /// getRegPressureLimit - Return the register pressure "high water mark" for
504  /// the specific register class. The scheduler is in high register pressure
505  /// mode (for the specific register class) if it goes over the limit.
506  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
507                                       MachineFunction &MF) const {
508    return 0;
509  }
510
511  /// getRawAllocationOrder - Returns the register allocation order for a
512  /// specified register class with a target-dependent hint. The returned list
513  /// may contain reserved registers that cannot be allocated.
514  ///
515  /// Register allocators need only call this function to resolve
516  /// target-dependent hints, but it should work without hinting as well.
517  virtual ArrayRef<uint16_t>
518  getRawAllocationOrder(const TargetRegisterClass *RC,
519                        unsigned HintType, unsigned HintReg,
520                        const MachineFunction &MF) const {
521    return RC->getRawAllocationOrder(MF);
522  }
523
524  /// ResolveRegAllocHint - Resolves the specified register allocation hint
525  /// to a physical register. Returns the physical register if it is successful.
526  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
527                                       const MachineFunction &MF) const {
528    if (Type == 0 && Reg && isPhysicalRegister(Reg))
529      return Reg;
530    return 0;
531  }
532
533  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
534  /// writing a register from RC in two consecutive instructions.
535  /// This can avoid pipeline stalls on certain architectures.
536  /// It does cause increased register pressure, though.
537  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
538    return false;
539  }
540
541  /// UpdateRegAllocHint - A callback to allow target a chance to update
542  /// register allocation hints when a register is "changed" (e.g. coalesced)
543  /// to another register. e.g. On ARM, some virtual registers should target
544  /// register pairs, if one of pair is coalesced to another register, the
545  /// allocation hint of the other half of the pair should be changed to point
546  /// to the new register.
547  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
548                                  MachineFunction &MF) const {
549    // Do nothing.
550  }
551
552  /// requiresRegisterScavenging - returns true if the target requires (and can
553  /// make use of) the register scavenger.
554  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
555    return false;
556  }
557
558  /// useFPForScavengingIndex - returns true if the target wants to use
559  /// frame pointer based accesses to spill to the scavenger emergency spill
560  /// slot.
561  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
562    return true;
563  }
564
565  /// requiresFrameIndexScavenging - returns true if the target requires post
566  /// PEI scavenging of registers for materializing frame index constants.
567  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
568    return false;
569  }
570
571  /// requiresVirtualBaseRegisters - Returns true if the target wants the
572  /// LocalStackAllocation pass to be run and virtual base registers
573  /// used for more efficient stack access.
574  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
575    return false;
576  }
577
578  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
579  /// the stack frame of the given function for the specified register. e.g. On
580  /// x86, if the frame register is required, the first fixed stack object is
581  /// reserved as its spill slot. This tells PEI not to create a new stack frame
582  /// object for the given register. It should be called only after
583  /// processFunctionBeforeCalleeSavedScan().
584  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
585                                    int &FrameIdx) const {
586    return false;
587  }
588
589  /// needsStackRealignment - true if storage within the function requires the
590  /// stack pointer to be aligned more than the normal calling convention calls
591  /// for.
592  virtual bool needsStackRealignment(const MachineFunction &MF) const {
593    return false;
594  }
595
596  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
597  /// index in the instruction, if there is one.
598  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
599                                           int Idx) const {
600    return 0;
601  }
602
603  /// needsFrameBaseReg - Returns true if the instruction's frame index
604  /// reference would be better served by a base register other than FP
605  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
606  /// references it should create new base registers for.
607  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
608    return false;
609  }
610
611  /// materializeFrameBaseRegister - Insert defining instruction(s) for
612  /// BaseReg to be a pointer to FrameIdx before insertion point I.
613  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
614                                            unsigned BaseReg, int FrameIdx,
615                                            int64_t Offset) const {
616    llvm_unreachable("materializeFrameBaseRegister does not exist on this "
617                     "target");
618  }
619
620  /// resolveFrameIndex - Resolve a frame index operand of an instruction
621  /// to reference the indicated base register plus offset instead.
622  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
623                                 unsigned BaseReg, int64_t Offset) const {
624    llvm_unreachable("resolveFrameIndex does not exist on this target");
625  }
626
627  /// isFrameOffsetLegal - Determine whether a given offset immediate is
628  /// encodable to resolve a frame index.
629  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
630                                  int64_t Offset) const {
631    llvm_unreachable("isFrameOffsetLegal does not exist on this target");
632  }
633
634  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
635  /// code insertion to eliminate call frame setup and destroy pseudo
636  /// instructions (but only if the Target is using them).  It is responsible
637  /// for eliminating these instructions, replacing them with concrete
638  /// instructions.  This method need only be implemented if using call frame
639  /// setup/destroy pseudo instructions.
640  ///
641  virtual void
642  eliminateCallFramePseudoInstr(MachineFunction &MF,
643                                MachineBasicBlock &MBB,
644                                MachineBasicBlock::iterator MI) const {
645    llvm_unreachable("Call Frame Pseudo Instructions do not exist on this "
646                     "target!");
647  }
648
649
650  /// saveScavengerRegister - Spill the register so it can be used by the
651  /// register scavenger. Return true if the register was spilled, false
652  /// otherwise. If this function does not spill the register, the scavenger
653  /// will instead spill it to the emergency spill slot.
654  ///
655  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
656                                     MachineBasicBlock::iterator I,
657                                     MachineBasicBlock::iterator &UseMI,
658                                     const TargetRegisterClass *RC,
659                                     unsigned Reg) const {
660    return false;
661  }
662
663  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
664  /// frame indices from instructions which may use them.  The instruction
665  /// referenced by the iterator contains an MO_FrameIndex operand which must be
666  /// eliminated by this method.  This method may modify or replace the
667  /// specified instruction, as long as it keeps the iterator pointing at the
668  /// finished product. SPAdj is the SP adjustment due to call frame setup
669  /// instruction.
670  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
671                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
672
673  //===--------------------------------------------------------------------===//
674  /// Debug information queries.
675
676  /// getFrameRegister - This method should return the register used as a base
677  /// for values allocated in the current stack frame.
678  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
679
680  /// getCompactUnwindRegNum - This function maps the register to the number for
681  /// compact unwind encoding. Return -1 if the register isn't valid.
682  virtual int getCompactUnwindRegNum(unsigned, bool) const {
683    return -1;
684  }
685};
686
687
688// This is useful when building IndexedMaps keyed on virtual registers
689struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
690  unsigned operator()(unsigned Reg) const {
691    return TargetRegisterInfo::virtReg2Index(Reg);
692  }
693};
694
695/// PrintReg - Helper class for printing registers on a raw_ostream.
696/// Prints virtual and physical registers with or without a TRI instance.
697///
698/// The format is:
699///   %noreg          - NoRegister
700///   %vreg5          - a virtual register.
701///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
702///   %EAX            - a physical register
703///   %physreg17      - a physical register when no TRI instance given.
704///
705/// Usage: OS << PrintReg(Reg, TRI) << '\n';
706///
707class PrintReg {
708  const TargetRegisterInfo *TRI;
709  unsigned Reg;
710  unsigned SubIdx;
711public:
712  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
713    : TRI(tri), Reg(reg), SubIdx(subidx) {}
714  void print(raw_ostream&) const;
715};
716
717static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
718  PR.print(OS);
719  return OS;
720}
721
722} // End llvm namespace
723
724#endif
725