TargetRegisterInfo.h revision b421c566f512ed0ec87851866d335e9086c3f8be
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31template<class T> class SmallVectorImpl;
32class raw_ostream;
33
34/// TargetRegisterDesc - This record contains all of the information known about
35/// a particular register.  The Overlaps field contains a pointer to a zero
36/// terminated array of registers that this register aliases, starting with
37/// itself. This is needed for architectures like X86 which have AL alias AX
38/// alias EAX. The SubRegs field is a zero terminated array of registers that
39/// are sub-registers of the specific register, e.g. AL, AH are sub-registers of
40/// AX. The SuperRegs field is a zero terminated array of registers that are
41/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
42/// of AX.
43///
44struct TargetRegisterDesc {
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *Overlaps;     // Overlapping registers, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49};
50
51class TargetRegisterClass {
52public:
53  typedef const unsigned* iterator;
54  typedef const unsigned* const_iterator;
55
56  typedef const EVT* vt_iterator;
57  typedef const TargetRegisterClass* const * sc_iterator;
58private:
59  unsigned ID;
60  const char *Name;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const sc_iterator SubRegClasses;
65  const sc_iterator SuperRegClasses;
66  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
67  const int CopyCost;
68  const iterator RegsBegin, RegsEnd;
69  DenseSet<unsigned> RegSet;
70public:
71  TargetRegisterClass(unsigned id,
72                      const char *name,
73                      const EVT *vts,
74                      const TargetRegisterClass * const *subcs,
75                      const TargetRegisterClass * const *supcs,
76                      const TargetRegisterClass * const *subregcs,
77                      const TargetRegisterClass * const *superregcs,
78                      unsigned RS, unsigned Al, int CC,
79                      iterator RB, iterator RE)
80    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
81    SubRegClasses(subregcs), SuperRegClasses(superregcs),
82    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
83      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
84        RegSet.insert(*I);
85    }
86  virtual ~TargetRegisterClass() {}     // Allow subclasses
87
88  /// getID() - Return the register class ID number.
89  ///
90  unsigned getID() const { return ID; }
91
92  /// getName() - Return the register class name for debugging.
93  ///
94  const char *getName() const { return Name; }
95
96  /// begin/end - Return all of the registers in this class.
97  ///
98  iterator       begin() const { return RegsBegin; }
99  iterator         end() const { return RegsEnd; }
100
101  /// getNumRegs - Return the number of registers in this class.
102  ///
103  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
104
105  /// getRegister - Return the specified register in the class.
106  ///
107  unsigned getRegister(unsigned i) const {
108    assert(i < getNumRegs() && "Register number out of range!");
109    return RegsBegin[i];
110  }
111
112  /// contains - Return true if the specified register is included in this
113  /// register class.  This does not include virtual registers.
114  bool contains(unsigned Reg) const {
115    return RegSet.count(Reg);
116  }
117
118  /// contains - Return true if both registers are in this class.
119  bool contains(unsigned Reg1, unsigned Reg2) const {
120    return contains(Reg1) && contains(Reg2);
121  }
122
123  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
124  ///
125  bool hasType(EVT vt) const {
126    for(int i = 0; VTs[i] != MVT::Other; ++i)
127      if (VTs[i] == vt)
128        return true;
129    return false;
130  }
131
132  /// vt_begin / vt_end - Loop over all of the value types that can be
133  /// represented by values in this register class.
134  vt_iterator vt_begin() const {
135    return VTs;
136  }
137
138  vt_iterator vt_end() const {
139    vt_iterator I = VTs;
140    while (*I != MVT::Other) ++I;
141    return I;
142  }
143
144  /// subregclasses_begin / subregclasses_end - Loop over all of
145  /// the subreg register classes of this register class.
146  sc_iterator subregclasses_begin() const {
147    return SubRegClasses;
148  }
149
150  sc_iterator subregclasses_end() const {
151    sc_iterator I = SubRegClasses;
152    while (*I != NULL) ++I;
153    return I;
154  }
155
156  /// getSubRegisterRegClass - Return the register class of subregisters with
157  /// index SubIdx, or NULL if no such class exists.
158  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
159    assert(SubIdx>0 && "Invalid subregister index");
160    return SubRegClasses[SubIdx-1];
161  }
162
163  /// superregclasses_begin / superregclasses_end - Loop over all of
164  /// the superreg register classes of this register class.
165  sc_iterator superregclasses_begin() const {
166    return SuperRegClasses;
167  }
168
169  sc_iterator superregclasses_end() const {
170    sc_iterator I = SuperRegClasses;
171    while (*I != NULL) ++I;
172    return I;
173  }
174
175  /// hasSubClass - return true if the specified TargetRegisterClass
176  /// is a proper subset of this TargetRegisterClass.
177  bool hasSubClass(const TargetRegisterClass *cs) const {
178    for (int i = 0; SubClasses[i] != NULL; ++i)
179      if (SubClasses[i] == cs)
180        return true;
181    return false;
182  }
183
184  /// subclasses_begin / subclasses_end - Loop over all of the classes
185  /// that are proper subsets of this register class.
186  sc_iterator subclasses_begin() const {
187    return SubClasses;
188  }
189
190  sc_iterator subclasses_end() const {
191    sc_iterator I = SubClasses;
192    while (*I != NULL) ++I;
193    return I;
194  }
195
196  /// hasSuperClass - return true if the specified TargetRegisterClass is a
197  /// proper superset of this TargetRegisterClass.
198  bool hasSuperClass(const TargetRegisterClass *cs) const {
199    for (int i = 0; SuperClasses[i] != NULL; ++i)
200      if (SuperClasses[i] == cs)
201        return true;
202    return false;
203  }
204
205  /// superclasses_begin / superclasses_end - Loop over all of the classes
206  /// that are proper supersets of this register class.
207  sc_iterator superclasses_begin() const {
208    return SuperClasses;
209  }
210
211  sc_iterator superclasses_end() const {
212    sc_iterator I = SuperClasses;
213    while (*I != NULL) ++I;
214    return I;
215  }
216
217  /// isASubClass - return true if this TargetRegisterClass is a subset
218  /// class of at least one other TargetRegisterClass.
219  bool isASubClass() const {
220    return SuperClasses[0] != 0;
221  }
222
223  /// allocation_order_begin/end - These methods define a range of registers
224  /// which specify the registers in this class that are valid to register
225  /// allocate, and the preferred order to allocate them in.  For example,
226  /// callee saved registers should be at the end of the list, because it is
227  /// cheaper to allocate caller saved registers.
228  ///
229  /// These methods take a MachineFunction argument, which can be used to tune
230  /// the allocatable registers based on the characteristics of the function,
231  /// subtarget, or other criteria.
232  ///
233  /// Register allocators should account for the fact that an allocation
234  /// order iterator may return a reserved register and always check
235  /// if the register is allocatable (getAllocatableSet()) before using it.
236  ///
237  /// By default, these methods return all registers in the class.
238  ///
239  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
240    return begin();
241  }
242  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
243    return end();
244  }
245
246  /// getSize - Return the size of the register in bytes, which is also the size
247  /// of a stack slot allocated to hold a spilled copy of this register.
248  unsigned getSize() const { return RegSize; }
249
250  /// getAlignment - Return the minimum required alignment for a register of
251  /// this class.
252  unsigned getAlignment() const { return Alignment; }
253
254  /// getCopyCost - Return the cost of copying a value between two registers in
255  /// this class. A negative number means the register class is very expensive
256  /// to copy e.g. status flag register classes.
257  int getCopyCost() const { return CopyCost; }
258};
259
260
261/// TargetRegisterInfo base class - We assume that the target defines a static
262/// array of TargetRegisterDesc objects that represent all of the machine
263/// registers that the target has.  As such, we simply have to track a pointer
264/// to this array so that we can turn register number into a register
265/// descriptor.
266///
267class TargetRegisterInfo {
268protected:
269  const unsigned* SubregHash;
270  const unsigned SubregHashSize;
271  const unsigned* AliasesHash;
272  const unsigned AliasesHashSize;
273public:
274  typedef const TargetRegisterClass * const * regclass_iterator;
275private:
276  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
277  const char *const *SubRegIndexNames;        // Names of subreg indexes.
278  unsigned NumRegs;                           // Number of entries in the array
279
280  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
281
282  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
283
284protected:
285  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
286                     regclass_iterator RegClassBegin,
287                     regclass_iterator RegClassEnd,
288                     const char *const *subregindexnames,
289                     int CallFrameSetupOpcode = -1,
290                     int CallFrameDestroyOpcode = -1,
291                     const unsigned* subregs = 0,
292                     const unsigned subregsize = 0,
293                     const unsigned* aliases = 0,
294                     const unsigned aliasessize = 0);
295  virtual ~TargetRegisterInfo();
296public:
297
298  enum {                        // Define some target independent constants
299    /// NoRegister - This physical register is not a real target register.  It
300    /// is useful as a sentinal.
301    NoRegister = 0,
302
303    /// FirstVirtualRegister - This is the first register number that is
304    /// considered to be a 'virtual' register, which is part of the SSA
305    /// namespace.  This must be the same for all targets, which means that each
306    /// target is limited to this fixed number of registers.
307    FirstVirtualRegister = 16384
308  };
309
310  /// isPhysicalRegister - Return true if the specified register number is in
311  /// the physical register namespace.
312  static bool isPhysicalRegister(unsigned Reg) {
313    assert(Reg && "this is not a register!");
314    return Reg < FirstVirtualRegister;
315  }
316
317  /// isVirtualRegister - Return true if the specified register number is in
318  /// the virtual register namespace.
319  static bool isVirtualRegister(unsigned Reg) {
320    assert(Reg && "this is not a register!");
321    return Reg >= FirstVirtualRegister;
322  }
323
324  /// index2VirtReg - Convert a 0-based index to a virtual register number.
325  /// This is the inverse operation of VirtReg2IndexFunctor below.
326  static unsigned index2VirtReg(unsigned Index) {
327    return Index + FirstVirtualRegister;
328  }
329
330  /// printReg - Print a virtual or physical register on OS.
331  void printReg(unsigned Reg, raw_ostream &OS) const;
332
333  /// getMinimalPhysRegClass - Returns the Register Class of a physical
334  /// register of the given type, picking the most sub register class of
335  /// the right type that contains this physreg.
336  const TargetRegisterClass *
337    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
338
339  /// getAllocatableSet - Returns a bitset indexed by register number
340  /// indicating if a register is allocatable or not. If a register class is
341  /// specified, returns the subset for the class.
342  BitVector getAllocatableSet(const MachineFunction &MF,
343                              const TargetRegisterClass *RC = NULL) const;
344
345  const TargetRegisterDesc &operator[](unsigned RegNo) const {
346    assert(RegNo < NumRegs &&
347           "Attempting to access record for invalid register number!");
348    return Desc[RegNo];
349  }
350
351  /// Provide a get method, equivalent to [], but more useful if we have a
352  /// pointer to this object.
353  ///
354  const TargetRegisterDesc &get(unsigned RegNo) const {
355    return operator[](RegNo);
356  }
357
358  /// getAliasSet - Return the set of registers aliased by the specified
359  /// register, or a null list of there are none.  The list returned is zero
360  /// terminated.
361  ///
362  const unsigned *getAliasSet(unsigned RegNo) const {
363    // The Overlaps set always begins with Reg itself.
364    return get(RegNo).Overlaps + 1;
365  }
366
367  /// getOverlaps - Return a list of registers that overlap Reg, including
368  /// itself. This is the same as the alias set except Reg is included in the
369  /// list.
370  /// These are exactly the registers in { x | regsOverlap(x, Reg) }.
371  ///
372  const unsigned *getOverlaps(unsigned RegNo) const {
373    return get(RegNo).Overlaps;
374  }
375
376  /// getSubRegisters - Return the list of registers that are sub-registers of
377  /// the specified register, or a null list of there are none. The list
378  /// returned is zero terminated and sorted according to super-sub register
379  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
380  ///
381  const unsigned *getSubRegisters(unsigned RegNo) const {
382    return get(RegNo).SubRegs;
383  }
384
385  /// getSuperRegisters - Return the list of registers that are super-registers
386  /// of the specified register, or a null list of there are none. The list
387  /// returned is zero terminated and sorted according to super-sub register
388  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
389  ///
390  const unsigned *getSuperRegisters(unsigned RegNo) const {
391    return get(RegNo).SuperRegs;
392  }
393
394  /// getName - Return the human-readable symbolic target-specific name for the
395  /// specified physical register.
396  const char *getName(unsigned RegNo) const {
397    return get(RegNo).Name;
398  }
399
400  /// getNumRegs - Return the number of registers this target has (useful for
401  /// sizing arrays holding per register information)
402  unsigned getNumRegs() const {
403    return NumRegs;
404  }
405
406  /// getSubRegIndexName - Return the human-readable symbolic target-specific
407  /// name for the specified SubRegIndex.
408  const char *getSubRegIndexName(unsigned SubIdx) const {
409    assert(SubIdx && "This is not a subregister index");
410    return SubRegIndexNames[SubIdx-1];
411  }
412
413  /// regsOverlap - Returns true if the two registers are equal or alias each
414  /// other. The registers may be virtual register.
415  bool regsOverlap(unsigned regA, unsigned regB) const {
416    if (regA == regB)
417      return true;
418
419    if (isVirtualRegister(regA) || isVirtualRegister(regB))
420      return false;
421
422    // regA and regB are distinct physical registers. Do they alias?
423    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
424    unsigned ProbeAmt = 0;
425    while (AliasesHash[index*2] != 0 &&
426           AliasesHash[index*2+1] != 0) {
427      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
428        return true;
429
430      index = (index + ProbeAmt) & (AliasesHashSize-1);
431      ProbeAmt += 2;
432    }
433
434    return false;
435  }
436
437  /// isSubRegister - Returns true if regB is a sub-register of regA.
438  ///
439  bool isSubRegister(unsigned regA, unsigned regB) const {
440    // SubregHash is a simple quadratically probed hash table.
441    size_t index = (regA + regB * 37) & (SubregHashSize-1);
442    unsigned ProbeAmt = 2;
443    while (SubregHash[index*2] != 0 &&
444           SubregHash[index*2+1] != 0) {
445      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
446        return true;
447
448      index = (index + ProbeAmt) & (SubregHashSize-1);
449      ProbeAmt += 2;
450    }
451
452    return false;
453  }
454
455  /// isSuperRegister - Returns true if regB is a super-register of regA.
456  ///
457  bool isSuperRegister(unsigned regA, unsigned regB) const {
458    return isSubRegister(regB, regA);
459  }
460
461  /// getCalleeSavedRegs - Return a null-terminated list of all of the
462  /// callee saved registers on this target. The register should be in the
463  /// order of desired callee-save stack frame offset. The first register is
464  /// closed to the incoming stack pointer if stack grows down, and vice versa.
465  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
466                                                                      const = 0;
467
468
469  /// getReservedRegs - Returns a bitset indexed by physical register number
470  /// indicating if a register is a special register that has particular uses
471  /// and should be considered unavailable at all times, e.g. SP, RA. This is
472  /// used by register scavenger to determine what registers are free.
473  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
474
475  /// getSubReg - Returns the physical register number of sub-register "Index"
476  /// for physical register RegNo. Return zero if the sub-register does not
477  /// exist.
478  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
479
480  /// getSubRegIndex - For a given register pair, return the sub-register index
481  /// if the second register is a sub-register of the first. Return zero
482  /// otherwise.
483  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
484
485  /// getMatchingSuperReg - Return a super-register of the specified register
486  /// Reg so its sub-register of index SubIdx is Reg.
487  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
488                               const TargetRegisterClass *RC) const {
489    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
490      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
491        return SR;
492    return 0;
493  }
494
495  /// canCombineSubRegIndices - Given a register class and a list of
496  /// subregister indices, return true if it's possible to combine the
497  /// subregister indices into one that corresponds to a larger
498  /// subregister. Return the new subregister index by reference. Note the
499  /// new index may be zero if the given subregisters can be combined to
500  /// form the whole register.
501  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
502                                       SmallVectorImpl<unsigned> &SubIndices,
503                                       unsigned &NewSubIdx) const {
504    return 0;
505  }
506
507  /// getMatchingSuperRegClass - Return a subclass of the specified register
508  /// class A so that each register in it has a sub-register of the
509  /// specified sub-register index which is in the specified register class B.
510  virtual const TargetRegisterClass *
511  getMatchingSuperRegClass(const TargetRegisterClass *A,
512                           const TargetRegisterClass *B, unsigned Idx) const {
513    return 0;
514  }
515
516  /// composeSubRegIndices - Return the subregister index you get from composing
517  /// two subregister indices.
518  ///
519  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
520  /// returns c. Note that composeSubRegIndices does not tell you about illegal
521  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
522  /// b, composeSubRegIndices doesn't tell you.
523  ///
524  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
525  /// ssub_0:S0 - ssub_3:S3 subregs.
526  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
527  ///
528  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
529    // This default implementation is correct for most targets.
530    return b;
531  }
532
533  //===--------------------------------------------------------------------===//
534  // Register Class Information
535  //
536
537  /// Register class iterators
538  ///
539  regclass_iterator regclass_begin() const { return RegClassBegin; }
540  regclass_iterator regclass_end() const { return RegClassEnd; }
541
542  unsigned getNumRegClasses() const {
543    return (unsigned)(regclass_end()-regclass_begin());
544  }
545
546  /// getRegClass - Returns the register class associated with the enumeration
547  /// value.  See class TargetOperandInfo.
548  const TargetRegisterClass *getRegClass(unsigned i) const {
549    assert(i < getNumRegClasses() && "Register Class ID out of range");
550    return RegClassBegin[i];
551  }
552
553  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
554  /// values.  If a target supports multiple different pointer register classes,
555  /// kind specifies which one is indicated.
556  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
557    assert(0 && "Target didn't implement getPointerRegClass!");
558    return 0; // Must return a value in order to compile with VS 2005
559  }
560
561  /// getCrossCopyRegClass - Returns a legal register class to copy a register
562  /// in the specified class to or from. Returns NULL if it is possible to copy
563  /// between a two registers of the specified class.
564  virtual const TargetRegisterClass *
565  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
566    return NULL;
567  }
568
569  /// getAllocationOrder - Returns the register allocation order for a specified
570  /// register class in the form of a pair of TargetRegisterClass iterators.
571  virtual std::pair<TargetRegisterClass::iterator,TargetRegisterClass::iterator>
572  getAllocationOrder(const TargetRegisterClass *RC,
573                     unsigned HintType, unsigned HintReg,
574                     const MachineFunction &MF) const {
575    return std::make_pair(RC->allocation_order_begin(MF),
576                          RC->allocation_order_end(MF));
577  }
578
579  /// ResolveRegAllocHint - Resolves the specified register allocation hint
580  /// to a physical register. Returns the physical register if it is successful.
581  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
582                                       const MachineFunction &MF) const {
583    if (Type == 0 && Reg && isPhysicalRegister(Reg))
584      return Reg;
585    return 0;
586  }
587
588  /// UpdateRegAllocHint - A callback to allow target a chance to update
589  /// register allocation hints when a register is "changed" (e.g. coalesced)
590  /// to another register. e.g. On ARM, some virtual registers should target
591  /// register pairs, if one of pair is coalesced to another register, the
592  /// allocation hint of the other half of the pair should be changed to point
593  /// to the new register.
594  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
595                                  MachineFunction &MF) const {
596    // Do nothing.
597  }
598
599  /// requiresRegisterScavenging - returns true if the target requires (and can
600  /// make use of) the register scavenger.
601  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
602    return false;
603  }
604
605  /// requiresFrameIndexScavenging - returns true if the target requires post
606  /// PEI scavenging of registers for materializing frame index constants.
607  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
608    return false;
609  }
610
611  /// requiresVirtualBaseRegisters - Returns true if the target wants the
612  /// LocalStackAllocation pass to be run and virtual base registers
613  /// used for more efficient stack access.
614  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
615    return false;
616  }
617
618  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
619  /// the stack frame of the given function for the specified register. e.g. On
620  /// x86, if the frame register is required, the first fixed stack object is
621  /// reserved as its spill slot. This tells PEI not to create a new stack frame
622  /// object for the given register. It should be called only after
623  /// processFunctionBeforeCalleeSavedScan().
624  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
625                                    int &FrameIdx) const {
626    return false;
627  }
628
629  /// needsStackRealignment - true if storage within the function requires the
630  /// stack pointer to be aligned more than the normal calling convention calls
631  /// for.
632  virtual bool needsStackRealignment(const MachineFunction &MF) const {
633    return false;
634  }
635
636  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
637  /// index in the instruction, if the is one.
638  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
639                                           int Idx) const {
640    return 0;
641  }
642
643  /// needsFrameBaseReg - Returns true if the instruction's frame index
644  /// reference would be better served by a base register other than FP
645  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
646  /// references it should create new base registers for.
647  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
648    return false;
649  }
650
651  /// materializeFrameBaseRegister - Insert defining instruction(s) for
652  /// BaseReg to be a pointer to FrameIdx before insertion point I.
653  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
654                                            unsigned BaseReg, int FrameIdx,
655                                            int64_t Offset) const {
656    assert(0 && "materializeFrameBaseRegister does not exist on this target");
657  }
658
659  /// resolveFrameIndex - Resolve a frame index operand of an instruction
660  /// to reference the indicated base register plus offset instead.
661  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
662                                 unsigned BaseReg, int64_t Offset) const {
663    assert(0 && "resolveFrameIndex does not exist on this target");
664  }
665
666  /// isFrameOffsetLegal - Determine whether a given offset immediate is
667  /// encodable to resolve a frame index.
668  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
669                                  int64_t Offset) const {
670    assert(0 && "isFrameOffsetLegal does not exist on this target");
671    return false; // Must return a value in order to compile with VS 2005
672  }
673
674  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
675  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
676  /// targets use pseudo instructions in order to abstract away the difference
677  /// between operating with a frame pointer and operating without, through the
678  /// use of these two instructions.
679  ///
680  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
681  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
682
683  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
684  /// code insertion to eliminate call frame setup and destroy pseudo
685  /// instructions (but only if the Target is using them).  It is responsible
686  /// for eliminating these instructions, replacing them with concrete
687  /// instructions.  This method need only be implemented if using call frame
688  /// setup/destroy pseudo instructions.
689  ///
690  virtual void
691  eliminateCallFramePseudoInstr(MachineFunction &MF,
692                                MachineBasicBlock &MBB,
693                                MachineBasicBlock::iterator MI) const {
694    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
695           "eliminateCallFramePseudoInstr must be implemented if using"
696           " call frame setup/destroy pseudo instructions!");
697    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
698  }
699
700
701  /// saveScavengerRegister - Spill the register so it can be used by the
702  /// register scavenger. Return true if the register was spilled, false
703  /// otherwise. If this function does not spill the register, the scavenger
704  /// will instead spill it to the emergency spill slot.
705  ///
706  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
707                                     MachineBasicBlock::iterator I,
708                                     MachineBasicBlock::iterator &UseMI,
709                                     const TargetRegisterClass *RC,
710                                     unsigned Reg) const {
711    return false;
712  }
713
714  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
715  /// frame indices from instructions which may use them.  The instruction
716  /// referenced by the iterator contains an MO_FrameIndex operand which must be
717  /// eliminated by this method.  This method may modify or replace the
718  /// specified instruction, as long as it keeps the iterator pointing at the
719  /// finished product. SPAdj is the SP adjustment due to call frame setup
720  /// instruction.
721  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
722                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
723
724  //===--------------------------------------------------------------------===//
725  /// Debug information queries.
726
727  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
728  /// number.  Returns -1 if there is no equivalent value.  The second
729  /// parameter allows targets to use different numberings for EH info and
730  /// debugging info.
731  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
732
733  /// getFrameRegister - This method should return the register used as a base
734  /// for values allocated in the current stack frame.
735  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
736
737  /// getRARegister - This method should return the register where the return
738  /// address can be found.
739  virtual unsigned getRARegister() const = 0;
740};
741
742
743// This is useful when building IndexedMaps keyed on virtual registers
744struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
745  unsigned operator()(unsigned Reg) const {
746    return Reg - TargetRegisterInfo::FirstVirtualRegister;
747  }
748};
749
750/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
751/// if there is no common subclass.
752const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
753                                             const TargetRegisterClass *B);
754
755} // End llvm namespace
756
757#endif
758