TargetRegisterInfo.h revision bd6dc3be1dac2d153f29927cad517af9e579b204
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/MC/MCRegisterInfo.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/CallingConv.h"
24#include <cassert>
25#include <functional>
26
27namespace llvm {
28
29class BitVector;
30class MachineFunction;
31class RegScavenger;
32template<class T> class SmallVectorImpl;
33class raw_ostream;
34
35class TargetRegisterClass {
36public:
37  typedef const unsigned* iterator;
38  typedef const unsigned* const_iterator;
39  typedef const EVT* vt_iterator;
40  typedef const TargetRegisterClass* const * sc_iterator;
41private:
42  virtual void anchor();
43  const MCRegisterClass *MC;
44  const vt_iterator VTs;
45  const unsigned *SubClassMask;
46  const sc_iterator SuperClasses;
47  const sc_iterator SuperRegClasses;
48public:
49  TargetRegisterClass(const MCRegisterClass *MC, const EVT *vts,
50                      const unsigned *subcm,
51                      const TargetRegisterClass * const *supcs,
52                      const TargetRegisterClass * const *superregcs)
53    : MC(MC), VTs(vts), SubClassMask(subcm), SuperClasses(supcs),
54      SuperRegClasses(superregcs) {}
55
56  virtual ~TargetRegisterClass() {}     // Allow subclasses
57
58  /// getID() - Return the register class ID number.
59  ///
60  unsigned getID() const { return MC->getID(); }
61
62  /// getName() - Return the register class name for debugging.
63  ///
64  const char *getName() const { return MC->getName(); }
65
66  /// begin/end - Return all of the registers in this class.
67  ///
68  iterator       begin() const { return MC->begin(); }
69  iterator         end() const { return MC->end(); }
70
71  /// getNumRegs - Return the number of registers in this class.
72  ///
73  unsigned getNumRegs() const { return MC->getNumRegs(); }
74
75  /// getRegister - Return the specified register in the class.
76  ///
77  unsigned getRegister(unsigned i) const {
78    return MC->getRegister(i);
79  }
80
81  /// contains - Return true if the specified register is included in this
82  /// register class.  This does not include virtual registers.
83  bool contains(unsigned Reg) const {
84    return MC->contains(Reg);
85  }
86
87  /// contains - Return true if both registers are in this class.
88  bool contains(unsigned Reg1, unsigned Reg2) const {
89    return MC->contains(Reg1, Reg2);
90  }
91
92  /// getSize - Return the size of the register in bytes, which is also the size
93  /// of a stack slot allocated to hold a spilled copy of this register.
94  unsigned getSize() const { return MC->getSize(); }
95
96  /// getAlignment - Return the minimum required alignment for a register of
97  /// this class.
98  unsigned getAlignment() const { return MC->getAlignment(); }
99
100  /// getCopyCost - Return the cost of copying a value between two registers in
101  /// this class. A negative number means the register class is very expensive
102  /// to copy e.g. status flag register classes.
103  int getCopyCost() const { return MC->getCopyCost(); }
104
105  /// isAllocatable - Return true if this register class may be used to create
106  /// virtual registers.
107  bool isAllocatable() const { return MC->isAllocatable(); }
108
109  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
110  ///
111  bool hasType(EVT vt) const {
112    for(int i = 0; VTs[i] != MVT::Other; ++i)
113      if (VTs[i] == vt)
114        return true;
115    return false;
116  }
117
118  /// vt_begin / vt_end - Loop over all of the value types that can be
119  /// represented by values in this register class.
120  vt_iterator vt_begin() const {
121    return VTs;
122  }
123
124  vt_iterator vt_end() const {
125    vt_iterator I = VTs;
126    while (*I != MVT::Other) ++I;
127    return I;
128  }
129
130  /// superregclasses_begin / superregclasses_end - Loop over all of
131  /// the superreg register classes of this register class.
132  sc_iterator superregclasses_begin() const {
133    return SuperRegClasses;
134  }
135
136  sc_iterator superregclasses_end() const {
137    sc_iterator I = SuperRegClasses;
138    while (*I != NULL) ++I;
139    return I;
140  }
141
142  /// hasSubClass - return true if the specified TargetRegisterClass
143  /// is a proper sub-class of this TargetRegisterClass.
144  bool hasSubClass(const TargetRegisterClass *RC) const {
145    return RC != this && hasSubClassEq(RC);
146  }
147
148  /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
149  /// class.
150  bool hasSubClassEq(const TargetRegisterClass *RC) const {
151    unsigned ID = RC->getID();
152    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
153  }
154
155  /// hasSuperClass - return true if the specified TargetRegisterClass is a
156  /// proper super-class of this TargetRegisterClass.
157  bool hasSuperClass(const TargetRegisterClass *RC) const {
158    return RC->hasSubClass(this);
159  }
160
161  /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
162  /// class.
163  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
164    return RC->hasSubClassEq(this);
165  }
166
167  /// getSubClassMask - Returns a bit vector of subclasses, including this one.
168  /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
169  /// use it.
170  const unsigned *getSubClassMask() const {
171    return SubClassMask;
172  }
173
174  /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
175  /// classes are ordered by ID which is also a topological ordering from large
176  /// to small classes.  The list does NOT include the current class.
177  sc_iterator getSuperClasses() const {
178    return SuperClasses;
179  }
180
181  /// isASubClass - return true if this TargetRegisterClass is a subset
182  /// class of at least one other TargetRegisterClass.
183  bool isASubClass() const {
184    return SuperClasses[0] != 0;
185  }
186
187  /// getRawAllocationOrder - Returns the preferred order for allocating
188  /// registers from this register class in MF. The raw order comes directly
189  /// from the .td file and may include reserved registers that are not
190  /// allocatable. Register allocators should also make sure to allocate
191  /// callee-saved registers only after all the volatiles are used. The
192  /// RegisterClassInfo class provides filtered allocation orders with
193  /// callee-saved registers moved to the end.
194  ///
195  /// The MachineFunction argument can be used to tune the allocatable
196  /// registers based on the characteristics of the function, subtarget, or
197  /// other criteria.
198  ///
199  /// By default, this method returns all registers in the class.
200  ///
201  virtual
202  ArrayRef<unsigned> getRawAllocationOrder(const MachineFunction &MF) const {
203    return makeArrayRef(begin(), getNumRegs());
204  }
205};
206
207/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
208/// registers. These are used by codegen, not by MC.
209struct TargetRegisterInfoDesc {
210  unsigned CostPerUse;          // Extra cost of instructions using register.
211  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
212};
213
214/// TargetRegisterInfo base class - We assume that the target defines a static
215/// array of TargetRegisterDesc objects that represent all of the machine
216/// registers that the target has.  As such, we simply have to track a pointer
217/// to this array so that we can turn register number into a register
218/// descriptor.
219///
220class TargetRegisterInfo : public MCRegisterInfo {
221public:
222  typedef const TargetRegisterClass * const * regclass_iterator;
223private:
224  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
225  const char *const *SubRegIndexNames;        // Names of subreg indexes.
226  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
227
228protected:
229  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
230                     regclass_iterator RegClassBegin,
231                     regclass_iterator RegClassEnd,
232                     const char *const *subregindexnames);
233  virtual ~TargetRegisterInfo();
234public:
235
236  // Register numbers can represent physical registers, virtual registers, and
237  // sometimes stack slots. The unsigned values are divided into these ranges:
238  //
239  //   0           Not a register, can be used as a sentinel.
240  //   [1;2^30)    Physical registers assigned by TableGen.
241  //   [2^30;2^31) Stack slots. (Rarely used.)
242  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
243  //
244  // Further sentinels can be allocated from the small negative integers.
245  // DenseMapInfo<unsigned> uses -1u and -2u.
246
247  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
248  /// frame index in a variable that normally holds a register. isStackSlot()
249  /// returns true if Reg is in the range used for stack slots.
250  ///
251  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
252  /// slots, so if a variable may contains a stack slot, always check
253  /// isStackSlot() first.
254  ///
255  static bool isStackSlot(unsigned Reg) {
256    return int(Reg) >= (1 << 30);
257  }
258
259  /// stackSlot2Index - Compute the frame index from a register value
260  /// representing a stack slot.
261  static int stackSlot2Index(unsigned Reg) {
262    assert(isStackSlot(Reg) && "Not a stack slot");
263    return int(Reg - (1u << 30));
264  }
265
266  /// index2StackSlot - Convert a non-negative frame index to a stack slot
267  /// register value.
268  static unsigned index2StackSlot(int FI) {
269    assert(FI >= 0 && "Cannot hold a negative frame index.");
270    return FI + (1u << 30);
271  }
272
273  /// isPhysicalRegister - Return true if the specified register number is in
274  /// the physical register namespace.
275  static bool isPhysicalRegister(unsigned Reg) {
276    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
277    return int(Reg) > 0;
278  }
279
280  /// isVirtualRegister - Return true if the specified register number is in
281  /// the virtual register namespace.
282  static bool isVirtualRegister(unsigned Reg) {
283    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
284    return int(Reg) < 0;
285  }
286
287  /// virtReg2Index - Convert a virtual register number to a 0-based index.
288  /// The first virtual register in a function will get the index 0.
289  static unsigned virtReg2Index(unsigned Reg) {
290    assert(isVirtualRegister(Reg) && "Not a virtual register");
291    return Reg & ~(1u << 31);
292  }
293
294  /// index2VirtReg - Convert a 0-based index to a virtual register number.
295  /// This is the inverse operation of VirtReg2IndexFunctor below.
296  static unsigned index2VirtReg(unsigned Index) {
297    return Index | (1u << 31);
298  }
299
300  /// getMinimalPhysRegClass - Returns the Register Class of a physical
301  /// register of the given type, picking the most sub register class of
302  /// the right type that contains this physreg.
303  const TargetRegisterClass *
304    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
305
306  /// getAllocatableSet - Returns a bitset indexed by register number
307  /// indicating if a register is allocatable or not. If a register class is
308  /// specified, returns the subset for the class.
309  BitVector getAllocatableSet(const MachineFunction &MF,
310                              const TargetRegisterClass *RC = NULL) const;
311
312  /// getCostPerUse - Return the additional cost of using this register instead
313  /// of other registers in its class.
314  unsigned getCostPerUse(unsigned RegNo) const {
315    return InfoDesc[RegNo].CostPerUse;
316  }
317
318  /// isInAllocatableClass - Return true if the register is in the allocation
319  /// of any register class.
320  bool isInAllocatableClass(unsigned RegNo) const {
321    return InfoDesc[RegNo].inAllocatableClass;
322  }
323
324  /// getSubRegIndexName - Return the human-readable symbolic target-specific
325  /// name for the specified SubRegIndex.
326  const char *getSubRegIndexName(unsigned SubIdx) const {
327    assert(SubIdx && "This is not a subregister index");
328    return SubRegIndexNames[SubIdx-1];
329  }
330
331  /// regsOverlap - Returns true if the two registers are equal or alias each
332  /// other. The registers may be virtual register.
333  bool regsOverlap(unsigned regA, unsigned regB) const {
334    if (regA == regB) return true;
335    if (isVirtualRegister(regA) || isVirtualRegister(regB))
336      return false;
337    for (const unsigned *regList = getOverlaps(regA)+1; *regList; ++regList) {
338      if (*regList == regB) return true;
339    }
340    return false;
341  }
342
343  /// isSubRegister - Returns true if regB is a sub-register of regA.
344  ///
345  bool isSubRegister(unsigned regA, unsigned regB) const {
346    return isSuperRegister(regB, regA);
347  }
348
349  /// isSuperRegister - Returns true if regB is a super-register of regA.
350  ///
351  bool isSuperRegister(unsigned regA, unsigned regB) const {
352    for (const unsigned *regList = getSuperRegisters(regA); *regList;++regList){
353      if (*regList == regB) return true;
354    }
355    return false;
356  }
357
358  /// getCalleeSavedRegs - Return a null-terminated list of all of the
359  /// callee saved registers on this target. The register should be in the
360  /// order of desired callee-save stack frame offset. The first register is
361  /// closest to the incoming stack pointer if stack grows down, and vice versa.
362  ///
363  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
364                                                                      const = 0;
365
366  /// getCallPreservedMask - Return a mask of call-preserved registers for the
367  /// given calling convention on the current sub-target.  The mask should
368  /// include all call-preserved aliases.  This is used by the register
369  /// allocator to determine which registers can be live across a call.
370  ///
371  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
372  /// A set bit indicates that all bits of the corresponding register are
373  /// preserved across the function call.  The bit mask is expected to be
374  /// sub-register complete, i.e. if A is preserved, so are all its
375  /// sub-registers.
376  ///
377  /// Bits are numbered from the LSB, so the bit for physical register Reg can
378  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
379  /// NULL pointer is equivalent to an all-zero mask.
380  ///
381  virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
382    // The default mask clobbers everything.  All targets should override.
383    return 0;
384  }
385
386  /// getReservedRegs - Returns a bitset indexed by physical register number
387  /// indicating if a register is a special register that has particular uses
388  /// and should be considered unavailable at all times, e.g. SP, RA. This is
389  /// used by register scavenger to determine what registers are free.
390  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
391
392  /// getSubReg - Returns the physical register number of sub-register "Index"
393  /// for physical register RegNo. Return zero if the sub-register does not
394  /// exist.
395  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
396
397  /// getSubRegIndex - For a given register pair, return the sub-register index
398  /// if the second register is a sub-register of the first. Return zero
399  /// otherwise.
400  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
401
402  /// getMatchingSuperReg - Return a super-register of the specified register
403  /// Reg so its sub-register of index SubIdx is Reg.
404  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
405                               const TargetRegisterClass *RC) const {
406    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
407      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
408        return SR;
409    return 0;
410  }
411
412  /// canCombineSubRegIndices - Given a register class and a list of
413  /// subregister indices, return true if it's possible to combine the
414  /// subregister indices into one that corresponds to a larger
415  /// subregister. Return the new subregister index by reference. Note the
416  /// new index may be zero if the given subregisters can be combined to
417  /// form the whole register.
418  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
419                                       SmallVectorImpl<unsigned> &SubIndices,
420                                       unsigned &NewSubIdx) const {
421    return 0;
422  }
423
424  /// getMatchingSuperRegClass - Return a subclass of the specified register
425  /// class A so that each register in it has a sub-register of the
426  /// specified sub-register index which is in the specified register class B.
427  ///
428  /// TableGen will synthesize missing A sub-classes.
429  virtual const TargetRegisterClass *
430  getMatchingSuperRegClass(const TargetRegisterClass *A,
431                           const TargetRegisterClass *B, unsigned Idx) const =0;
432
433  /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
434  /// supports the sub-register index Idx.
435  /// If no such sub-class exists, return NULL.
436  /// If all registers in RC already have an Idx sub-register, return RC.
437  ///
438  /// TableGen generates a version of this function that is good enough in most
439  /// cases.  Targets can override if they have constraints that TableGen
440  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
441  /// supported by the full GR32 register class in 64-bit mode, but only by the
442  /// GR32_ABCD regiister class in 32-bit mode.
443  ///
444  /// TableGen will synthesize missing RC sub-classes.
445  virtual const TargetRegisterClass *
446  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const =0;
447
448  /// composeSubRegIndices - Return the subregister index you get from composing
449  /// two subregister indices.
450  ///
451  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
452  /// returns c. Note that composeSubRegIndices does not tell you about illegal
453  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
454  /// b, composeSubRegIndices doesn't tell you.
455  ///
456  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
457  /// ssub_0:S0 - ssub_3:S3 subregs.
458  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
459  ///
460  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
461    // This default implementation is correct for most targets.
462    return b;
463  }
464
465  //===--------------------------------------------------------------------===//
466  // Register Class Information
467  //
468
469  /// Register class iterators
470  ///
471  regclass_iterator regclass_begin() const { return RegClassBegin; }
472  regclass_iterator regclass_end() const { return RegClassEnd; }
473
474  unsigned getNumRegClasses() const {
475    return (unsigned)(regclass_end()-regclass_begin());
476  }
477
478  /// getRegClass - Returns the register class associated with the enumeration
479  /// value.  See class MCOperandInfo.
480  const TargetRegisterClass *getRegClass(unsigned i) const {
481    assert(i < getNumRegClasses() && "Register Class ID out of range");
482    return RegClassBegin[i];
483  }
484
485  /// getCommonSubClass - find the largest common subclass of A and B. Return
486  /// NULL if there is no common subclass.
487  const TargetRegisterClass *
488  getCommonSubClass(const TargetRegisterClass *A,
489                    const TargetRegisterClass *B) const;
490
491  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
492  /// values.  If a target supports multiple different pointer register classes,
493  /// kind specifies which one is indicated.
494  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
495    assert(0 && "Target didn't implement getPointerRegClass!");
496    return 0; // Must return a value in order to compile with VS 2005
497  }
498
499  /// getCrossCopyRegClass - Returns a legal register class to copy a register
500  /// in the specified class to or from. If it is possible to copy the register
501  /// directly without using a cross register class copy, return the specified
502  /// RC. Returns NULL if it is not possible to copy between a two registers of
503  /// the specified class.
504  virtual const TargetRegisterClass *
505  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
506    return RC;
507  }
508
509  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
510  /// legal to use in the current sub-target and has the same spill size.
511  /// The returned register class can be used to create virtual registers which
512  /// means that all its registers can be copied and spilled.
513  virtual const TargetRegisterClass*
514  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
515    /// The default implementation is very conservative and doesn't allow the
516    /// register allocator to inflate register classes.
517    return RC;
518  }
519
520  /// getRegPressureLimit - Return the register pressure "high water mark" for
521  /// the specific register class. The scheduler is in high register pressure
522  /// mode (for the specific register class) if it goes over the limit.
523  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
524                                       MachineFunction &MF) const {
525    return 0;
526  }
527
528  /// getRawAllocationOrder - Returns the register allocation order for a
529  /// specified register class with a target-dependent hint. The returned list
530  /// may contain reserved registers that cannot be allocated.
531  ///
532  /// Register allocators need only call this function to resolve
533  /// target-dependent hints, but it should work without hinting as well.
534  virtual ArrayRef<unsigned>
535  getRawAllocationOrder(const TargetRegisterClass *RC,
536                        unsigned HintType, unsigned HintReg,
537                        const MachineFunction &MF) const {
538    return RC->getRawAllocationOrder(MF);
539  }
540
541  /// ResolveRegAllocHint - Resolves the specified register allocation hint
542  /// to a physical register. Returns the physical register if it is successful.
543  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
544                                       const MachineFunction &MF) const {
545    if (Type == 0 && Reg && isPhysicalRegister(Reg))
546      return Reg;
547    return 0;
548  }
549
550  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
551  /// writing a register from RC in two consecutive instructions.
552  /// This can avoid pipeline stalls on certain architectures.
553  /// It does cause increased register pressure, though.
554  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
555    return false;
556  }
557
558  /// UpdateRegAllocHint - A callback to allow target a chance to update
559  /// register allocation hints when a register is "changed" (e.g. coalesced)
560  /// to another register. e.g. On ARM, some virtual registers should target
561  /// register pairs, if one of pair is coalesced to another register, the
562  /// allocation hint of the other half of the pair should be changed to point
563  /// to the new register.
564  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
565                                  MachineFunction &MF) const {
566    // Do nothing.
567  }
568
569  /// requiresRegisterScavenging - returns true if the target requires (and can
570  /// make use of) the register scavenger.
571  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
572    return false;
573  }
574
575  /// useFPForScavengingIndex - returns true if the target wants to use
576  /// frame pointer based accesses to spill to the scavenger emergency spill
577  /// slot.
578  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
579    return true;
580  }
581
582  /// requiresFrameIndexScavenging - returns true if the target requires post
583  /// PEI scavenging of registers for materializing frame index constants.
584  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
585    return false;
586  }
587
588  /// requiresVirtualBaseRegisters - Returns true if the target wants the
589  /// LocalStackAllocation pass to be run and virtual base registers
590  /// used for more efficient stack access.
591  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
592    return false;
593  }
594
595  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
596  /// the stack frame of the given function for the specified register. e.g. On
597  /// x86, if the frame register is required, the first fixed stack object is
598  /// reserved as its spill slot. This tells PEI not to create a new stack frame
599  /// object for the given register. It should be called only after
600  /// processFunctionBeforeCalleeSavedScan().
601  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
602                                    int &FrameIdx) const {
603    return false;
604  }
605
606  /// needsStackRealignment - true if storage within the function requires the
607  /// stack pointer to be aligned more than the normal calling convention calls
608  /// for.
609  virtual bool needsStackRealignment(const MachineFunction &MF) const {
610    return false;
611  }
612
613  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
614  /// index in the instruction, if there is one.
615  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
616                                           int Idx) const {
617    return 0;
618  }
619
620  /// needsFrameBaseReg - Returns true if the instruction's frame index
621  /// reference would be better served by a base register other than FP
622  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
623  /// references it should create new base registers for.
624  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
625    return false;
626  }
627
628  /// materializeFrameBaseRegister - Insert defining instruction(s) for
629  /// BaseReg to be a pointer to FrameIdx before insertion point I.
630  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
631                                            unsigned BaseReg, int FrameIdx,
632                                            int64_t Offset) const {
633    assert(0 && "materializeFrameBaseRegister does not exist on this target");
634  }
635
636  /// resolveFrameIndex - Resolve a frame index operand of an instruction
637  /// to reference the indicated base register plus offset instead.
638  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
639                                 unsigned BaseReg, int64_t Offset) const {
640    assert(0 && "resolveFrameIndex does not exist on this target");
641  }
642
643  /// isFrameOffsetLegal - Determine whether a given offset immediate is
644  /// encodable to resolve a frame index.
645  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
646                                  int64_t Offset) const {
647    assert(0 && "isFrameOffsetLegal does not exist on this target");
648    return false; // Must return a value in order to compile with VS 2005
649  }
650
651  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
652  /// code insertion to eliminate call frame setup and destroy pseudo
653  /// instructions (but only if the Target is using them).  It is responsible
654  /// for eliminating these instructions, replacing them with concrete
655  /// instructions.  This method need only be implemented if using call frame
656  /// setup/destroy pseudo instructions.
657  ///
658  virtual void
659  eliminateCallFramePseudoInstr(MachineFunction &MF,
660                                MachineBasicBlock &MBB,
661                                MachineBasicBlock::iterator MI) const {
662    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
663  }
664
665
666  /// saveScavengerRegister - Spill the register so it can be used by the
667  /// register scavenger. Return true if the register was spilled, false
668  /// otherwise. If this function does not spill the register, the scavenger
669  /// will instead spill it to the emergency spill slot.
670  ///
671  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
672                                     MachineBasicBlock::iterator I,
673                                     MachineBasicBlock::iterator &UseMI,
674                                     const TargetRegisterClass *RC,
675                                     unsigned Reg) const {
676    return false;
677  }
678
679  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
680  /// frame indices from instructions which may use them.  The instruction
681  /// referenced by the iterator contains an MO_FrameIndex operand which must be
682  /// eliminated by this method.  This method may modify or replace the
683  /// specified instruction, as long as it keeps the iterator pointing at the
684  /// finished product. SPAdj is the SP adjustment due to call frame setup
685  /// instruction.
686  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
687                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
688
689  //===--------------------------------------------------------------------===//
690  /// Debug information queries.
691
692  /// getFrameRegister - This method should return the register used as a base
693  /// for values allocated in the current stack frame.
694  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
695
696  /// getCompactUnwindRegNum - This function maps the register to the number for
697  /// compact unwind encoding. Return -1 if the register isn't valid.
698  virtual int getCompactUnwindRegNum(unsigned, bool) const {
699    return -1;
700  }
701};
702
703
704// This is useful when building IndexedMaps keyed on virtual registers
705struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
706  unsigned operator()(unsigned Reg) const {
707    return TargetRegisterInfo::virtReg2Index(Reg);
708  }
709};
710
711/// PrintReg - Helper class for printing registers on a raw_ostream.
712/// Prints virtual and physical registers with or without a TRI instance.
713///
714/// The format is:
715///   %noreg          - NoRegister
716///   %vreg5          - a virtual register.
717///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
718///   %EAX            - a physical register
719///   %physreg17      - a physical register when no TRI instance given.
720///
721/// Usage: OS << PrintReg(Reg, TRI) << '\n';
722///
723class PrintReg {
724  const TargetRegisterInfo *TRI;
725  unsigned Reg;
726  unsigned SubIdx;
727public:
728  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
729    : TRI(tri), Reg(reg), SubIdx(subidx) {}
730  void print(raw_ostream&) const;
731};
732
733static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
734  PR.print(OS);
735  return OS;
736}
737
738} // End llvm namespace
739
740#endif
741