TargetRegisterInfo.h revision c781a243a3d17e7e763515794168d8fa6043f565
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31
32/// TargetRegisterDesc - This record contains all of the information known about
33/// a particular register.  The AliasSet field (if not null) contains a pointer
34/// to a Zero terminated array of registers that this register aliases.  This is
35/// needed for architectures like X86 which have AL alias AX alias EAX.
36/// Registers that this does not apply to simply should set this to null.
37/// The SubRegs field is a zero terminated array of registers that are
38/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
39/// The SuperRegs field is a zero terminated array of registers that are
40/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
41/// of AX.
42///
43struct TargetRegisterDesc {
44  const char     *AsmName;      // Assembly language name for the register
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *AliasSet;     // Register Alias Set, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49};
50
51class TargetRegisterClass {
52public:
53  typedef const unsigned* iterator;
54  typedef const unsigned* const_iterator;
55
56  typedef const MVT* vt_iterator;
57  typedef const TargetRegisterClass* const * sc_iterator;
58private:
59  unsigned ID;
60  const char *Name;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const sc_iterator SubRegClasses;
65  const sc_iterator SuperRegClasses;
66  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
67  const int CopyCost;
68  const iterator RegsBegin, RegsEnd;
69  DenseSet<unsigned> RegSet;
70public:
71  TargetRegisterClass(unsigned id,
72                      const char *name,
73                      const MVT *vts,
74                      const TargetRegisterClass * const *subcs,
75                      const TargetRegisterClass * const *supcs,
76                      const TargetRegisterClass * const *subregcs,
77                      const TargetRegisterClass * const *superregcs,
78                      unsigned RS, unsigned Al, int CC,
79                      iterator RB, iterator RE)
80    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
81    SubRegClasses(subregcs), SuperRegClasses(superregcs),
82    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
83      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
84        RegSet.insert(*I);
85    }
86  virtual ~TargetRegisterClass() {}     // Allow subclasses
87
88  /// getID() - Return the register class ID number.
89  ///
90  unsigned getID() const { return ID; }
91
92  /// getName() - Return the register class name for debugging.
93  ///
94  const char *getName() const { return Name; }
95
96  /// begin/end - Return all of the registers in this class.
97  ///
98  iterator       begin() const { return RegsBegin; }
99  iterator         end() const { return RegsEnd; }
100
101  /// getNumRegs - Return the number of registers in this class.
102  ///
103  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
104
105  /// getRegister - Return the specified register in the class.
106  ///
107  unsigned getRegister(unsigned i) const {
108    assert(i < getNumRegs() && "Register number out of range!");
109    return RegsBegin[i];
110  }
111
112  /// contains - Return true if the specified register is included in this
113  /// register class.
114  bool contains(unsigned Reg) const {
115    return RegSet.count(Reg);
116  }
117
118  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
119  ///
120  bool hasType(MVT vt) const {
121    for(int i = 0; VTs[i] != MVT::Other; ++i)
122      if (VTs[i] == vt)
123        return true;
124    return false;
125  }
126
127  /// vt_begin / vt_end - Loop over all of the value types that can be
128  /// represented by values in this register class.
129  vt_iterator vt_begin() const {
130    return VTs;
131  }
132
133  vt_iterator vt_end() const {
134    vt_iterator I = VTs;
135    while (*I != MVT::Other) ++I;
136    return I;
137  }
138
139  /// subregclasses_begin / subregclasses_end - Loop over all of
140  /// the subreg register classes of this register class.
141  sc_iterator subregclasses_begin() const {
142    return SubRegClasses;
143  }
144
145  sc_iterator subregclasses_end() const {
146    sc_iterator I = SubRegClasses;
147    while (*I != NULL) ++I;
148    return I;
149  }
150
151  /// getSubRegisterRegClass - Return the register class of subregisters with
152  /// index SubIdx, or NULL if no such class exists.
153  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
154    assert(SubIdx>0 && "Invalid subregister index");
155    for (unsigned s = 0; s != SubIdx-1; ++s)
156      if (!SubRegClasses[s])
157        return NULL;
158    return SubRegClasses[SubIdx-1];
159  }
160
161  /// superregclasses_begin / superregclasses_end - Loop over all of
162  /// the superreg register classes of this register class.
163  sc_iterator superregclasses_begin() const {
164    return SuperRegClasses;
165  }
166
167  sc_iterator superregclasses_end() const {
168    sc_iterator I = SuperRegClasses;
169    while (*I != NULL) ++I;
170    return I;
171  }
172
173  /// hasSubClass - return true if the the specified TargetRegisterClass
174  /// is a proper subset of this TargetRegisterClass.
175  bool hasSubClass(const TargetRegisterClass *cs) const {
176    for (int i = 0; SubClasses[i] != NULL; ++i)
177      if (SubClasses[i] == cs)
178        return true;
179    return false;
180  }
181
182  /// subclasses_begin / subclasses_end - Loop over all of the classes
183  /// that are proper subsets of this register class.
184  sc_iterator subclasses_begin() const {
185    return SubClasses;
186  }
187
188  sc_iterator subclasses_end() const {
189    sc_iterator I = SubClasses;
190    while (*I != NULL) ++I;
191    return I;
192  }
193
194  /// hasSuperClass - return true if the specified TargetRegisterClass is a
195  /// proper superset of this TargetRegisterClass.
196  bool hasSuperClass(const TargetRegisterClass *cs) const {
197    for (int i = 0; SuperClasses[i] != NULL; ++i)
198      if (SuperClasses[i] == cs)
199        return true;
200    return false;
201  }
202
203  /// superclasses_begin / superclasses_end - Loop over all of the classes
204  /// that are proper supersets of this register class.
205  sc_iterator superclasses_begin() const {
206    return SuperClasses;
207  }
208
209  sc_iterator superclasses_end() const {
210    sc_iterator I = SuperClasses;
211    while (*I != NULL) ++I;
212    return I;
213  }
214
215  /// isASubClass - return true if this TargetRegisterClass is a subset
216  /// class of at least one other TargetRegisterClass.
217  bool isASubClass() const {
218    return SuperClasses[0] != 0;
219  }
220
221  /// allocation_order_begin/end - These methods define a range of registers
222  /// which specify the registers in this class that are valid to register
223  /// allocate, and the preferred order to allocate them in.  For example,
224  /// callee saved registers should be at the end of the list, because it is
225  /// cheaper to allocate caller saved registers.
226  ///
227  /// These methods take a MachineFunction argument, which can be used to tune
228  /// the allocatable registers based on the characteristics of the function.
229  /// One simple example is that the frame pointer register can be used if
230  /// frame-pointer-elimination is performed.
231  ///
232  /// By default, these methods return all registers in the class.
233  ///
234  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
235    return begin();
236  }
237  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
238    return end();
239  }
240
241  /// getSize - Return the size of the register in bytes, which is also the size
242  /// of a stack slot allocated to hold a spilled copy of this register.
243  unsigned getSize() const { return RegSize; }
244
245  /// getAlignment - Return the minimum required alignment for a register of
246  /// this class.
247  unsigned getAlignment() const { return Alignment; }
248
249  /// getCopyCost - Return the cost of copying a value between two registers in
250  /// this class. A negative number means the register class is very expensive
251  /// to copy e.g. status flag register classes.
252  int getCopyCost() const { return CopyCost; }
253};
254
255
256/// TargetRegisterInfo base class - We assume that the target defines a static
257/// array of TargetRegisterDesc objects that represent all of the machine
258/// registers that the target has.  As such, we simply have to track a pointer
259/// to this array so that we can turn register number into a register
260/// descriptor.
261///
262class TargetRegisterInfo {
263protected:
264  const unsigned* SubregHash;
265  const unsigned SubregHashSize;
266  const unsigned* SuperregHash;
267  const unsigned SuperregHashSize;
268  const unsigned* AliasesHash;
269  const unsigned AliasesHashSize;
270public:
271  typedef const TargetRegisterClass * const * regclass_iterator;
272private:
273  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
274  unsigned NumRegs;                           // Number of entries in the array
275
276  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
277
278  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
279protected:
280  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
281                     regclass_iterator RegClassBegin,
282                     regclass_iterator RegClassEnd,
283                     int CallFrameSetupOpcode = -1,
284                     int CallFrameDestroyOpcode = -1,
285                     const unsigned* subregs = 0,
286                     const unsigned subregsize = 0,
287		     const unsigned* superregs = 0,
288		     const unsigned superregsize = 0,
289		     const unsigned* aliases = 0,
290		     const unsigned aliasessize = 0);
291  virtual ~TargetRegisterInfo();
292public:
293
294  enum {                        // Define some target independent constants
295    /// NoRegister - This physical register is not a real target register.  It
296    /// is useful as a sentinal.
297    NoRegister = 0,
298
299    /// FirstVirtualRegister - This is the first register number that is
300    /// considered to be a 'virtual' register, which is part of the SSA
301    /// namespace.  This must be the same for all targets, which means that each
302    /// target is limited to 1024 registers.
303    FirstVirtualRegister = 1024
304  };
305
306  /// isPhysicalRegister - Return true if the specified register number is in
307  /// the physical register namespace.
308  static bool isPhysicalRegister(unsigned Reg) {
309    assert(Reg && "this is not a register!");
310    return Reg < FirstVirtualRegister;
311  }
312
313  /// isVirtualRegister - Return true if the specified register number is in
314  /// the virtual register namespace.
315  static bool isVirtualRegister(unsigned Reg) {
316    assert(Reg && "this is not a register!");
317    return Reg >= FirstVirtualRegister;
318  }
319
320  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
321  /// register of the given type. If type is MVT::Other, then just return any
322  /// register class the register belongs to.
323  virtual const TargetRegisterClass *
324    getPhysicalRegisterRegClass(unsigned Reg, MVT VT = MVT::Other) const;
325
326  /// getAllocatableSet - Returns a bitset indexed by register number
327  /// indicating if a register is allocatable or not. If a register class is
328  /// specified, returns the subset for the class.
329  BitVector getAllocatableSet(MachineFunction &MF,
330                              const TargetRegisterClass *RC = NULL) const;
331
332  const TargetRegisterDesc &operator[](unsigned RegNo) const {
333    assert(RegNo < NumRegs &&
334           "Attempting to access record for invalid register number!");
335    return Desc[RegNo];
336  }
337
338  /// Provide a get method, equivalent to [], but more useful if we have a
339  /// pointer to this object.
340  ///
341  const TargetRegisterDesc &get(unsigned RegNo) const {
342    return operator[](RegNo);
343  }
344
345  /// getAliasSet - Return the set of registers aliased by the specified
346  /// register, or a null list of there are none.  The list returned is zero
347  /// terminated.
348  ///
349  const unsigned *getAliasSet(unsigned RegNo) const {
350    return get(RegNo).AliasSet;
351  }
352
353  /// getSubRegisters - Return the list of registers that are sub-registers of
354  /// the specified register, or a null list of there are none. The list
355  /// returned is zero terminated and sorted according to super-sub register
356  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
357  ///
358  const unsigned *getSubRegisters(unsigned RegNo) const {
359    return get(RegNo).SubRegs;
360  }
361
362  /// getSuperRegisters - Return the list of registers that are super-registers
363  /// of the specified register, or a null list of there are none. The list
364  /// returned is zero terminated and sorted according to super-sub register
365  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
366  ///
367  const unsigned *getSuperRegisters(unsigned RegNo) const {
368    return get(RegNo).SuperRegs;
369  }
370
371  /// getAsmName - Return the symbolic target-specific name for the
372  /// specified physical register.
373  const char *getAsmName(unsigned RegNo) const {
374    return get(RegNo).AsmName;
375  }
376
377  /// getName - Return the human-readable symbolic target-specific name for the
378  /// specified physical register.
379  const char *getName(unsigned RegNo) const {
380    return get(RegNo).Name;
381  }
382
383  /// getNumRegs - Return the number of registers this target has (useful for
384  /// sizing arrays holding per register information)
385  unsigned getNumRegs() const {
386    return NumRegs;
387  }
388
389  /// areAliases - Returns true if the two registers alias each other, false
390  /// otherwise
391  bool areAliases(unsigned regA, unsigned regB) const {
392    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
393    unsigned ProbeAmt = 0;
394    while (AliasesHash[index*2] != 0 &&
395	   AliasesHash[index*2+1] != 0) {
396      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
397	return true;
398
399      index = (index + ProbeAmt) & (AliasesHashSize-1);
400      ProbeAmt += 2;
401    }
402
403    return false;
404  }
405
406  /// regsOverlap - Returns true if the two registers are equal or alias each
407  /// other. The registers may be virtual register.
408  bool regsOverlap(unsigned regA, unsigned regB) const {
409    if (regA == regB)
410      return true;
411
412    if (isVirtualRegister(regA) || isVirtualRegister(regB))
413      return false;
414    return areAliases(regA, regB);
415  }
416
417  /// isSubRegister - Returns true if regB is a sub-register of regA.
418  ///
419  bool isSubRegister(unsigned regA, unsigned regB) const {
420    // SubregHash is a simple quadratically probed hash table.
421    size_t index = (regA + regB * 37) & (SubregHashSize-1);
422    unsigned ProbeAmt = 2;
423    while (SubregHash[index*2] != 0 &&
424           SubregHash[index*2+1] != 0) {
425      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
426        return true;
427
428      index = (index + ProbeAmt) & (SubregHashSize-1);
429      ProbeAmt += 2;
430    }
431
432    return false;
433  }
434
435  /// isSuperRegister - Returns true if regB is a super-register of regA.
436  ///
437  bool isSuperRegister(unsigned regA, unsigned regB) const {
438    // SuperregHash is a simple quadratically probed hash table.
439    size_t index = (regA + regB * 37) & (SuperregHashSize-1);
440    unsigned ProbeAmt = 2;
441    while (SuperregHash[index*2] != 0 &&
442           SuperregHash[index*2+1] != 0) {
443      if (SuperregHash[index*2] == regA && SuperregHash[index*2+1] == regB)
444        return true;
445
446      index = (index + ProbeAmt) & (SuperregHashSize-1);
447      ProbeAmt += 2;
448    }
449
450    return false;
451  }
452
453  /// getCalleeSavedRegs - Return a null-terminated list of all of the
454  /// callee saved registers on this target. The register should be in the
455  /// order of desired callee-save stack frame offset. The first register is
456  /// closed to the incoming stack pointer if stack grows down, and vice versa.
457  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
458                                                                      const = 0;
459
460  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
461  /// register classes to spill each callee saved register with.  The order and
462  /// length of this list match the getCalleeSaveRegs() list.
463  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
464                                            const MachineFunction *MF) const =0;
465
466  /// getReservedRegs - Returns a bitset indexed by physical register number
467  /// indicating if a register is a special register that has particular uses
468  /// and should be considered unavailable at all times, e.g. SP, RA. This is
469  /// used by register scavenger to determine what registers are free.
470  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
471
472  /// getSubReg - Returns the physical register number of sub-register "Index"
473  /// for physical register RegNo. Return zero if the sub-register does not
474  /// exist.
475  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
476
477  /// getMatchingSuperReg - Return a super-register of the specified register
478  /// Reg so its sub-register of index SubIdx is Reg.
479  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
480                               const TargetRegisterClass *RC) const {
481    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
482      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
483        return SR;
484    return 0;
485  }
486
487  //===--------------------------------------------------------------------===//
488  // Register Class Information
489  //
490
491  /// Register class iterators
492  ///
493  regclass_iterator regclass_begin() const { return RegClassBegin; }
494  regclass_iterator regclass_end() const { return RegClassEnd; }
495
496  unsigned getNumRegClasses() const {
497    return (unsigned)(regclass_end()-regclass_begin());
498  }
499
500  /// getRegClass - Returns the register class associated with the enumeration
501  /// value.  See class TargetOperandInfo.
502  const TargetRegisterClass *getRegClass(unsigned i) const {
503    assert(i <= getNumRegClasses() && "Register Class ID out of range");
504    return i ? RegClassBegin[i - 1] : NULL;
505  }
506
507  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
508  /// values.
509  virtual const TargetRegisterClass *getPointerRegClass() const {
510    assert(0 && "Target didn't implement getPointerRegClass!");
511    return 0; // Must return a value in order to compile with VS 2005
512  }
513
514  /// getCrossCopyRegClass - Returns a legal register class to copy a register
515  /// in the specified class to or from. Returns NULL if it is possible to copy
516  /// between a two registers of the specified class.
517  virtual const TargetRegisterClass *
518  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
519    return NULL;
520  }
521
522  /// targetHandlesStackFrameRounding - Returns true if the target is
523  /// responsible for rounding up the stack frame (probably at emitPrologue
524  /// time).
525  virtual bool targetHandlesStackFrameRounding() const {
526    return false;
527  }
528
529  /// requiresRegisterScavenging - returns true if the target requires (and can
530  /// make use of) the register scavenger.
531  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
532    return false;
533  }
534
535  /// hasFP - Return true if the specified function should have a dedicated
536  /// frame pointer register. For most targets this is true only if the function
537  /// has variable sized allocas or if frame pointer elimination is disabled.
538  virtual bool hasFP(const MachineFunction &MF) const = 0;
539
540  // hasReservedCallFrame - Under normal circumstances, when a frame pointer is
541  // not required, we reserve argument space for call sites in the function
542  // immediately on entry to the current function. This eliminates the need for
543  // add/sub sp brackets around call sites. Returns true if the call frame is
544  // included as part of the stack frame.
545  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
546    return !hasFP(MF);
547  }
548
549  // needsStackRealignment - true if storage within the function requires the
550  // stack pointer to be aligned more than the normal calling convention calls
551  // for.
552  virtual bool needsStackRealignment(const MachineFunction &MF) const {
553    return false;
554  }
555
556  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
557  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
558  /// targets use pseudo instructions in order to abstract away the difference
559  /// between operating with a frame pointer and operating without, through the
560  /// use of these two instructions.
561  ///
562  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
563  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
564
565  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
566  /// code insertion to eliminate call frame setup and destroy pseudo
567  /// instructions (but only if the Target is using them).  It is responsible
568  /// for eliminating these instructions, replacing them with concrete
569  /// instructions.  This method need only be implemented if using call frame
570  /// setup/destroy pseudo instructions.
571  ///
572  virtual void
573  eliminateCallFramePseudoInstr(MachineFunction &MF,
574                                MachineBasicBlock &MBB,
575                                MachineBasicBlock::iterator MI) const {
576    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
577           "eliminateCallFramePseudoInstr must be implemented if using"
578           " call frame setup/destroy pseudo instructions!");
579    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
580  }
581
582  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
583  /// before PrologEpilogInserter scans the physical registers used to determine
584  /// what callee saved registers should be spilled. This method is optional.
585  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
586                                                RegScavenger *RS = NULL) const {
587
588  }
589
590  /// processFunctionBeforeFrameFinalized - This method is called immediately
591  /// before the specified functions frame layout (MF.getFrameInfo()) is
592  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
593  /// replaced with direct constants.  This method is optional.
594  ///
595  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
596  }
597
598  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
599  /// frame indices from instructions which may use them.  The instruction
600  /// referenced by the iterator contains an MO_FrameIndex operand which must be
601  /// eliminated by this method.  This method may modify or replace the
602  /// specified instruction, as long as it keeps the iterator pointing the the
603  /// finished product. SPAdj is the SP adjustment due to call frame setup
604  /// instruction.
605  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
606                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
607
608  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
609  /// the function.
610  virtual void emitPrologue(MachineFunction &MF) const = 0;
611  virtual void emitEpilogue(MachineFunction &MF,
612                            MachineBasicBlock &MBB) const = 0;
613
614  //===--------------------------------------------------------------------===//
615  /// Debug information queries.
616
617  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
618  /// number.  Returns -1 if there is no equivalent value.  The second
619  /// parameter allows targets to use different numberings for EH info and
620  /// debugging info.
621  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
622
623  /// getFrameRegister - This method should return the register used as a base
624  /// for values allocated in the current stack frame.
625  virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
626
627  /// getFrameIndexOffset - Returns the displacement from the frame register to
628  /// the stack frame of the specified index.
629  virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
630
631  /// getRARegister - This method should return the register where the return
632  /// address can be found.
633  virtual unsigned getRARegister() const = 0;
634
635  /// getInitialFrameState - Returns a list of machine moves that are assumed
636  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
637  /// the beginning of the function.)
638  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
639};
640
641
642// This is useful when building IndexedMaps keyed on virtual registers
643struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
644  unsigned operator()(unsigned Reg) const {
645    return Reg - TargetRegisterInfo::FirstVirtualRegister;
646  }
647};
648
649/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
650/// if there is no common subclass.
651const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
652                                             const TargetRegisterClass *B);
653
654} // End llvm namespace
655
656#endif
657