TargetRegisterInfo.h revision e837dead3c8dc3445ef6a0e2322179c57e264a13
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/MC/MCRegisterInfo.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/DenseSet.h"
24#include <cassert>
25#include <functional>
26
27namespace llvm {
28
29class BitVector;
30class MachineFunction;
31class RegScavenger;
32template<class T> class SmallVectorImpl;
33class raw_ostream;
34
35class TargetRegisterClass {
36public:
37  typedef const unsigned* iterator;
38  typedef const unsigned* const_iterator;
39
40  typedef const EVT* vt_iterator;
41  typedef const TargetRegisterClass* const * sc_iterator;
42private:
43  unsigned ID;
44  const char *Name;
45  const vt_iterator VTs;
46  const sc_iterator SubClasses;
47  const sc_iterator SuperClasses;
48  const sc_iterator SubRegClasses;
49  const sc_iterator SuperRegClasses;
50  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
51  const int CopyCost;
52  const bool Allocatable;
53  const iterator RegsBegin, RegsEnd;
54  DenseSet<unsigned> RegSet;
55public:
56  TargetRegisterClass(unsigned id,
57                      const char *name,
58                      const EVT *vts,
59                      const TargetRegisterClass * const *subcs,
60                      const TargetRegisterClass * const *supcs,
61                      const TargetRegisterClass * const *subregcs,
62                      const TargetRegisterClass * const *superregcs,
63                      unsigned RS, unsigned Al, int CC, bool Allocable,
64                      iterator RB, iterator RE)
65    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
66    SubRegClasses(subregcs), SuperRegClasses(superregcs),
67    RegSize(RS), Alignment(Al), CopyCost(CC), Allocatable(Allocable),
68    RegsBegin(RB), RegsEnd(RE) {
69      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
70        RegSet.insert(*I);
71    }
72  virtual ~TargetRegisterClass() {}     // Allow subclasses
73
74  /// getID() - Return the register class ID number.
75  ///
76  unsigned getID() const { return ID; }
77
78  /// getName() - Return the register class name for debugging.
79  ///
80  const char *getName() const { return Name; }
81
82  /// begin/end - Return all of the registers in this class.
83  ///
84  iterator       begin() const { return RegsBegin; }
85  iterator         end() const { return RegsEnd; }
86
87  /// getNumRegs - Return the number of registers in this class.
88  ///
89  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
90
91  /// getRegister - Return the specified register in the class.
92  ///
93  unsigned getRegister(unsigned i) const {
94    assert(i < getNumRegs() && "Register number out of range!");
95    return RegsBegin[i];
96  }
97
98  /// contains - Return true if the specified register is included in this
99  /// register class.  This does not include virtual registers.
100  bool contains(unsigned Reg) const {
101    return RegSet.count(Reg);
102  }
103
104  /// contains - Return true if both registers are in this class.
105  bool contains(unsigned Reg1, unsigned Reg2) const {
106    return contains(Reg1) && contains(Reg2);
107  }
108
109  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
110  ///
111  bool hasType(EVT vt) const {
112    for(int i = 0; VTs[i] != MVT::Other; ++i)
113      if (VTs[i] == vt)
114        return true;
115    return false;
116  }
117
118  /// vt_begin / vt_end - Loop over all of the value types that can be
119  /// represented by values in this register class.
120  vt_iterator vt_begin() const {
121    return VTs;
122  }
123
124  vt_iterator vt_end() const {
125    vt_iterator I = VTs;
126    while (*I != MVT::Other) ++I;
127    return I;
128  }
129
130  /// subregclasses_begin / subregclasses_end - Loop over all of
131  /// the subreg register classes of this register class.
132  sc_iterator subregclasses_begin() const {
133    return SubRegClasses;
134  }
135
136  sc_iterator subregclasses_end() const {
137    sc_iterator I = SubRegClasses;
138    while (*I != NULL) ++I;
139    return I;
140  }
141
142  /// getSubRegisterRegClass - Return the register class of subregisters with
143  /// index SubIdx, or NULL if no such class exists.
144  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
145    assert(SubIdx>0 && "Invalid subregister index");
146    return SubRegClasses[SubIdx-1];
147  }
148
149  /// superregclasses_begin / superregclasses_end - Loop over all of
150  /// the superreg register classes of this register class.
151  sc_iterator superregclasses_begin() const {
152    return SuperRegClasses;
153  }
154
155  sc_iterator superregclasses_end() const {
156    sc_iterator I = SuperRegClasses;
157    while (*I != NULL) ++I;
158    return I;
159  }
160
161  /// hasSubClass - return true if the specified TargetRegisterClass
162  /// is a proper subset of this TargetRegisterClass.
163  bool hasSubClass(const TargetRegisterClass *cs) const {
164    for (int i = 0; SubClasses[i] != NULL; ++i)
165      if (SubClasses[i] == cs)
166        return true;
167    return false;
168  }
169
170  /// hasSubClassEq - Returns true if RC is a subclass of or equal to this
171  /// class.
172  bool hasSubClassEq(const TargetRegisterClass *RC) const {
173    return RC == this || hasSubClass(RC);
174  }
175
176  /// subclasses_begin / subclasses_end - Loop over all of the classes
177  /// that are proper subsets of this register class.
178  sc_iterator subclasses_begin() const {
179    return SubClasses;
180  }
181
182  sc_iterator subclasses_end() const {
183    sc_iterator I = SubClasses;
184    while (*I != NULL) ++I;
185    return I;
186  }
187
188  /// hasSuperClass - return true if the specified TargetRegisterClass is a
189  /// proper superset of this TargetRegisterClass.
190  bool hasSuperClass(const TargetRegisterClass *cs) const {
191    for (int i = 0; SuperClasses[i] != NULL; ++i)
192      if (SuperClasses[i] == cs)
193        return true;
194    return false;
195  }
196
197  /// hasSuperClassEq - Returns true if RC is a superclass of or equal to this
198  /// class.
199  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
200    return RC == this || hasSuperClass(RC);
201  }
202
203  /// superclasses_begin / superclasses_end - Loop over all of the classes
204  /// that are proper supersets of this register class.
205  sc_iterator superclasses_begin() const {
206    return SuperClasses;
207  }
208
209  sc_iterator superclasses_end() const {
210    sc_iterator I = SuperClasses;
211    while (*I != NULL) ++I;
212    return I;
213  }
214
215  /// isASubClass - return true if this TargetRegisterClass is a subset
216  /// class of at least one other TargetRegisterClass.
217  bool isASubClass() const {
218    return SuperClasses[0] != 0;
219  }
220
221  /// getRawAllocationOrder - Returns the preferred order for allocating
222  /// registers from this register class in MF. The raw order comes directly
223  /// from the .td file and may include reserved registers that are not
224  /// allocatable. Register allocators should also make sure to allocate
225  /// callee-saved registers only after all the volatiles are used. The
226  /// RegisterClassInfo class provides filtered allocation orders with
227  /// callee-saved registers moved to the end.
228  ///
229  /// The MachineFunction argument can be used to tune the allocatable
230  /// registers based on the characteristics of the function, subtarget, or
231  /// other criteria.
232  ///
233  /// By default, this method returns all registers in the class.
234  ///
235  virtual
236  ArrayRef<unsigned> getRawAllocationOrder(const MachineFunction &MF) const {
237    return ArrayRef<unsigned>(begin(), getNumRegs());
238  }
239
240  /// getSize - Return the size of the register in bytes, which is also the size
241  /// of a stack slot allocated to hold a spilled copy of this register.
242  unsigned getSize() const { return RegSize; }
243
244  /// getAlignment - Return the minimum required alignment for a register of
245  /// this class.
246  unsigned getAlignment() const { return Alignment; }
247
248  /// getCopyCost - Return the cost of copying a value between two registers in
249  /// this class. A negative number means the register class is very expensive
250  /// to copy e.g. status flag register classes.
251  int getCopyCost() const { return CopyCost; }
252
253  /// isAllocatable - Return true if this register class may be used to create
254  /// virtual registers.
255  bool isAllocatable() const { return Allocatable; }
256};
257
258/// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
259/// registers. These are used by codegen, not by MC.
260struct TargetRegisterInfoDesc {
261  unsigned CostPerUse;          // Extra cost of instructions using register.
262  bool inAllocatableClass;      // Register belongs to an allocatable regclass.
263};
264
265/// TargetRegisterInfo base class - We assume that the target defines a static
266/// array of TargetRegisterDesc objects that represent all of the machine
267/// registers that the target has.  As such, we simply have to track a pointer
268/// to this array so that we can turn register number into a register
269/// descriptor.
270///
271class TargetRegisterInfo : public MCRegisterInfo {
272public:
273  typedef const TargetRegisterClass * const * regclass_iterator;
274private:
275  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
276  const char *const *SubRegIndexNames;        // Names of subreg indexes.
277  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
278  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
279
280protected:
281  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
282                     regclass_iterator RegClassBegin,
283                     regclass_iterator RegClassEnd,
284                     const char *const *subregindexnames,
285                     int CallFrameSetupOpcode = -1,
286                     int CallFrameDestroyOpcode = -1);
287  virtual ~TargetRegisterInfo();
288public:
289
290  // Register numbers can represent physical registers, virtual registers, and
291  // sometimes stack slots. The unsigned values are divided into these ranges:
292  //
293  //   0           Not a register, can be used as a sentinel.
294  //   [1;2^30)    Physical registers assigned by TableGen.
295  //   [2^30;2^31) Stack slots. (Rarely used.)
296  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
297  //
298  // Further sentinels can be allocated from the small negative integers.
299  // DenseMapInfo<unsigned> uses -1u and -2u.
300
301  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
302  /// frame index in a variable that normally holds a register. isStackSlot()
303  /// returns true if Reg is in the range used for stack slots.
304  ///
305  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
306  /// slots, so if a variable may contains a stack slot, always check
307  /// isStackSlot() first.
308  ///
309  static bool isStackSlot(unsigned Reg) {
310    return int(Reg) >= (1 << 30);
311  }
312
313  /// stackSlot2Index - Compute the frame index from a register value
314  /// representing a stack slot.
315  static int stackSlot2Index(unsigned Reg) {
316    assert(isStackSlot(Reg) && "Not a stack slot");
317    return int(Reg - (1u << 30));
318  }
319
320  /// index2StackSlot - Convert a non-negative frame index to a stack slot
321  /// register value.
322  static unsigned index2StackSlot(int FI) {
323    assert(FI >= 0 && "Cannot hold a negative frame index.");
324    return FI + (1u << 30);
325  }
326
327  /// isPhysicalRegister - Return true if the specified register number is in
328  /// the physical register namespace.
329  static bool isPhysicalRegister(unsigned Reg) {
330    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
331    return int(Reg) > 0;
332  }
333
334  /// isVirtualRegister - Return true if the specified register number is in
335  /// the virtual register namespace.
336  static bool isVirtualRegister(unsigned Reg) {
337    assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
338    return int(Reg) < 0;
339  }
340
341  /// virtReg2Index - Convert a virtual register number to a 0-based index.
342  /// The first virtual register in a function will get the index 0.
343  static unsigned virtReg2Index(unsigned Reg) {
344    assert(isVirtualRegister(Reg) && "Not a virtual register");
345    return Reg & ~(1u << 31);
346  }
347
348  /// index2VirtReg - Convert a 0-based index to a virtual register number.
349  /// This is the inverse operation of VirtReg2IndexFunctor below.
350  static unsigned index2VirtReg(unsigned Index) {
351    return Index | (1u << 31);
352  }
353
354  /// getMinimalPhysRegClass - Returns the Register Class of a physical
355  /// register of the given type, picking the most sub register class of
356  /// the right type that contains this physreg.
357  const TargetRegisterClass *
358    getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
359
360  /// getAllocatableSet - Returns a bitset indexed by register number
361  /// indicating if a register is allocatable or not. If a register class is
362  /// specified, returns the subset for the class.
363  BitVector getAllocatableSet(const MachineFunction &MF,
364                              const TargetRegisterClass *RC = NULL) const;
365
366  /// getCostPerUse - Return the additional cost of using this register instead
367  /// of other registers in its class.
368  unsigned getCostPerUse(unsigned RegNo) const {
369    return InfoDesc[RegNo].CostPerUse;
370  }
371
372  /// isInAllocatableClass - Return true if the register is in the allocation
373  /// of any register class.
374  bool isInAllocatableClass(unsigned RegNo) const {
375    return InfoDesc[RegNo].inAllocatableClass;
376  }
377
378  /// getSubRegIndexName - Return the human-readable symbolic target-specific
379  /// name for the specified SubRegIndex.
380  const char *getSubRegIndexName(unsigned SubIdx) const {
381    assert(SubIdx && "This is not a subregister index");
382    return SubRegIndexNames[SubIdx-1];
383  }
384
385  /// regsOverlap - Returns true if the two registers are equal or alias each
386  /// other. The registers may be virtual register.
387  bool regsOverlap(unsigned regA, unsigned regB) const {
388    if (regA == regB) return true;
389    if (isVirtualRegister(regA) || isVirtualRegister(regB))
390      return false;
391    for (const unsigned *regList = getOverlaps(regA)+1; *regList; ++regList) {
392      if (*regList == regB) return true;
393    }
394    return false;
395  }
396
397  /// isSubRegister - Returns true if regB is a sub-register of regA.
398  ///
399  bool isSubRegister(unsigned regA, unsigned regB) const {
400    return isSuperRegister(regB, regA);
401  }
402
403  /// isSuperRegister - Returns true if regB is a super-register of regA.
404  ///
405  bool isSuperRegister(unsigned regA, unsigned regB) const {
406    for (const unsigned *regList = getSuperRegisters(regA); *regList;++regList){
407      if (*regList == regB) return true;
408    }
409    return false;
410  }
411
412  /// getCalleeSavedRegs - Return a null-terminated list of all of the
413  /// callee saved registers on this target. The register should be in the
414  /// order of desired callee-save stack frame offset. The first register is
415  /// closed to the incoming stack pointer if stack grows down, and vice versa.
416  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
417                                                                      const = 0;
418
419
420  /// getReservedRegs - Returns a bitset indexed by physical register number
421  /// indicating if a register is a special register that has particular uses
422  /// and should be considered unavailable at all times, e.g. SP, RA. This is
423  /// used by register scavenger to determine what registers are free.
424  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
425
426  /// getSubReg - Returns the physical register number of sub-register "Index"
427  /// for physical register RegNo. Return zero if the sub-register does not
428  /// exist.
429  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
430
431  /// getSubRegIndex - For a given register pair, return the sub-register index
432  /// if the second register is a sub-register of the first. Return zero
433  /// otherwise.
434  virtual unsigned getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const = 0;
435
436  /// getMatchingSuperReg - Return a super-register of the specified register
437  /// Reg so its sub-register of index SubIdx is Reg.
438  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
439                               const TargetRegisterClass *RC) const {
440    for (const unsigned *SRs = getSuperRegisters(Reg); unsigned SR = *SRs;++SRs)
441      if (Reg == getSubReg(SR, SubIdx) && RC->contains(SR))
442        return SR;
443    return 0;
444  }
445
446  /// canCombineSubRegIndices - Given a register class and a list of
447  /// subregister indices, return true if it's possible to combine the
448  /// subregister indices into one that corresponds to a larger
449  /// subregister. Return the new subregister index by reference. Note the
450  /// new index may be zero if the given subregisters can be combined to
451  /// form the whole register.
452  virtual bool canCombineSubRegIndices(const TargetRegisterClass *RC,
453                                       SmallVectorImpl<unsigned> &SubIndices,
454                                       unsigned &NewSubIdx) const {
455    return 0;
456  }
457
458  /// getMatchingSuperRegClass - Return a subclass of the specified register
459  /// class A so that each register in it has a sub-register of the
460  /// specified sub-register index which is in the specified register class B.
461  virtual const TargetRegisterClass *
462  getMatchingSuperRegClass(const TargetRegisterClass *A,
463                           const TargetRegisterClass *B, unsigned Idx) const {
464    return 0;
465  }
466
467  /// composeSubRegIndices - Return the subregister index you get from composing
468  /// two subregister indices.
469  ///
470  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
471  /// returns c. Note that composeSubRegIndices does not tell you about illegal
472  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
473  /// b, composeSubRegIndices doesn't tell you.
474  ///
475  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
476  /// ssub_0:S0 - ssub_3:S3 subregs.
477  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
478  ///
479  virtual unsigned composeSubRegIndices(unsigned a, unsigned b) const {
480    // This default implementation is correct for most targets.
481    return b;
482  }
483
484  //===--------------------------------------------------------------------===//
485  // Register Class Information
486  //
487
488  /// Register class iterators
489  ///
490  regclass_iterator regclass_begin() const { return RegClassBegin; }
491  regclass_iterator regclass_end() const { return RegClassEnd; }
492
493  unsigned getNumRegClasses() const {
494    return (unsigned)(regclass_end()-regclass_begin());
495  }
496
497  /// getRegClass - Returns the register class associated with the enumeration
498  /// value.  See class MCOperandInfo.
499  const TargetRegisterClass *getRegClass(unsigned i) const {
500    assert(i < getNumRegClasses() && "Register Class ID out of range");
501    return RegClassBegin[i];
502  }
503
504  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
505  /// values.  If a target supports multiple different pointer register classes,
506  /// kind specifies which one is indicated.
507  virtual const TargetRegisterClass *getPointerRegClass(unsigned Kind=0) const {
508    assert(0 && "Target didn't implement getPointerRegClass!");
509    return 0; // Must return a value in order to compile with VS 2005
510  }
511
512  /// getCrossCopyRegClass - Returns a legal register class to copy a register
513  /// in the specified class to or from. If it is possible to copy the register
514  /// directly without using a cross register class copy, return the specified
515  /// RC. Returns NULL if it is not possible to copy between a two registers of
516  /// the specified class.
517  virtual const TargetRegisterClass *
518  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
519    return RC;
520  }
521
522  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
523  /// legal to use in the current sub-target and has the same spill size.
524  /// The returned register class can be used to create virtual registers which
525  /// means that all its registers can be copied and spilled.
526  virtual const TargetRegisterClass*
527  getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
528    /// The default implementation is very conservative and doesn't allow the
529    /// register allocator to inflate register classes.
530    return RC;
531  }
532
533  /// getRegPressureLimit - Return the register pressure "high water mark" for
534  /// the specific register class. The scheduler is in high register pressure
535  /// mode (for the specific register class) if it goes over the limit.
536  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
537                                       MachineFunction &MF) const {
538    return 0;
539  }
540
541  /// getRawAllocationOrder - Returns the register allocation order for a
542  /// specified register class with a target-dependent hint. The returned list
543  /// may contain reserved registers that cannot be allocated.
544  ///
545  /// Register allocators need only call this function to resolve
546  /// target-dependent hints, but it should work without hinting as well.
547  virtual ArrayRef<unsigned>
548  getRawAllocationOrder(const TargetRegisterClass *RC,
549                        unsigned HintType, unsigned HintReg,
550                        const MachineFunction &MF) const {
551    return RC->getRawAllocationOrder(MF);
552  }
553
554  /// ResolveRegAllocHint - Resolves the specified register allocation hint
555  /// to a physical register. Returns the physical register if it is successful.
556  virtual unsigned ResolveRegAllocHint(unsigned Type, unsigned Reg,
557                                       const MachineFunction &MF) const {
558    if (Type == 0 && Reg && isPhysicalRegister(Reg))
559      return Reg;
560    return 0;
561  }
562
563  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
564  /// writing a register from RC in two consecutive instructions.
565  /// This can avoid pipeline stalls on certain architectures.
566  /// It does cause increased register pressure, though.
567  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
568    return false;
569  }
570
571  /// UpdateRegAllocHint - A callback to allow target a chance to update
572  /// register allocation hints when a register is "changed" (e.g. coalesced)
573  /// to another register. e.g. On ARM, some virtual registers should target
574  /// register pairs, if one of pair is coalesced to another register, the
575  /// allocation hint of the other half of the pair should be changed to point
576  /// to the new register.
577  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
578                                  MachineFunction &MF) const {
579    // Do nothing.
580  }
581
582  /// requiresRegisterScavenging - returns true if the target requires (and can
583  /// make use of) the register scavenger.
584  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
585    return false;
586  }
587
588  /// useFPForScavengingIndex - returns true if the target wants to use
589  /// frame pointer based accesses to spill to the scavenger emergency spill
590  /// slot.
591  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
592    return true;
593  }
594
595  /// requiresFrameIndexScavenging - returns true if the target requires post
596  /// PEI scavenging of registers for materializing frame index constants.
597  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
598    return false;
599  }
600
601  /// requiresVirtualBaseRegisters - Returns true if the target wants the
602  /// LocalStackAllocation pass to be run and virtual base registers
603  /// used for more efficient stack access.
604  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
605    return false;
606  }
607
608  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
609  /// the stack frame of the given function for the specified register. e.g. On
610  /// x86, if the frame register is required, the first fixed stack object is
611  /// reserved as its spill slot. This tells PEI not to create a new stack frame
612  /// object for the given register. It should be called only after
613  /// processFunctionBeforeCalleeSavedScan().
614  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
615                                    int &FrameIdx) const {
616    return false;
617  }
618
619  /// needsStackRealignment - true if storage within the function requires the
620  /// stack pointer to be aligned more than the normal calling convention calls
621  /// for.
622  virtual bool needsStackRealignment(const MachineFunction &MF) const {
623    return false;
624  }
625
626  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
627  /// index in the instruction, if there is one.
628  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
629                                           int Idx) const {
630    return 0;
631  }
632
633  /// needsFrameBaseReg - Returns true if the instruction's frame index
634  /// reference would be better served by a base register other than FP
635  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
636  /// references it should create new base registers for.
637  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
638    return false;
639  }
640
641  /// materializeFrameBaseRegister - Insert defining instruction(s) for
642  /// BaseReg to be a pointer to FrameIdx before insertion point I.
643  virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
644                                            unsigned BaseReg, int FrameIdx,
645                                            int64_t Offset) const {
646    assert(0 && "materializeFrameBaseRegister does not exist on this target");
647  }
648
649  /// resolveFrameIndex - Resolve a frame index operand of an instruction
650  /// to reference the indicated base register plus offset instead.
651  virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
652                                 unsigned BaseReg, int64_t Offset) const {
653    assert(0 && "resolveFrameIndex does not exist on this target");
654  }
655
656  /// isFrameOffsetLegal - Determine whether a given offset immediate is
657  /// encodable to resolve a frame index.
658  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
659                                  int64_t Offset) const {
660    assert(0 && "isFrameOffsetLegal does not exist on this target");
661    return false; // Must return a value in order to compile with VS 2005
662  }
663
664  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
665  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
666  /// targets use pseudo instructions in order to abstract away the difference
667  /// between operating with a frame pointer and operating without, through the
668  /// use of these two instructions.
669  ///
670  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
671  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
672
673  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
674  /// code insertion to eliminate call frame setup and destroy pseudo
675  /// instructions (but only if the Target is using them).  It is responsible
676  /// for eliminating these instructions, replacing them with concrete
677  /// instructions.  This method need only be implemented if using call frame
678  /// setup/destroy pseudo instructions.
679  ///
680  virtual void
681  eliminateCallFramePseudoInstr(MachineFunction &MF,
682                                MachineBasicBlock &MBB,
683                                MachineBasicBlock::iterator MI) const {
684    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
685           "eliminateCallFramePseudoInstr must be implemented if using"
686           " call frame setup/destroy pseudo instructions!");
687    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
688  }
689
690
691  /// saveScavengerRegister - Spill the register so it can be used by the
692  /// register scavenger. Return true if the register was spilled, false
693  /// otherwise. If this function does not spill the register, the scavenger
694  /// will instead spill it to the emergency spill slot.
695  ///
696  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
697                                     MachineBasicBlock::iterator I,
698                                     MachineBasicBlock::iterator &UseMI,
699                                     const TargetRegisterClass *RC,
700                                     unsigned Reg) const {
701    return false;
702  }
703
704  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
705  /// frame indices from instructions which may use them.  The instruction
706  /// referenced by the iterator contains an MO_FrameIndex operand which must be
707  /// eliminated by this method.  This method may modify or replace the
708  /// specified instruction, as long as it keeps the iterator pointing at the
709  /// finished product. SPAdj is the SP adjustment due to call frame setup
710  /// instruction.
711  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
712                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
713
714  //===--------------------------------------------------------------------===//
715  /// Debug information queries.
716
717  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
718  /// number.  Returns -1 if there is no equivalent value.  The second
719  /// parameter allows targets to use different numberings for EH info and
720  /// debugging info.
721  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
722
723  virtual int getLLVMRegNum(unsigned RegNum, bool isEH) const = 0;
724
725  /// getFrameRegister - This method should return the register used as a base
726  /// for values allocated in the current stack frame.
727  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
728
729  /// getRARegister - This method should return the register where the return
730  /// address can be found.
731  virtual unsigned getRARegister() const = 0;
732
733  /// getSEHRegNum - Map a target register to an equivalent SEH register
734  /// number.  Returns -1 if there is no equivalent value.
735  virtual int getSEHRegNum(unsigned i) const {
736    return i;
737  }
738};
739
740
741// This is useful when building IndexedMaps keyed on virtual registers
742struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
743  unsigned operator()(unsigned Reg) const {
744    return TargetRegisterInfo::virtReg2Index(Reg);
745  }
746};
747
748/// getCommonSubClass - find the largest common subclass of A and B. Return NULL
749/// if there is no common subclass.
750const TargetRegisterClass *getCommonSubClass(const TargetRegisterClass *A,
751                                             const TargetRegisterClass *B);
752
753/// PrintReg - Helper class for printing registers on a raw_ostream.
754/// Prints virtual and physical registers with or without a TRI instance.
755///
756/// The format is:
757///   %noreg          - NoRegister
758///   %vreg5          - a virtual register.
759///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
760///   %EAX            - a physical register
761///   %physreg17      - a physical register when no TRI instance given.
762///
763/// Usage: OS << PrintReg(Reg, TRI) << '\n';
764///
765class PrintReg {
766  const TargetRegisterInfo *TRI;
767  unsigned Reg;
768  unsigned SubIdx;
769public:
770  PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0, unsigned subidx = 0)
771    : TRI(tri), Reg(reg), SubIdx(subidx) {}
772  void print(raw_ostream&) const;
773};
774
775static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
776  PR.print(OS);
777  return OS;
778}
779
780} // End llvm namespace
781
782#endif
783