TargetRegisterInfo.h revision fa4677b483b85217ac216f7e8d401c40cbe348aa
1//=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes an abstract interface used to get information about a
11// target machines register file.  This information is used for a variety of
12// purposed, especially register allocation.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17#define LLVM_TARGET_TARGETREGISTERINFO_H
18
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/ValueTypes.h"
21#include "llvm/ADT/DenseSet.h"
22#include <cassert>
23#include <functional>
24
25namespace llvm {
26
27class BitVector;
28class MachineFunction;
29class MachineMove;
30class RegScavenger;
31
32/// TargetRegisterDesc - This record contains all of the information known about
33/// a particular register.  The AliasSet field (if not null) contains a pointer
34/// to a Zero terminated array of registers that this register aliases.  This is
35/// needed for architectures like X86 which have AL alias AX alias EAX.
36/// Registers that this does not apply to simply should set this to null.
37/// The SubRegs field is a zero terminated array of registers that are
38/// sub-registers of the specific register, e.g. AL, AH are sub-registers of AX.
39/// The SuperRegs field is a zero terminated array of registers that are
40/// super-registers of the specific register, e.g. RAX, EAX, are super-registers
41/// of AX.
42///
43struct TargetRegisterDesc {
44  const char     *AsmName;      // Assembly language name for the register
45  const char     *Name;         // Printable name for the reg (for debugging)
46  const unsigned *AliasSet;     // Register Alias Set, described above
47  const unsigned *SubRegs;      // Sub-register set, described above
48  const unsigned *SuperRegs;    // Super-register set, described above
49};
50
51class TargetRegisterClass {
52public:
53  typedef const unsigned* iterator;
54  typedef const unsigned* const_iterator;
55
56  typedef const MVT* vt_iterator;
57  typedef const TargetRegisterClass* const * sc_iterator;
58private:
59  unsigned ID;
60  const char *Name;
61  const vt_iterator VTs;
62  const sc_iterator SubClasses;
63  const sc_iterator SuperClasses;
64  const sc_iterator SubRegClasses;
65  const sc_iterator SuperRegClasses;
66  const unsigned RegSize, Alignment;    // Size & Alignment of register in bytes
67  const int CopyCost;
68  const iterator RegsBegin, RegsEnd;
69  DenseSet<unsigned> RegSet;
70public:
71  TargetRegisterClass(unsigned id,
72                      const char *name,
73                      const MVT *vts,
74                      const TargetRegisterClass * const *subcs,
75                      const TargetRegisterClass * const *supcs,
76                      const TargetRegisterClass * const *subregcs,
77                      const TargetRegisterClass * const *superregcs,
78                      unsigned RS, unsigned Al, int CC,
79                      iterator RB, iterator RE)
80    : ID(id), Name(name), VTs(vts), SubClasses(subcs), SuperClasses(supcs),
81    SubRegClasses(subregcs), SuperRegClasses(superregcs),
82    RegSize(RS), Alignment(Al), CopyCost(CC), RegsBegin(RB), RegsEnd(RE) {
83      for (iterator I = RegsBegin, E = RegsEnd; I != E; ++I)
84        RegSet.insert(*I);
85    }
86  virtual ~TargetRegisterClass() {}     // Allow subclasses
87
88  /// getID() - Return the register class ID number.
89  ///
90  unsigned getID() const { return ID; }
91
92  /// getName() - Return the register class name for debugging.
93  ///
94  const char *getName() const { return Name; }
95
96  /// begin/end - Return all of the registers in this class.
97  ///
98  iterator       begin() const { return RegsBegin; }
99  iterator         end() const { return RegsEnd; }
100
101  /// getNumRegs - Return the number of registers in this class.
102  ///
103  unsigned getNumRegs() const { return (unsigned)(RegsEnd-RegsBegin); }
104
105  /// getRegister - Return the specified register in the class.
106  ///
107  unsigned getRegister(unsigned i) const {
108    assert(i < getNumRegs() && "Register number out of range!");
109    return RegsBegin[i];
110  }
111
112  /// contains - Return true if the specified register is included in this
113  /// register class.
114  bool contains(unsigned Reg) const {
115    return RegSet.count(Reg);
116  }
117
118  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
119  ///
120  bool hasType(MVT vt) const {
121    for(int i = 0; VTs[i] != MVT::Other; ++i)
122      if (VTs[i] == vt)
123        return true;
124    return false;
125  }
126
127  /// vt_begin / vt_end - Loop over all of the value types that can be
128  /// represented by values in this register class.
129  vt_iterator vt_begin() const {
130    return VTs;
131  }
132
133  vt_iterator vt_end() const {
134    vt_iterator I = VTs;
135    while (*I != MVT::Other) ++I;
136    return I;
137  }
138
139  /// subregclasses_begin / subregclasses_end - Loop over all of
140  /// the subreg register classes of this register class.
141  sc_iterator subregclasses_begin() const {
142    return SubRegClasses;
143  }
144
145  sc_iterator subregclasses_end() const {
146    sc_iterator I = SubRegClasses;
147    while (*I != NULL) ++I;
148    return I;
149  }
150
151  /// getSubRegisterRegClass - Return the register class of subregisters with
152  /// index SubIdx, or NULL if no such class exists.
153  const TargetRegisterClass* getSubRegisterRegClass(unsigned SubIdx) const {
154    assert(SubIdx>0 && "Invalid subregister index");
155    for (unsigned s = 0; s != SubIdx-1; ++s)
156      if (!SubRegClasses[s])
157        return NULL;
158    return SubRegClasses[SubIdx-1];
159  }
160
161  /// superregclasses_begin / superregclasses_end - Loop over all of
162  /// the superreg register classes of this register class.
163  sc_iterator superregclasses_begin() const {
164    return SuperRegClasses;
165  }
166
167  sc_iterator superregclasses_end() const {
168    sc_iterator I = SuperRegClasses;
169    while (*I != NULL) ++I;
170    return I;
171  }
172
173  /// hasSubClass - return true if the the specified TargetRegisterClass
174  /// is a proper subset of this TargetRegisterClass.
175  bool hasSubClass(const TargetRegisterClass *cs) const {
176    for (int i = 0; SubClasses[i] != NULL; ++i)
177      if (SubClasses[i] == cs)
178        return true;
179    return false;
180  }
181
182  /// subclasses_begin / subclasses_end - Loop over all of the classes
183  /// that are proper subsets of this register class.
184  sc_iterator subclasses_begin() const {
185    return SubClasses;
186  }
187
188  sc_iterator subclasses_end() const {
189    sc_iterator I = SubClasses;
190    while (*I != NULL) ++I;
191    return I;
192  }
193
194  /// hasSuperClass - return true if the specified TargetRegisterClass is a
195  /// proper superset of this TargetRegisterClass.
196  bool hasSuperClass(const TargetRegisterClass *cs) const {
197    for (int i = 0; SuperClasses[i] != NULL; ++i)
198      if (SuperClasses[i] == cs)
199        return true;
200    return false;
201  }
202
203  /// superclasses_begin / superclasses_end - Loop over all of the classes
204  /// that are proper supersets of this register class.
205  sc_iterator superclasses_begin() const {
206    return SuperClasses;
207  }
208
209  sc_iterator superclasses_end() const {
210    sc_iterator I = SuperClasses;
211    while (*I != NULL) ++I;
212    return I;
213  }
214
215  /// isASubClass - return true if this TargetRegisterClass is a subset
216  /// class of at least one other TargetRegisterClass.
217  bool isASubClass() const {
218    return SuperClasses[0] != 0;
219  }
220
221  /// allocation_order_begin/end - These methods define a range of registers
222  /// which specify the registers in this class that are valid to register
223  /// allocate, and the preferred order to allocate them in.  For example,
224  /// callee saved registers should be at the end of the list, because it is
225  /// cheaper to allocate caller saved registers.
226  ///
227  /// These methods take a MachineFunction argument, which can be used to tune
228  /// the allocatable registers based on the characteristics of the function.
229  /// One simple example is that the frame pointer register can be used if
230  /// frame-pointer-elimination is performed.
231  ///
232  /// By default, these methods return all registers in the class.
233  ///
234  virtual iterator allocation_order_begin(const MachineFunction &MF) const {
235    return begin();
236  }
237  virtual iterator allocation_order_end(const MachineFunction &MF)   const {
238    return end();
239  }
240
241
242
243  /// getSize - Return the size of the register in bytes, which is also the size
244  /// of a stack slot allocated to hold a spilled copy of this register.
245  unsigned getSize() const { return RegSize; }
246
247  /// getAlignment - Return the minimum required alignment for a register of
248  /// this class.
249  unsigned getAlignment() const { return Alignment; }
250
251  /// getCopyCost - Return the cost of copying a value between two registers in
252  /// this class. A negative number means the register class is very expensive
253  /// to copy e.g. status flag register classes.
254  int getCopyCost() const { return CopyCost; }
255};
256
257
258/// TargetRegisterInfo base class - We assume that the target defines a static
259/// array of TargetRegisterDesc objects that represent all of the machine
260/// registers that the target has.  As such, we simply have to track a pointer
261/// to this array so that we can turn register number into a register
262/// descriptor.
263///
264class TargetRegisterInfo {
265protected:
266  const unsigned* SubregHash;
267  const unsigned SubregHashSize;
268  const unsigned* SuperregHash;
269  const unsigned SuperregHashSize;
270  const unsigned* AliasesHash;
271  const unsigned AliasesHashSize;
272public:
273  typedef const TargetRegisterClass * const * regclass_iterator;
274private:
275  const TargetRegisterDesc *Desc;             // Pointer to the descriptor array
276  unsigned NumRegs;                           // Number of entries in the array
277
278  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
279
280  int CallFrameSetupOpcode, CallFrameDestroyOpcode;
281protected:
282  TargetRegisterInfo(const TargetRegisterDesc *D, unsigned NR,
283                     regclass_iterator RegClassBegin,
284                     regclass_iterator RegClassEnd,
285                     int CallFrameSetupOpcode = -1,
286                     int CallFrameDestroyOpcode = -1,
287                     const unsigned* subregs = 0,
288                     const unsigned subregsize = 0,
289		     const unsigned* superregs = 0,
290		     const unsigned superregsize = 0,
291		     const unsigned* aliases = 0,
292		     const unsigned aliasessize = 0);
293  virtual ~TargetRegisterInfo();
294public:
295
296  enum {                        // Define some target independent constants
297    /// NoRegister - This physical register is not a real target register.  It
298    /// is useful as a sentinal.
299    NoRegister = 0,
300
301    /// FirstVirtualRegister - This is the first register number that is
302    /// considered to be a 'virtual' register, which is part of the SSA
303    /// namespace.  This must be the same for all targets, which means that each
304    /// target is limited to 1024 registers.
305    FirstVirtualRegister = 1024
306  };
307
308  /// isPhysicalRegister - Return true if the specified register number is in
309  /// the physical register namespace.
310  static bool isPhysicalRegister(unsigned Reg) {
311    assert(Reg && "this is not a register!");
312    return Reg < FirstVirtualRegister;
313  }
314
315  /// isVirtualRegister - Return true if the specified register number is in
316  /// the virtual register namespace.
317  static bool isVirtualRegister(unsigned Reg) {
318    assert(Reg && "this is not a register!");
319    return Reg >= FirstVirtualRegister;
320  }
321
322  /// getPhysicalRegisterRegClass - Returns the Register Class of a physical
323  /// register of the given type. If type is MVT::Other, then just return any
324  /// register class the register belongs to.
325  virtual const TargetRegisterClass *
326    getPhysicalRegisterRegClass(unsigned Reg, MVT VT = MVT::Other) const;
327
328  /// getAllocatableSet - Returns a bitset indexed by register number
329  /// indicating if a register is allocatable or not. If a register class is
330  /// specified, returns the subset for the class.
331  BitVector getAllocatableSet(MachineFunction &MF,
332                              const TargetRegisterClass *RC = NULL) const;
333
334  const TargetRegisterDesc &operator[](unsigned RegNo) const {
335    assert(RegNo < NumRegs &&
336           "Attempting to access record for invalid register number!");
337    return Desc[RegNo];
338  }
339
340  /// Provide a get method, equivalent to [], but more useful if we have a
341  /// pointer to this object.
342  ///
343  const TargetRegisterDesc &get(unsigned RegNo) const {
344    return operator[](RegNo);
345  }
346
347  /// getAliasSet - Return the set of registers aliased by the specified
348  /// register, or a null list of there are none.  The list returned is zero
349  /// terminated.
350  ///
351  const unsigned *getAliasSet(unsigned RegNo) const {
352    return get(RegNo).AliasSet;
353  }
354
355  /// getSubRegisters - Return the list of registers that are sub-registers of
356  /// the specified register, or a null list of there are none. The list
357  /// returned is zero terminated and sorted according to super-sub register
358  /// relations. e.g. X86::RAX's sub-register list is EAX, AX, AL, AH.
359  ///
360  const unsigned *getSubRegisters(unsigned RegNo) const {
361    return get(RegNo).SubRegs;
362  }
363
364  /// getSuperRegisters - Return the list of registers that are super-registers
365  /// of the specified register, or a null list of there are none. The list
366  /// returned is zero terminated and sorted according to super-sub register
367  /// relations. e.g. X86::AL's super-register list is RAX, EAX, AX.
368  ///
369  const unsigned *getSuperRegisters(unsigned RegNo) const {
370    return get(RegNo).SuperRegs;
371  }
372
373  /// getAsmName - Return the symbolic target-specific name for the
374  /// specified physical register.
375  const char *getAsmName(unsigned RegNo) const {
376    return get(RegNo).AsmName;
377  }
378
379  /// getName - Return the human-readable symbolic target-specific name for the
380  /// specified physical register.
381  const char *getName(unsigned RegNo) const {
382    return get(RegNo).Name;
383  }
384
385  /// getNumRegs - Return the number of registers this target has (useful for
386  /// sizing arrays holding per register information)
387  unsigned getNumRegs() const {
388    return NumRegs;
389  }
390
391  /// areAliases - Returns true if the two registers alias each other, false
392  /// otherwise
393  bool areAliases(unsigned regA, unsigned regB) const {
394    size_t index = (regA + regB * 37) & (AliasesHashSize-1);
395    unsigned ProbeAmt = 0;
396    while (AliasesHash[index*2] != 0 &&
397	   AliasesHash[index*2+1] != 0) {
398      if (AliasesHash[index*2] == regA && AliasesHash[index*2+1] == regB)
399	return true;
400
401      index = (index + ProbeAmt) & (AliasesHashSize-1);
402      ProbeAmt += 2;
403    }
404
405    return false;
406  }
407
408  /// regsOverlap - Returns true if the two registers are equal or alias each
409  /// other. The registers may be virtual register.
410  bool regsOverlap(unsigned regA, unsigned regB) const {
411    if (regA == regB)
412      return true;
413
414    if (isVirtualRegister(regA) || isVirtualRegister(regB))
415      return false;
416    return areAliases(regA, regB);
417  }
418
419  /// isSubRegister - Returns true if regB is a sub-register of regA.
420  ///
421  bool isSubRegister(unsigned regA, unsigned regB) const {
422    // SubregHash is a simple quadratically probed hash table.
423    size_t index = (regA + regB * 37) & (SubregHashSize-1);
424    unsigned ProbeAmt = 2;
425    while (SubregHash[index*2] != 0 &&
426           SubregHash[index*2+1] != 0) {
427      if (SubregHash[index*2] == regA && SubregHash[index*2+1] == regB)
428        return true;
429
430      index = (index + ProbeAmt) & (SubregHashSize-1);
431      ProbeAmt += 2;
432    }
433
434    return false;
435  }
436
437  /// isSuperRegister - Returns true if regB is a super-register of regA.
438  ///
439  bool isSuperRegister(unsigned regA, unsigned regB) const {
440    // SuperregHash is a simple quadratically probed hash table.
441    size_t index = (regA + regB * 37) & (SuperregHashSize-1);
442    unsigned ProbeAmt = 2;
443    while (SuperregHash[index*2] != 0 &&
444           SuperregHash[index*2+1] != 0) {
445      if (SuperregHash[index*2] == regA && SuperregHash[index*2+1] == regB)
446        return true;
447
448      index = (index + ProbeAmt) & (SuperregHashSize-1);
449      ProbeAmt += 2;
450    }
451
452    return false;
453  }
454
455  /// getCalleeSavedRegs - Return a null-terminated list of all of the
456  /// callee saved registers on this target. The register should be in the
457  /// order of desired callee-save stack frame offset. The first register is
458  /// closed to the incoming stack pointer if stack grows down, and vice versa.
459  virtual const unsigned* getCalleeSavedRegs(const MachineFunction *MF = 0)
460                                                                      const = 0;
461
462  /// getCalleeSavedRegClasses - Return a null-terminated list of the preferred
463  /// register classes to spill each callee saved register with.  The order and
464  /// length of this list match the getCalleeSaveRegs() list.
465  virtual const TargetRegisterClass* const *getCalleeSavedRegClasses(
466                                            const MachineFunction *MF) const =0;
467
468  /// getReservedRegs - Returns a bitset indexed by physical register number
469  /// indicating if a register is a special register that has particular uses
470  /// and should be considered unavailable at all times, e.g. SP, RA. This is
471  /// used by register scavenger to determine what registers are free.
472  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
473
474  /// getSubReg - Returns the physical register number of sub-register "Index"
475  /// for physical register RegNo. Return zero if the sub-register does not
476  /// exist.
477  virtual unsigned getSubReg(unsigned RegNo, unsigned Index) const = 0;
478
479  //===--------------------------------------------------------------------===//
480  // Register Class Information
481  //
482
483  /// Register class iterators
484  ///
485  regclass_iterator regclass_begin() const { return RegClassBegin; }
486  regclass_iterator regclass_end() const { return RegClassEnd; }
487
488  unsigned getNumRegClasses() const {
489    return (unsigned)(regclass_end()-regclass_begin());
490  }
491
492  /// getRegClass - Returns the register class associated with the enumeration
493  /// value.  See class TargetOperandInfo.
494  const TargetRegisterClass *getRegClass(unsigned i) const {
495    assert(i <= getNumRegClasses() && "Register Class ID out of range");
496    return i ? RegClassBegin[i - 1] : NULL;
497  }
498
499  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
500  /// values.
501  virtual const TargetRegisterClass *getPointerRegClass() const {
502    assert(0 && "Target didn't implement getPointerRegClass!");
503    return 0; // Must return a value in order to compile with VS 2005
504  }
505
506  /// getCrossCopyRegClass - Returns a legal register class to copy a register
507  /// in the specified class to or from. Returns NULL if it is possible to copy
508  /// between a two registers of the specified class.
509  virtual const TargetRegisterClass *
510  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
511    return NULL;
512  }
513
514  /// targetHandlesStackFrameRounding - Returns true if the target is
515  /// responsible for rounding up the stack frame (probably at emitPrologue
516  /// time).
517  virtual bool targetHandlesStackFrameRounding() const {
518    return false;
519  }
520
521  /// requiresRegisterScavenging - returns true if the target requires (and can
522  /// make use of) the register scavenger.
523  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
524    return false;
525  }
526
527  /// hasFP - Return true if the specified function should have a dedicated
528  /// frame pointer register. For most targets this is true only if the function
529  /// has variable sized allocas or if frame pointer elimination is disabled.
530  virtual bool hasFP(const MachineFunction &MF) const = 0;
531
532  // hasReservedCallFrame - Under normal circumstances, when a frame pointer is
533  // not required, we reserve argument space for call sites in the function
534  // immediately on entry to the current function. This eliminates the need for
535  // add/sub sp brackets around call sites. Returns true if the call frame is
536  // included as part of the stack frame.
537  virtual bool hasReservedCallFrame(MachineFunction &MF) const {
538    return !hasFP(MF);
539  }
540
541  // needsStackRealignment - true if storage within the function requires the
542  // stack pointer to be aligned more than the normal calling convention calls
543  // for.
544  virtual bool needsStackRealignment(const MachineFunction &MF) const {
545    return false;
546  }
547
548  /// getCallFrameSetup/DestroyOpcode - These methods return the opcode of the
549  /// frame setup/destroy instructions if they exist (-1 otherwise).  Some
550  /// targets use pseudo instructions in order to abstract away the difference
551  /// between operating with a frame pointer and operating without, through the
552  /// use of these two instructions.
553  ///
554  int getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
555  int getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
556
557  /// eliminateCallFramePseudoInstr - This method is called during prolog/epilog
558  /// code insertion to eliminate call frame setup and destroy pseudo
559  /// instructions (but only if the Target is using them).  It is responsible
560  /// for eliminating these instructions, replacing them with concrete
561  /// instructions.  This method need only be implemented if using call frame
562  /// setup/destroy pseudo instructions.
563  ///
564  virtual void
565  eliminateCallFramePseudoInstr(MachineFunction &MF,
566                                MachineBasicBlock &MBB,
567                                MachineBasicBlock::iterator MI) const {
568    assert(getCallFrameSetupOpcode()== -1 && getCallFrameDestroyOpcode()== -1 &&
569           "eliminateCallFramePseudoInstr must be implemented if using"
570           " call frame setup/destroy pseudo instructions!");
571    assert(0 && "Call Frame Pseudo Instructions do not exist on this target!");
572  }
573
574  /// processFunctionBeforeCalleeSavedScan - This method is called immediately
575  /// before PrologEpilogInserter scans the physical registers used to determine
576  /// what callee saved registers should be spilled. This method is optional.
577  virtual void processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
578                                                RegScavenger *RS = NULL) const {
579
580  }
581
582  /// processFunctionBeforeFrameFinalized - This method is called immediately
583  /// before the specified functions frame layout (MF.getFrameInfo()) is
584  /// finalized.  Once the frame is finalized, MO_FrameIndex operands are
585  /// replaced with direct constants.  This method is optional.
586  ///
587  virtual void processFunctionBeforeFrameFinalized(MachineFunction &MF) const {
588  }
589
590  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
591  /// frame indices from instructions which may use them.  The instruction
592  /// referenced by the iterator contains an MO_FrameIndex operand which must be
593  /// eliminated by this method.  This method may modify or replace the
594  /// specified instruction, as long as it keeps the iterator pointing the the
595  /// finished product. SPAdj is the SP adjustment due to call frame setup
596  /// instruction.
597  virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
598                                   int SPAdj, RegScavenger *RS=NULL) const = 0;
599
600  /// emitProlog/emitEpilog - These methods insert prolog and epilog code into
601  /// the function.
602  virtual void emitPrologue(MachineFunction &MF) const = 0;
603  virtual void emitEpilogue(MachineFunction &MF,
604                            MachineBasicBlock &MBB) const = 0;
605
606  //===--------------------------------------------------------------------===//
607  /// Debug information queries.
608
609  /// getDwarfRegNum - Map a target register to an equivalent dwarf register
610  /// number.  Returns -1 if there is no equivalent value.  The second
611  /// parameter allows targets to use different numberings for EH info and
612  /// debugging info.
613  virtual int getDwarfRegNum(unsigned RegNum, bool isEH) const = 0;
614
615  /// getFrameRegister - This method should return the register used as a base
616  /// for values allocated in the current stack frame.
617  virtual unsigned getFrameRegister(MachineFunction &MF) const = 0;
618
619  /// getFrameIndexOffset - Returns the displacement from the frame register to
620  /// the stack frame of the specified index.
621  virtual int getFrameIndexOffset(MachineFunction &MF, int FI) const;
622
623  /// getRARegister - This method should return the register where the return
624  /// address can be found.
625  virtual unsigned getRARegister() const = 0;
626
627  /// getInitialFrameState - Returns a list of machine moves that are assumed
628  /// on entry to all functions.  Note that LabelID is ignored (assumed to be
629  /// the beginning of the function.)
630  virtual void getInitialFrameState(std::vector<MachineMove> &Moves) const;
631};
632
633// This is useful when building IndexedMaps keyed on virtual registers
634struct VirtReg2IndexFunctor : std::unary_function<unsigned, unsigned> {
635  unsigned operator()(unsigned Reg) const {
636    return Reg - TargetRegisterInfo::FirstVirtualRegister;
637  }
638};
639
640} // End llvm namespace
641
642#endif
643