MachineVerifier.cpp revision 03d9609c6154ed91daefb4e4f89b7298c11961f3
1//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/SetOperations.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/CodeGen/LiveIntervalAnalysis.h"
32#include "llvm/CodeGen/LiveStackAnalysis.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBundle.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/InlineAsm.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetRegisterInfo.h"
49using namespace llvm;
50
51namespace {
52  struct MachineVerifier {
53
54    MachineVerifier(Pass *pass, const char *b) :
55      PASS(pass),
56      Banner(b),
57      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
58      {}
59
60    bool runOnMachineFunction(MachineFunction &MF);
61
62    Pass *const PASS;
63    const char *Banner;
64    const char *const OutFileName;
65    raw_ostream *OS;
66    const MachineFunction *MF;
67    const TargetMachine *TM;
68    const TargetInstrInfo *TII;
69    const TargetRegisterInfo *TRI;
70    const MachineRegisterInfo *MRI;
71
72    unsigned foundErrors;
73
74    typedef SmallVector<unsigned, 16> RegVector;
75    typedef SmallVector<const uint32_t*, 4> RegMaskVector;
76    typedef DenseSet<unsigned> RegSet;
77    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
78    typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
79
80    const MachineInstr *FirstTerminator;
81    BlockSet FunctionBlocks;
82
83    BitVector regsReserved;
84    RegSet regsLive;
85    RegVector regsDefined, regsDead, regsKilled;
86    RegMaskVector regMasks;
87    RegSet regsLiveInButUnused;
88
89    SlotIndex lastIndex;
90
91    // Add Reg and any sub-registers to RV
92    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
93      RV.push_back(Reg);
94      if (TargetRegisterInfo::isPhysicalRegister(Reg))
95        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
96          RV.push_back(*SubRegs);
97    }
98
99    struct BBInfo {
100      // Is this MBB reachable from the MF entry point?
101      bool reachable;
102
103      // Vregs that must be live in because they are used without being
104      // defined. Map value is the user.
105      RegMap vregsLiveIn;
106
107      // Regs killed in MBB. They may be defined again, and will then be in both
108      // regsKilled and regsLiveOut.
109      RegSet regsKilled;
110
111      // Regs defined in MBB and live out. Note that vregs passing through may
112      // be live out without being mentioned here.
113      RegSet regsLiveOut;
114
115      // Vregs that pass through MBB untouched. This set is disjoint from
116      // regsKilled and regsLiveOut.
117      RegSet vregsPassed;
118
119      // Vregs that must pass through MBB because they are needed by a successor
120      // block. This set is disjoint from regsLiveOut.
121      RegSet vregsRequired;
122
123      // Set versions of block's predecessor and successor lists.
124      BlockSet Preds, Succs;
125
126      BBInfo() : reachable(false) {}
127
128      // Add register to vregsPassed if it belongs there. Return true if
129      // anything changed.
130      bool addPassed(unsigned Reg) {
131        if (!TargetRegisterInfo::isVirtualRegister(Reg))
132          return false;
133        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
134          return false;
135        return vregsPassed.insert(Reg).second;
136      }
137
138      // Same for a full set.
139      bool addPassed(const RegSet &RS) {
140        bool changed = false;
141        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
142          if (addPassed(*I))
143            changed = true;
144        return changed;
145      }
146
147      // Add register to vregsRequired if it belongs there. Return true if
148      // anything changed.
149      bool addRequired(unsigned Reg) {
150        if (!TargetRegisterInfo::isVirtualRegister(Reg))
151          return false;
152        if (regsLiveOut.count(Reg))
153          return false;
154        return vregsRequired.insert(Reg).second;
155      }
156
157      // Same for a full set.
158      bool addRequired(const RegSet &RS) {
159        bool changed = false;
160        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
161          if (addRequired(*I))
162            changed = true;
163        return changed;
164      }
165
166      // Same for a full map.
167      bool addRequired(const RegMap &RM) {
168        bool changed = false;
169        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
170          if (addRequired(I->first))
171            changed = true;
172        return changed;
173      }
174
175      // Live-out registers are either in regsLiveOut or vregsPassed.
176      bool isLiveOut(unsigned Reg) const {
177        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
178      }
179    };
180
181    // Extra register info per MBB.
182    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
183
184    bool isReserved(unsigned Reg) {
185      return Reg < regsReserved.size() && regsReserved.test(Reg);
186    }
187
188    bool isAllocatable(unsigned Reg) {
189      return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
190    }
191
192    // Analysis information if available
193    LiveVariables *LiveVars;
194    LiveIntervals *LiveInts;
195    LiveStacks *LiveStks;
196    SlotIndexes *Indexes;
197
198    void visitMachineFunctionBefore();
199    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
200    void visitMachineBundleBefore(const MachineInstr *MI);
201    void visitMachineInstrBefore(const MachineInstr *MI);
202    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
203    void visitMachineInstrAfter(const MachineInstr *MI);
204    void visitMachineBundleAfter(const MachineInstr *MI);
205    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
206    void visitMachineFunctionAfter();
207
208    void report(const char *msg, const MachineFunction *MF);
209    void report(const char *msg, const MachineBasicBlock *MBB);
210    void report(const char *msg, const MachineInstr *MI);
211    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
212    void report(const char *msg, const MachineFunction *MF,
213                const LiveInterval &LI);
214    void report(const char *msg, const MachineBasicBlock *MBB,
215                const LiveInterval &LI);
216    void report(const char *msg, const MachineFunction *MF,
217                const LiveRange &LR);
218    void report(const char *msg, const MachineBasicBlock *MBB,
219                const LiveRange &LR);
220
221    void verifyInlineAsm(const MachineInstr *MI);
222
223    void checkLiveness(const MachineOperand *MO, unsigned MONum);
224    void markReachable(const MachineBasicBlock *MBB);
225    void calcRegsPassed();
226    void checkPHIOps(const MachineBasicBlock *MBB);
227
228    void calcRegsRequired();
229    void verifyLiveVariables();
230    void verifyLiveIntervals();
231    void verifyLiveInterval(const LiveInterval&);
232    void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned);
233    void verifyLiveRangeSegment(const LiveRange&,
234                                const LiveRange::const_iterator I, unsigned);
235    void verifyLiveRange(const LiveRange&, unsigned);
236
237    void verifyStackFrame();
238  };
239
240  struct MachineVerifierPass : public MachineFunctionPass {
241    static char ID; // Pass ID, replacement for typeid
242    const char *const Banner;
243
244    MachineVerifierPass(const char *b = 0)
245      : MachineFunctionPass(ID), Banner(b) {
246        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
247      }
248
249    void getAnalysisUsage(AnalysisUsage &AU) const {
250      AU.setPreservesAll();
251      MachineFunctionPass::getAnalysisUsage(AU);
252    }
253
254    bool runOnMachineFunction(MachineFunction &MF) {
255      MF.verify(this, Banner);
256      return false;
257    }
258  };
259
260}
261
262char MachineVerifierPass::ID = 0;
263INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
264                "Verify generated machine code", false, false)
265
266FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
267  return new MachineVerifierPass(Banner);
268}
269
270void MachineFunction::verify(Pass *p, const char *Banner) const {
271  MachineVerifier(p, Banner)
272    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
273}
274
275bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
276  raw_ostream *OutFile = 0;
277  if (OutFileName) {
278    std::string ErrorInfo;
279    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, sys::fs::F_Append);
280    if (!ErrorInfo.empty()) {
281      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
282      exit(1);
283    }
284
285    OS = OutFile;
286  } else {
287    OS = &errs();
288  }
289
290  foundErrors = 0;
291
292  this->MF = &MF;
293  TM = &MF.getTarget();
294  TII = TM->getInstrInfo();
295  TRI = TM->getRegisterInfo();
296  MRI = &MF.getRegInfo();
297
298  LiveVars = NULL;
299  LiveInts = NULL;
300  LiveStks = NULL;
301  Indexes = NULL;
302  if (PASS) {
303    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
304    // We don't want to verify LiveVariables if LiveIntervals is available.
305    if (!LiveInts)
306      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
307    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
308    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
309  }
310
311  visitMachineFunctionBefore();
312  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
313       MFI!=MFE; ++MFI) {
314    visitMachineBasicBlockBefore(MFI);
315    // Keep track of the current bundle header.
316    const MachineInstr *CurBundle = 0;
317    // Do we expect the next instruction to be part of the same bundle?
318    bool InBundle = false;
319
320    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
321           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
322      if (MBBI->getParent() != MFI) {
323        report("Bad instruction parent pointer", MFI);
324        *OS << "Instruction: " << *MBBI;
325        continue;
326      }
327
328      // Check for consistent bundle flags.
329      if (InBundle && !MBBI->isBundledWithPred())
330        report("Missing BundledPred flag, "
331               "BundledSucc was set on predecessor", MBBI);
332      if (!InBundle && MBBI->isBundledWithPred())
333        report("BundledPred flag is set, "
334               "but BundledSucc not set on predecessor", MBBI);
335
336      // Is this a bundle header?
337      if (!MBBI->isInsideBundle()) {
338        if (CurBundle)
339          visitMachineBundleAfter(CurBundle);
340        CurBundle = MBBI;
341        visitMachineBundleBefore(CurBundle);
342      } else if (!CurBundle)
343        report("No bundle header", MBBI);
344      visitMachineInstrBefore(MBBI);
345      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
346        visitMachineOperand(&MBBI->getOperand(I), I);
347      visitMachineInstrAfter(MBBI);
348
349      // Was this the last bundled instruction?
350      InBundle = MBBI->isBundledWithSucc();
351    }
352    if (CurBundle)
353      visitMachineBundleAfter(CurBundle);
354    if (InBundle)
355      report("BundledSucc flag set on last instruction in block", &MFI->back());
356    visitMachineBasicBlockAfter(MFI);
357  }
358  visitMachineFunctionAfter();
359
360  if (OutFile)
361    delete OutFile;
362  else if (foundErrors)
363    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
364
365  // Clean up.
366  regsLive.clear();
367  regsDefined.clear();
368  regsDead.clear();
369  regsKilled.clear();
370  regMasks.clear();
371  regsLiveInButUnused.clear();
372  MBBInfoMap.clear();
373
374  return false;                 // no changes
375}
376
377void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
378  assert(MF);
379  *OS << '\n';
380  if (!foundErrors++) {
381    if (Banner)
382      *OS << "# " << Banner << '\n';
383    MF->print(*OS, Indexes);
384  }
385  *OS << "*** Bad machine code: " << msg << " ***\n"
386      << "- function:    " << MF->getName() << "\n";
387}
388
389void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
390  assert(MBB);
391  report(msg, MBB->getParent());
392  *OS << "- basic block: BB#" << MBB->getNumber()
393      << ' ' << MBB->getName()
394      << " (" << (const void*)MBB << ')';
395  if (Indexes)
396    *OS << " [" << Indexes->getMBBStartIdx(MBB)
397        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
398  *OS << '\n';
399}
400
401void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
402  assert(MI);
403  report(msg, MI->getParent());
404  *OS << "- instruction: ";
405  if (Indexes && Indexes->hasIndex(MI))
406    *OS << Indexes->getInstructionIndex(MI) << '\t';
407  MI->print(*OS, TM);
408}
409
410void MachineVerifier::report(const char *msg,
411                             const MachineOperand *MO, unsigned MONum) {
412  assert(MO);
413  report(msg, MO->getParent());
414  *OS << "- operand " << MONum << ":   ";
415  MO->print(*OS, TM);
416  *OS << "\n";
417}
418
419void MachineVerifier::report(const char *msg, const MachineFunction *MF,
420                             const LiveInterval &LI) {
421  report(msg, MF);
422  *OS << "- interval:    " << LI << '\n';
423}
424
425void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
426                             const LiveInterval &LI) {
427  report(msg, MBB);
428  *OS << "- interval:    " << LI << '\n';
429}
430
431void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
432                             const LiveRange &LR) {
433  report(msg, MBB);
434  *OS << "- liverange:    " << LR << "\n";
435}
436
437void MachineVerifier::report(const char *msg, const MachineFunction *MF,
438                             const LiveRange &LR) {
439  report(msg, MF);
440  *OS << "- liverange:    " << LR << "\n";
441}
442
443void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
444  BBInfo &MInfo = MBBInfoMap[MBB];
445  if (!MInfo.reachable) {
446    MInfo.reachable = true;
447    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
448           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
449      markReachable(*SuI);
450  }
451}
452
453void MachineVerifier::visitMachineFunctionBefore() {
454  lastIndex = SlotIndex();
455  regsReserved = MRI->getReservedRegs();
456
457  // A sub-register of a reserved register is also reserved
458  for (int Reg = regsReserved.find_first(); Reg>=0;
459       Reg = regsReserved.find_next(Reg)) {
460    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
461      // FIXME: This should probably be:
462      // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
463      regsReserved.set(*SubRegs);
464    }
465  }
466
467  markReachable(&MF->front());
468
469  // Build a set of the basic blocks in the function.
470  FunctionBlocks.clear();
471  for (MachineFunction::const_iterator
472       I = MF->begin(), E = MF->end(); I != E; ++I) {
473    FunctionBlocks.insert(I);
474    BBInfo &MInfo = MBBInfoMap[I];
475
476    MInfo.Preds.insert(I->pred_begin(), I->pred_end());
477    if (MInfo.Preds.size() != I->pred_size())
478      report("MBB has duplicate entries in its predecessor list.", I);
479
480    MInfo.Succs.insert(I->succ_begin(), I->succ_end());
481    if (MInfo.Succs.size() != I->succ_size())
482      report("MBB has duplicate entries in its successor list.", I);
483  }
484
485  // Check that the register use lists are sane.
486  MRI->verifyUseLists();
487
488  verifyStackFrame();
489}
490
491// Does iterator point to a and b as the first two elements?
492static bool matchPair(MachineBasicBlock::const_succ_iterator i,
493                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
494  if (*i == a)
495    return *++i == b;
496  if (*i == b)
497    return *++i == a;
498  return false;
499}
500
501void
502MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
503  FirstTerminator = 0;
504
505  if (MRI->isSSA()) {
506    // If this block has allocatable physical registers live-in, check that
507    // it is an entry block or landing pad.
508    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
509           LE = MBB->livein_end();
510         LI != LE; ++LI) {
511      unsigned reg = *LI;
512      if (isAllocatable(reg) && !MBB->isLandingPad() &&
513          MBB != MBB->getParent()->begin()) {
514        report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
515      }
516    }
517  }
518
519  // Count the number of landing pad successors.
520  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
521  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
522       E = MBB->succ_end(); I != E; ++I) {
523    if ((*I)->isLandingPad())
524      LandingPadSuccs.insert(*I);
525    if (!FunctionBlocks.count(*I))
526      report("MBB has successor that isn't part of the function.", MBB);
527    if (!MBBInfoMap[*I].Preds.count(MBB)) {
528      report("Inconsistent CFG", MBB);
529      *OS << "MBB is not in the predecessor list of the successor BB#"
530          << (*I)->getNumber() << ".\n";
531    }
532  }
533
534  // Check the predecessor list.
535  for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
536       E = MBB->pred_end(); I != E; ++I) {
537    if (!FunctionBlocks.count(*I))
538      report("MBB has predecessor that isn't part of the function.", MBB);
539    if (!MBBInfoMap[*I].Succs.count(MBB)) {
540      report("Inconsistent CFG", MBB);
541      *OS << "MBB is not in the successor list of the predecessor BB#"
542          << (*I)->getNumber() << ".\n";
543    }
544  }
545
546  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
547  const BasicBlock *BB = MBB->getBasicBlock();
548  if (LandingPadSuccs.size() > 1 &&
549      !(AsmInfo &&
550        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
551        BB && isa<SwitchInst>(BB->getTerminator())))
552    report("MBB has more than one landing pad successor", MBB);
553
554  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
555  MachineBasicBlock *TBB = 0, *FBB = 0;
556  SmallVector<MachineOperand, 4> Cond;
557  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
558                          TBB, FBB, Cond)) {
559    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
560    // check whether its answers match up with reality.
561    if (!TBB && !FBB) {
562      // Block falls through to its successor.
563      MachineFunction::const_iterator MBBI = MBB;
564      ++MBBI;
565      if (MBBI == MF->end()) {
566        // It's possible that the block legitimately ends with a noreturn
567        // call or an unreachable, in which case it won't actually fall
568        // out the bottom of the function.
569      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
570        // It's possible that the block legitimately ends with a noreturn
571        // call or an unreachable, in which case it won't actuall fall
572        // out of the block.
573      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
574        report("MBB exits via unconditional fall-through but doesn't have "
575               "exactly one CFG successor!", MBB);
576      } else if (!MBB->isSuccessor(MBBI)) {
577        report("MBB exits via unconditional fall-through but its successor "
578               "differs from its CFG successor!", MBB);
579      }
580      if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() &&
581          !TII->isPredicated(getBundleStart(&MBB->back()))) {
582        report("MBB exits via unconditional fall-through but ends with a "
583               "barrier instruction!", MBB);
584      }
585      if (!Cond.empty()) {
586        report("MBB exits via unconditional fall-through but has a condition!",
587               MBB);
588      }
589    } else if (TBB && !FBB && Cond.empty()) {
590      // Block unconditionally branches somewhere.
591      if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
592        report("MBB exits via unconditional branch but doesn't have "
593               "exactly one CFG successor!", MBB);
594      } else if (!MBB->isSuccessor(TBB)) {
595        report("MBB exits via unconditional branch but the CFG "
596               "successor doesn't match the actual successor!", MBB);
597      }
598      if (MBB->empty()) {
599        report("MBB exits via unconditional branch but doesn't contain "
600               "any instructions!", MBB);
601      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
602        report("MBB exits via unconditional branch but doesn't end with a "
603               "barrier instruction!", MBB);
604      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
605        report("MBB exits via unconditional branch but the branch isn't a "
606               "terminator instruction!", MBB);
607      }
608    } else if (TBB && !FBB && !Cond.empty()) {
609      // Block conditionally branches somewhere, otherwise falls through.
610      MachineFunction::const_iterator MBBI = MBB;
611      ++MBBI;
612      if (MBBI == MF->end()) {
613        report("MBB conditionally falls through out of function!", MBB);
614      } else if (MBB->succ_size() == 1) {
615        // A conditional branch with only one successor is weird, but allowed.
616        if (&*MBBI != TBB)
617          report("MBB exits via conditional branch/fall-through but only has "
618                 "one CFG successor!", MBB);
619        else if (TBB != *MBB->succ_begin())
620          report("MBB exits via conditional branch/fall-through but the CFG "
621                 "successor don't match the actual successor!", MBB);
622      } else if (MBB->succ_size() != 2) {
623        report("MBB exits via conditional branch/fall-through but doesn't have "
624               "exactly two CFG successors!", MBB);
625      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
626        report("MBB exits via conditional branch/fall-through but the CFG "
627               "successors don't match the actual successors!", MBB);
628      }
629      if (MBB->empty()) {
630        report("MBB exits via conditional branch/fall-through but doesn't "
631               "contain any instructions!", MBB);
632      } else if (getBundleStart(&MBB->back())->isBarrier()) {
633        report("MBB exits via conditional branch/fall-through but ends with a "
634               "barrier instruction!", MBB);
635      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
636        report("MBB exits via conditional branch/fall-through but the branch "
637               "isn't a terminator instruction!", MBB);
638      }
639    } else if (TBB && FBB) {
640      // Block conditionally branches somewhere, otherwise branches
641      // somewhere else.
642      if (MBB->succ_size() == 1) {
643        // A conditional branch with only one successor is weird, but allowed.
644        if (FBB != TBB)
645          report("MBB exits via conditional branch/branch through but only has "
646                 "one CFG successor!", MBB);
647        else if (TBB != *MBB->succ_begin())
648          report("MBB exits via conditional branch/branch through but the CFG "
649                 "successor don't match the actual successor!", MBB);
650      } else if (MBB->succ_size() != 2) {
651        report("MBB exits via conditional branch/branch but doesn't have "
652               "exactly two CFG successors!", MBB);
653      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
654        report("MBB exits via conditional branch/branch but the CFG "
655               "successors don't match the actual successors!", MBB);
656      }
657      if (MBB->empty()) {
658        report("MBB exits via conditional branch/branch but doesn't "
659               "contain any instructions!", MBB);
660      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
661        report("MBB exits via conditional branch/branch but doesn't end with a "
662               "barrier instruction!", MBB);
663      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
664        report("MBB exits via conditional branch/branch but the branch "
665               "isn't a terminator instruction!", MBB);
666      }
667      if (Cond.empty()) {
668        report("MBB exits via conditinal branch/branch but there's no "
669               "condition!", MBB);
670      }
671    } else {
672      report("AnalyzeBranch returned invalid data!", MBB);
673    }
674  }
675
676  regsLive.clear();
677  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
678         E = MBB->livein_end(); I != E; ++I) {
679    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
680      report("MBB live-in list contains non-physical register", MBB);
681      continue;
682    }
683    for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
684         SubRegs.isValid(); ++SubRegs)
685      regsLive.insert(*SubRegs);
686  }
687  regsLiveInButUnused = regsLive;
688
689  const MachineFrameInfo *MFI = MF->getFrameInfo();
690  assert(MFI && "Function has no frame info");
691  BitVector PR = MFI->getPristineRegs(MBB);
692  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
693    for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
694         SubRegs.isValid(); ++SubRegs)
695      regsLive.insert(*SubRegs);
696  }
697
698  regsKilled.clear();
699  regsDefined.clear();
700
701  if (Indexes)
702    lastIndex = Indexes->getMBBStartIdx(MBB);
703}
704
705// This function gets called for all bundle headers, including normal
706// stand-alone unbundled instructions.
707void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
708  if (Indexes && Indexes->hasIndex(MI)) {
709    SlotIndex idx = Indexes->getInstructionIndex(MI);
710    if (!(idx > lastIndex)) {
711      report("Instruction index out of order", MI);
712      *OS << "Last instruction was at " << lastIndex << '\n';
713    }
714    lastIndex = idx;
715  }
716
717  // Ensure non-terminators don't follow terminators.
718  // Ignore predicated terminators formed by if conversion.
719  // FIXME: If conversion shouldn't need to violate this rule.
720  if (MI->isTerminator() && !TII->isPredicated(MI)) {
721    if (!FirstTerminator)
722      FirstTerminator = MI;
723  } else if (FirstTerminator) {
724    report("Non-terminator instruction after the first terminator", MI);
725    *OS << "First terminator was:\t" << *FirstTerminator;
726  }
727}
728
729// The operands on an INLINEASM instruction must follow a template.
730// Verify that the flag operands make sense.
731void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
732  // The first two operands on INLINEASM are the asm string and global flags.
733  if (MI->getNumOperands() < 2) {
734    report("Too few operands on inline asm", MI);
735    return;
736  }
737  if (!MI->getOperand(0).isSymbol())
738    report("Asm string must be an external symbol", MI);
739  if (!MI->getOperand(1).isImm())
740    report("Asm flags must be an immediate", MI);
741  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
742  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
743  if (!isUInt<5>(MI->getOperand(1).getImm()))
744    report("Unknown asm flags", &MI->getOperand(1), 1);
745
746  assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
747
748  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
749  unsigned NumOps;
750  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
751    const MachineOperand &MO = MI->getOperand(OpNo);
752    // There may be implicit ops after the fixed operands.
753    if (!MO.isImm())
754      break;
755    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
756  }
757
758  if (OpNo > MI->getNumOperands())
759    report("Missing operands in last group", MI);
760
761  // An optional MDNode follows the groups.
762  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
763    ++OpNo;
764
765  // All trailing operands must be implicit registers.
766  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
767    const MachineOperand &MO = MI->getOperand(OpNo);
768    if (!MO.isReg() || !MO.isImplicit())
769      report("Expected implicit register after groups", &MO, OpNo);
770  }
771}
772
773void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
774  const MCInstrDesc &MCID = MI->getDesc();
775  if (MI->getNumOperands() < MCID.getNumOperands()) {
776    report("Too few operands", MI);
777    *OS << MCID.getNumOperands() << " operands expected, but "
778        << MI->getNumExplicitOperands() << " given.\n";
779  }
780
781  // Check the tied operands.
782  if (MI->isInlineAsm())
783    verifyInlineAsm(MI);
784
785  // Check the MachineMemOperands for basic consistency.
786  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
787       E = MI->memoperands_end(); I != E; ++I) {
788    if ((*I)->isLoad() && !MI->mayLoad())
789      report("Missing mayLoad flag", MI);
790    if ((*I)->isStore() && !MI->mayStore())
791      report("Missing mayStore flag", MI);
792  }
793
794  // Debug values must not have a slot index.
795  // Other instructions must have one, unless they are inside a bundle.
796  if (LiveInts) {
797    bool mapped = !LiveInts->isNotInMIMap(MI);
798    if (MI->isDebugValue()) {
799      if (mapped)
800        report("Debug instruction has a slot index", MI);
801    } else if (MI->isInsideBundle()) {
802      if (mapped)
803        report("Instruction inside bundle has a slot index", MI);
804    } else {
805      if (!mapped)
806        report("Missing slot index", MI);
807    }
808  }
809
810  StringRef ErrorInfo;
811  if (!TII->verifyInstruction(MI, ErrorInfo))
812    report(ErrorInfo.data(), MI);
813}
814
815void
816MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
817  const MachineInstr *MI = MO->getParent();
818  const MCInstrDesc &MCID = MI->getDesc();
819
820  // The first MCID.NumDefs operands must be explicit register defines
821  if (MONum < MCID.getNumDefs()) {
822    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
823    if (!MO->isReg())
824      report("Explicit definition must be a register", MO, MONum);
825    else if (!MO->isDef() && !MCOI.isOptionalDef())
826      report("Explicit definition marked as use", MO, MONum);
827    else if (MO->isImplicit())
828      report("Explicit definition marked as implicit", MO, MONum);
829  } else if (MONum < MCID.getNumOperands()) {
830    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
831    // Don't check if it's the last operand in a variadic instruction. See,
832    // e.g., LDM_RET in the arm back end.
833    if (MO->isReg() &&
834        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
835      if (MO->isDef() && !MCOI.isOptionalDef())
836        report("Explicit operand marked as def", MO, MONum);
837      if (MO->isImplicit())
838        report("Explicit operand marked as implicit", MO, MONum);
839    }
840
841    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
842    if (TiedTo != -1) {
843      if (!MO->isReg())
844        report("Tied use must be a register", MO, MONum);
845      else if (!MO->isTied())
846        report("Operand should be tied", MO, MONum);
847      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
848        report("Tied def doesn't match MCInstrDesc", MO, MONum);
849    } else if (MO->isReg() && MO->isTied())
850      report("Explicit operand should not be tied", MO, MONum);
851  } else {
852    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
853    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
854      report("Extra explicit operand on non-variadic instruction", MO, MONum);
855  }
856
857  switch (MO->getType()) {
858  case MachineOperand::MO_Register: {
859    const unsigned Reg = MO->getReg();
860    if (!Reg)
861      return;
862    if (MRI->tracksLiveness() && !MI->isDebugValue())
863      checkLiveness(MO, MONum);
864
865    // Verify the consistency of tied operands.
866    if (MO->isTied()) {
867      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
868      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
869      if (!OtherMO.isReg())
870        report("Must be tied to a register", MO, MONum);
871      if (!OtherMO.isTied())
872        report("Missing tie flags on tied operand", MO, MONum);
873      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
874        report("Inconsistent tie links", MO, MONum);
875      if (MONum < MCID.getNumDefs()) {
876        if (OtherIdx < MCID.getNumOperands()) {
877          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
878            report("Explicit def tied to explicit use without tie constraint",
879                   MO, MONum);
880        } else {
881          if (!OtherMO.isImplicit())
882            report("Explicit def should be tied to implicit use", MO, MONum);
883        }
884      }
885    }
886
887    // Verify two-address constraints after leaving SSA form.
888    unsigned DefIdx;
889    if (!MRI->isSSA() && MO->isUse() &&
890        MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
891        Reg != MI->getOperand(DefIdx).getReg())
892      report("Two-address instruction operands must be identical", MO, MONum);
893
894    // Check register classes.
895    if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
896      unsigned SubIdx = MO->getSubReg();
897
898      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
899        if (SubIdx) {
900          report("Illegal subregister index for physical register", MO, MONum);
901          return;
902        }
903        if (const TargetRegisterClass *DRC =
904              TII->getRegClass(MCID, MONum, TRI, *MF)) {
905          if (!DRC->contains(Reg)) {
906            report("Illegal physical register for instruction", MO, MONum);
907            *OS << TRI->getName(Reg) << " is not a "
908                << DRC->getName() << " register.\n";
909          }
910        }
911      } else {
912        // Virtual register.
913        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
914        if (SubIdx) {
915          const TargetRegisterClass *SRC =
916            TRI->getSubClassWithSubReg(RC, SubIdx);
917          if (!SRC) {
918            report("Invalid subregister index for virtual register", MO, MONum);
919            *OS << "Register class " << RC->getName()
920                << " does not support subreg index " << SubIdx << "\n";
921            return;
922          }
923          if (RC != SRC) {
924            report("Invalid register class for subregister index", MO, MONum);
925            *OS << "Register class " << RC->getName()
926                << " does not fully support subreg index " << SubIdx << "\n";
927            return;
928          }
929        }
930        if (const TargetRegisterClass *DRC =
931              TII->getRegClass(MCID, MONum, TRI, *MF)) {
932          if (SubIdx) {
933            const TargetRegisterClass *SuperRC =
934              TRI->getLargestLegalSuperClass(RC);
935            if (!SuperRC) {
936              report("No largest legal super class exists.", MO, MONum);
937              return;
938            }
939            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
940            if (!DRC) {
941              report("No matching super-reg register class.", MO, MONum);
942              return;
943            }
944          }
945          if (!RC->hasSuperClassEq(DRC)) {
946            report("Illegal virtual register for instruction", MO, MONum);
947            *OS << "Expected a " << DRC->getName() << " register, but got a "
948                << RC->getName() << " register\n";
949          }
950        }
951      }
952    }
953    break;
954  }
955
956  case MachineOperand::MO_RegisterMask:
957    regMasks.push_back(MO->getRegMask());
958    break;
959
960  case MachineOperand::MO_MachineBasicBlock:
961    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
962      report("PHI operand is not in the CFG", MO, MONum);
963    break;
964
965  case MachineOperand::MO_FrameIndex:
966    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
967        LiveInts && !LiveInts->isNotInMIMap(MI)) {
968      LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
969      SlotIndex Idx = LiveInts->getInstructionIndex(MI);
970      if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
971        report("Instruction loads from dead spill slot", MO, MONum);
972        *OS << "Live stack: " << LI << '\n';
973      }
974      if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
975        report("Instruction stores to dead spill slot", MO, MONum);
976        *OS << "Live stack: " << LI << '\n';
977      }
978    }
979    break;
980
981  default:
982    break;
983  }
984}
985
986void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
987  const MachineInstr *MI = MO->getParent();
988  const unsigned Reg = MO->getReg();
989
990  // Both use and def operands can read a register.
991  if (MO->readsReg()) {
992    regsLiveInButUnused.erase(Reg);
993
994    if (MO->isKill())
995      addRegWithSubRegs(regsKilled, Reg);
996
997    // Check that LiveVars knows this kill.
998    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
999        MO->isKill()) {
1000      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1001      if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
1002        report("Kill missing from LiveVariables", MO, MONum);
1003    }
1004
1005    // Check LiveInts liveness and kill.
1006    if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
1007      SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
1008      // Check the cached regunit intervals.
1009      if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1010        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1011          if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
1012            LiveQueryResult LRQ = LR->Query(UseIdx);
1013            if (!LRQ.valueIn()) {
1014              report("No live segment at use", MO, MONum);
1015              *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
1016                  << ' ' << *LR << '\n';
1017            }
1018            if (MO->isKill() && !LRQ.isKill()) {
1019              report("Live range continues after kill flag", MO, MONum);
1020              *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
1021            }
1022          }
1023        }
1024      }
1025
1026      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1027        if (LiveInts->hasInterval(Reg)) {
1028          // This is a virtual register interval.
1029          const LiveInterval &LI = LiveInts->getInterval(Reg);
1030          LiveQueryResult LRQ = LI.Query(UseIdx);
1031          if (!LRQ.valueIn()) {
1032            report("No live segment at use", MO, MONum);
1033            *OS << UseIdx << " is not live in " << LI << '\n';
1034          }
1035          // Check for extra kill flags.
1036          // Note that we allow missing kill flags for now.
1037          if (MO->isKill() && !LRQ.isKill()) {
1038            report("Live range continues after kill flag", MO, MONum);
1039            *OS << "Live range: " << LI << '\n';
1040          }
1041        } else {
1042          report("Virtual register has no live interval", MO, MONum);
1043        }
1044      }
1045    }
1046
1047    // Use of a dead register.
1048    if (!regsLive.count(Reg)) {
1049      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1050        // Reserved registers may be used even when 'dead'.
1051        if (!isReserved(Reg))
1052          report("Using an undefined physical register", MO, MONum);
1053      } else if (MRI->def_empty(Reg)) {
1054        report("Reading virtual register without a def", MO, MONum);
1055      } else {
1056        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1057        // We don't know which virtual registers are live in, so only complain
1058        // if vreg was killed in this MBB. Otherwise keep track of vregs that
1059        // must be live in. PHI instructions are handled separately.
1060        if (MInfo.regsKilled.count(Reg))
1061          report("Using a killed virtual register", MO, MONum);
1062        else if (!MI->isPHI())
1063          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1064      }
1065    }
1066  }
1067
1068  if (MO->isDef()) {
1069    // Register defined.
1070    // TODO: verify that earlyclobber ops are not used.
1071    if (MO->isDead())
1072      addRegWithSubRegs(regsDead, Reg);
1073    else
1074      addRegWithSubRegs(regsDefined, Reg);
1075
1076    // Verify SSA form.
1077    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1078        llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
1079      report("Multiple virtual register defs in SSA form", MO, MONum);
1080
1081    // Check LiveInts for a live segment, but only for virtual registers.
1082    if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1083        !LiveInts->isNotInMIMap(MI)) {
1084      SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1085      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1086      if (LiveInts->hasInterval(Reg)) {
1087        const LiveInterval &LI = LiveInts->getInterval(Reg);
1088        if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1089          assert(VNI && "NULL valno is not allowed");
1090          if (VNI->def != DefIdx) {
1091            report("Inconsistent valno->def", MO, MONum);
1092            *OS << "Valno " << VNI->id << " is not defined at "
1093              << DefIdx << " in " << LI << '\n';
1094          }
1095        } else {
1096          report("No live segment at def", MO, MONum);
1097          *OS << DefIdx << " is not live in " << LI << '\n';
1098        }
1099      } else {
1100        report("Virtual register has no Live interval", MO, MONum);
1101      }
1102    }
1103  }
1104}
1105
1106void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1107}
1108
1109// This function gets called after visiting all instructions in a bundle. The
1110// argument points to the bundle header.
1111// Normal stand-alone instructions are also considered 'bundles', and this
1112// function is called for all of them.
1113void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1114  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1115  set_union(MInfo.regsKilled, regsKilled);
1116  set_subtract(regsLive, regsKilled); regsKilled.clear();
1117  // Kill any masked registers.
1118  while (!regMasks.empty()) {
1119    const uint32_t *Mask = regMasks.pop_back_val();
1120    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1121      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1122          MachineOperand::clobbersPhysReg(Mask, *I))
1123        regsDead.push_back(*I);
1124  }
1125  set_subtract(regsLive, regsDead);   regsDead.clear();
1126  set_union(regsLive, regsDefined);   regsDefined.clear();
1127}
1128
1129void
1130MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1131  MBBInfoMap[MBB].regsLiveOut = regsLive;
1132  regsLive.clear();
1133
1134  if (Indexes) {
1135    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1136    if (!(stop > lastIndex)) {
1137      report("Block ends before last instruction index", MBB);
1138      *OS << "Block ends at " << stop
1139          << " last instruction was at " << lastIndex << '\n';
1140    }
1141    lastIndex = stop;
1142  }
1143}
1144
1145// Calculate the largest possible vregsPassed sets. These are the registers that
1146// can pass through an MBB live, but may not be live every time. It is assumed
1147// that all vregsPassed sets are empty before the call.
1148void MachineVerifier::calcRegsPassed() {
1149  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1150  // have any vregsPassed.
1151  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1152  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1153       MFI != MFE; ++MFI) {
1154    const MachineBasicBlock &MBB(*MFI);
1155    BBInfo &MInfo = MBBInfoMap[&MBB];
1156    if (!MInfo.reachable)
1157      continue;
1158    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1159           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1160      BBInfo &SInfo = MBBInfoMap[*SuI];
1161      if (SInfo.addPassed(MInfo.regsLiveOut))
1162        todo.insert(*SuI);
1163    }
1164  }
1165
1166  // Iteratively push vregsPassed to successors. This will converge to the same
1167  // final state regardless of DenseSet iteration order.
1168  while (!todo.empty()) {
1169    const MachineBasicBlock *MBB = *todo.begin();
1170    todo.erase(MBB);
1171    BBInfo &MInfo = MBBInfoMap[MBB];
1172    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1173           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1174      if (*SuI == MBB)
1175        continue;
1176      BBInfo &SInfo = MBBInfoMap[*SuI];
1177      if (SInfo.addPassed(MInfo.vregsPassed))
1178        todo.insert(*SuI);
1179    }
1180  }
1181}
1182
1183// Calculate the set of virtual registers that must be passed through each basic
1184// block in order to satisfy the requirements of successor blocks. This is very
1185// similar to calcRegsPassed, only backwards.
1186void MachineVerifier::calcRegsRequired() {
1187  // First push live-in regs to predecessors' vregsRequired.
1188  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1189  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1190       MFI != MFE; ++MFI) {
1191    const MachineBasicBlock &MBB(*MFI);
1192    BBInfo &MInfo = MBBInfoMap[&MBB];
1193    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1194           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1195      BBInfo &PInfo = MBBInfoMap[*PrI];
1196      if (PInfo.addRequired(MInfo.vregsLiveIn))
1197        todo.insert(*PrI);
1198    }
1199  }
1200
1201  // Iteratively push vregsRequired to predecessors. This will converge to the
1202  // same final state regardless of DenseSet iteration order.
1203  while (!todo.empty()) {
1204    const MachineBasicBlock *MBB = *todo.begin();
1205    todo.erase(MBB);
1206    BBInfo &MInfo = MBBInfoMap[MBB];
1207    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1208           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1209      if (*PrI == MBB)
1210        continue;
1211      BBInfo &SInfo = MBBInfoMap[*PrI];
1212      if (SInfo.addRequired(MInfo.vregsRequired))
1213        todo.insert(*PrI);
1214    }
1215  }
1216}
1217
1218// Check PHI instructions at the beginning of MBB. It is assumed that
1219// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1220void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1221  SmallPtrSet<const MachineBasicBlock*, 8> seen;
1222  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
1223       BBI != BBE && BBI->isPHI(); ++BBI) {
1224    seen.clear();
1225
1226    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
1227      unsigned Reg = BBI->getOperand(i).getReg();
1228      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
1229      if (!Pre->isSuccessor(MBB))
1230        continue;
1231      seen.insert(Pre);
1232      BBInfo &PrInfo = MBBInfoMap[Pre];
1233      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1234        report("PHI operand is not live-out from predecessor",
1235               &BBI->getOperand(i), i);
1236    }
1237
1238    // Did we see all predecessors?
1239    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1240           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1241      if (!seen.count(*PrI)) {
1242        report("Missing PHI operand", BBI);
1243        *OS << "BB#" << (*PrI)->getNumber()
1244            << " is a predecessor according to the CFG.\n";
1245      }
1246    }
1247  }
1248}
1249
1250void MachineVerifier::visitMachineFunctionAfter() {
1251  calcRegsPassed();
1252
1253  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1254       MFI != MFE; ++MFI) {
1255    BBInfo &MInfo = MBBInfoMap[MFI];
1256
1257    // Skip unreachable MBBs.
1258    if (!MInfo.reachable)
1259      continue;
1260
1261    checkPHIOps(MFI);
1262  }
1263
1264  // Now check liveness info if available
1265  calcRegsRequired();
1266
1267  // Check for killed virtual registers that should be live out.
1268  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1269       MFI != MFE; ++MFI) {
1270    BBInfo &MInfo = MBBInfoMap[MFI];
1271    for (RegSet::iterator
1272         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1273         ++I)
1274      if (MInfo.regsKilled.count(*I)) {
1275        report("Virtual register killed in block, but needed live out.", MFI);
1276        *OS << "Virtual register " << PrintReg(*I)
1277            << " is used after the block.\n";
1278      }
1279  }
1280
1281  if (!MF->empty()) {
1282    BBInfo &MInfo = MBBInfoMap[&MF->front()];
1283    for (RegSet::iterator
1284         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1285         ++I)
1286      report("Virtual register def doesn't dominate all uses.",
1287             MRI->getVRegDef(*I));
1288  }
1289
1290  if (LiveVars)
1291    verifyLiveVariables();
1292  if (LiveInts)
1293    verifyLiveIntervals();
1294}
1295
1296void MachineVerifier::verifyLiveVariables() {
1297  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1298  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1299    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1300    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1301    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1302         MFI != MFE; ++MFI) {
1303      BBInfo &MInfo = MBBInfoMap[MFI];
1304
1305      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1306      if (MInfo.vregsRequired.count(Reg)) {
1307        if (!VI.AliveBlocks.test(MFI->getNumber())) {
1308          report("LiveVariables: Block missing from AliveBlocks", MFI);
1309          *OS << "Virtual register " << PrintReg(Reg)
1310              << " must be live through the block.\n";
1311        }
1312      } else {
1313        if (VI.AliveBlocks.test(MFI->getNumber())) {
1314          report("LiveVariables: Block should not be in AliveBlocks", MFI);
1315          *OS << "Virtual register " << PrintReg(Reg)
1316              << " is not needed live through the block.\n";
1317        }
1318      }
1319    }
1320  }
1321}
1322
1323void MachineVerifier::verifyLiveIntervals() {
1324  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1325  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1326    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1327
1328    // Spilling and splitting may leave unused registers around. Skip them.
1329    if (MRI->reg_nodbg_empty(Reg))
1330      continue;
1331
1332    if (!LiveInts->hasInterval(Reg)) {
1333      report("Missing live interval for virtual register", MF);
1334      *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
1335      continue;
1336    }
1337
1338    const LiveInterval &LI = LiveInts->getInterval(Reg);
1339    assert(Reg == LI.reg && "Invalid reg to interval mapping");
1340    verifyLiveInterval(LI);
1341  }
1342
1343  // Verify all the cached regunit intervals.
1344  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1345    if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1346      verifyLiveRange(*LR, i);
1347}
1348
1349void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1350                                           const VNInfo *VNI,
1351                                           unsigned Reg) {
1352  if (VNI->isUnused())
1353    return;
1354
1355  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1356
1357  if (!DefVNI) {
1358    report("Valno not live at def and not marked unused", MF, LR);
1359    *OS << "Valno #" << VNI->id << '\n';
1360    return;
1361  }
1362
1363  if (DefVNI != VNI) {
1364    report("Live segment at def has different valno", MF, LR);
1365    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1366        << " where valno #" << DefVNI->id << " is live\n";
1367    return;
1368  }
1369
1370  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1371  if (!MBB) {
1372    report("Invalid definition index", MF, LR);
1373    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1374        << " in " << LR << '\n';
1375    return;
1376  }
1377
1378  if (VNI->isPHIDef()) {
1379    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1380      report("PHIDef value is not defined at MBB start", MBB, LR);
1381      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1382          << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
1383    }
1384    return;
1385  }
1386
1387  // Non-PHI def.
1388  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1389  if (!MI) {
1390    report("No instruction at def index", MBB, LR);
1391    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1392    return;
1393  }
1394
1395  if (Reg != 0) {
1396    bool hasDef = false;
1397    bool isEarlyClobber = false;
1398    for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1399      if (!MOI->isReg() || !MOI->isDef())
1400        continue;
1401      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1402        if (MOI->getReg() != Reg)
1403          continue;
1404      } else {
1405        if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1406            !TRI->hasRegUnit(MOI->getReg(), Reg))
1407          continue;
1408      }
1409      hasDef = true;
1410      if (MOI->isEarlyClobber())
1411        isEarlyClobber = true;
1412    }
1413
1414    if (!hasDef) {
1415      report("Defining instruction does not modify register", MI);
1416      *OS << "Valno #" << VNI->id << " in " << LR << '\n';
1417    }
1418
1419    // Early clobber defs begin at USE slots, but other defs must begin at
1420    // DEF slots.
1421    if (isEarlyClobber) {
1422      if (!VNI->def.isEarlyClobber()) {
1423        report("Early clobber def must be at an early-clobber slot", MBB, LR);
1424        *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1425      }
1426    } else if (!VNI->def.isRegister()) {
1427      report("Non-PHI, non-early clobber def must be at a register slot",
1428             MBB, LR);
1429      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1430    }
1431  }
1432}
1433
1434void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1435                                             const LiveRange::const_iterator I,
1436                                             unsigned Reg) {
1437  const LiveRange::Segment &S = *I;
1438  const VNInfo *VNI = S.valno;
1439  assert(VNI && "Live segment has no valno");
1440
1441  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1442    report("Foreign valno in live segment", MF, LR);
1443    *OS << S << " has a bad valno\n";
1444  }
1445
1446  if (VNI->isUnused()) {
1447    report("Live segment valno is marked unused", MF, LR);
1448    *OS << S << '\n';
1449  }
1450
1451  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1452  if (!MBB) {
1453    report("Bad start of live segment, no basic block", MF, LR);
1454    *OS << S << '\n';
1455    return;
1456  }
1457  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1458  if (S.start != MBBStartIdx && S.start != VNI->def) {
1459    report("Live segment must begin at MBB entry or valno def", MBB, LR);
1460    *OS << S << '\n';
1461  }
1462
1463  const MachineBasicBlock *EndMBB =
1464    LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1465  if (!EndMBB) {
1466    report("Bad end of live segment, no basic block", MF, LR);
1467    *OS << S << '\n';
1468    return;
1469  }
1470
1471  // No more checks for live-out segments.
1472  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1473    return;
1474
1475  // RegUnit intervals are allowed dead phis.
1476  if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1477      S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1478    return;
1479
1480  // The live segment is ending inside EndMBB
1481  const MachineInstr *MI =
1482    LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1483  if (!MI) {
1484    report("Live segment doesn't end at a valid instruction", EndMBB, LR);
1485    *OS << S << '\n';
1486    return;
1487  }
1488
1489  // The block slot must refer to a basic block boundary.
1490  if (S.end.isBlock()) {
1491    report("Live segment ends at B slot of an instruction", EndMBB, LR);
1492    *OS << S << '\n';
1493  }
1494
1495  if (S.end.isDead()) {
1496    // Segment ends on the dead slot.
1497    // That means there must be a dead def.
1498    if (!SlotIndex::isSameInstr(S.start, S.end)) {
1499      report("Live segment ending at dead slot spans instructions", EndMBB, LR);
1500      *OS << S << '\n';
1501    }
1502  }
1503
1504  // A live segment can only end at an early-clobber slot if it is being
1505  // redefined by an early-clobber def.
1506  if (S.end.isEarlyClobber()) {
1507    if (I+1 == LR.end() || (I+1)->start != S.end) {
1508      report("Live segment ending at early clobber slot must be "
1509             "redefined by an EC def in the same instruction", EndMBB, LR);
1510      *OS << S << '\n';
1511    }
1512  }
1513
1514  // The following checks only apply to virtual registers. Physreg liveness
1515  // is too weird to check.
1516  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1517    // A live segment can end with either a redefinition, a kill flag on a
1518    // use, or a dead flag on a def.
1519    bool hasRead = false;
1520    bool hasDeadDef = false;
1521    for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1522      if (!MOI->isReg() || MOI->getReg() != Reg)
1523        continue;
1524      if (MOI->readsReg())
1525        hasRead = true;
1526      if (MOI->isDef() && MOI->isDead())
1527        hasDeadDef = true;
1528    }
1529
1530    if (S.end.isDead()) {
1531      if (!hasDeadDef) {
1532        report("Instruction doesn't have a dead def operand", MI);
1533        *OS << S << " in " << LR << '\n';
1534      }
1535    } else {
1536      if (!hasRead) {
1537        report("Instruction ending live segment doesn't read the register", MI);
1538        *OS << S << " in " << LR << '\n';
1539      }
1540    }
1541  }
1542
1543  // Now check all the basic blocks in this live segment.
1544  MachineFunction::const_iterator MFI = MBB;
1545  // Is this live segment the beginning of a non-PHIDef VN?
1546  if (S.start == VNI->def && !VNI->isPHIDef()) {
1547    // Not live-in to any blocks.
1548    if (MBB == EndMBB)
1549      return;
1550    // Skip this block.
1551    ++MFI;
1552  }
1553  for (;;) {
1554    assert(LiveInts->isLiveInToMBB(LR, MFI));
1555    // We don't know how to track physregs into a landing pad.
1556    if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1557        MFI->isLandingPad()) {
1558      if (&*MFI == EndMBB)
1559        break;
1560      ++MFI;
1561      continue;
1562    }
1563
1564    // Is VNI a PHI-def in the current block?
1565    bool IsPHI = VNI->isPHIDef() &&
1566      VNI->def == LiveInts->getMBBStartIdx(MFI);
1567
1568    // Check that VNI is live-out of all predecessors.
1569    for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1570         PE = MFI->pred_end(); PI != PE; ++PI) {
1571      SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1572      const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1573
1574      // All predecessors must have a live-out value.
1575      if (!PVNI) {
1576        report("Register not marked live out of predecessor", *PI, LR);
1577        *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1578            << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1579            << PEnd << '\n';
1580        continue;
1581      }
1582
1583      // Only PHI-defs can take different predecessor values.
1584      if (!IsPHI && PVNI != VNI) {
1585        report("Different value live out of predecessor", *PI, LR);
1586        *OS << "Valno #" << PVNI->id << " live out of BB#"
1587            << (*PI)->getNumber() << '@' << PEnd
1588            << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1589            << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
1590      }
1591    }
1592    if (&*MFI == EndMBB)
1593      break;
1594    ++MFI;
1595  }
1596}
1597
1598void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) {
1599  for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end();
1600       I != E; ++I)
1601    verifyLiveRangeValue(LR, *I, Reg);
1602
1603  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1604    verifyLiveRangeSegment(LR, I, Reg);
1605}
1606
1607void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1608  verifyLiveRange(LI, LI.reg);
1609
1610  // Check the LI only has one connected component.
1611  if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1612    ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1613    unsigned NumComp = ConEQ.Classify(&LI);
1614    if (NumComp > 1) {
1615      report("Multiple connected components in live interval", MF, LI);
1616      for (unsigned comp = 0; comp != NumComp; ++comp) {
1617        *OS << comp << ": valnos";
1618        for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1619             E = LI.vni_end(); I!=E; ++I)
1620          if (comp == ConEQ.getEqClass(*I))
1621            *OS << ' ' << (*I)->id;
1622        *OS << '\n';
1623      }
1624    }
1625  }
1626}
1627
1628namespace {
1629  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1630  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1631  // value is zero.
1632  // We use a bool plus an integer to capture the stack state.
1633  struct StackStateOfBB {
1634    StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1635      ExitIsSetup(false) { }
1636    StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1637      EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1638      ExitIsSetup(ExitSetup) { }
1639    // Can be negative, which means we are setting up a frame.
1640    int EntryValue;
1641    int ExitValue;
1642    bool EntryIsSetup;
1643    bool ExitIsSetup;
1644  };
1645}
1646
1647/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1648/// by a FrameDestroy <n>, stack adjustments are identical on all
1649/// CFG edges to a merge point, and frame is destroyed at end of a return block.
1650void MachineVerifier::verifyStackFrame() {
1651  int FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
1652  int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1653
1654  SmallVector<StackStateOfBB, 8> SPState;
1655  SPState.resize(MF->getNumBlockIDs());
1656  SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1657
1658  // Visit the MBBs in DFS order.
1659  for (df_ext_iterator<const MachineFunction*,
1660                       SmallPtrSet<const MachineBasicBlock*, 8> >
1661       DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1662       DFI != DFE; ++DFI) {
1663    const MachineBasicBlock *MBB = *DFI;
1664
1665    StackStateOfBB BBState;
1666    // Check the exit state of the DFS stack predecessor.
1667    if (DFI.getPathLength() >= 2) {
1668      const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1669      assert(Reachable.count(StackPred) &&
1670             "DFS stack predecessor is already visited.\n");
1671      BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1672      BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1673      BBState.ExitValue = BBState.EntryValue;
1674      BBState.ExitIsSetup = BBState.EntryIsSetup;
1675    }
1676
1677    // Update stack state by checking contents of MBB.
1678    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
1679         I != E; ++I) {
1680      if (I->getOpcode() == FrameSetupOpcode) {
1681        // The first operand of a FrameOpcode should be i32.
1682        int Size = I->getOperand(0).getImm();
1683        assert(Size >= 0 &&
1684          "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1685
1686        if (BBState.ExitIsSetup)
1687          report("FrameSetup is after another FrameSetup", I);
1688        BBState.ExitValue -= Size;
1689        BBState.ExitIsSetup = true;
1690      }
1691
1692      if (I->getOpcode() == FrameDestroyOpcode) {
1693        // The first operand of a FrameOpcode should be i32.
1694        int Size = I->getOperand(0).getImm();
1695        assert(Size >= 0 &&
1696          "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1697
1698        if (!BBState.ExitIsSetup)
1699          report("FrameDestroy is not after a FrameSetup", I);
1700        int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1701                                               BBState.ExitValue;
1702        if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1703          report("FrameDestroy <n> is after FrameSetup <m>", I);
1704          *OS << "FrameDestroy <" << Size << "> is after FrameSetup <"
1705              << AbsSPAdj << ">.\n";
1706        }
1707        BBState.ExitValue += Size;
1708        BBState.ExitIsSetup = false;
1709      }
1710    }
1711    SPState[MBB->getNumber()] = BBState;
1712
1713    // Make sure the exit state of any predecessor is consistent with the entry
1714    // state.
1715    for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
1716         E = MBB->pred_end(); I != E; ++I) {
1717      if (Reachable.count(*I) &&
1718          (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
1719           SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
1720        report("The exit stack state of a predecessor is inconsistent.", MBB);
1721        *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
1722            << SPState[(*I)->getNumber()].ExitValue << ", "
1723            << SPState[(*I)->getNumber()].ExitIsSetup
1724            << "), while BB#" << MBB->getNumber() << " has entry state ("
1725            << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
1726      }
1727    }
1728
1729    // Make sure the entry state of any successor is consistent with the exit
1730    // state.
1731    for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
1732         E = MBB->succ_end(); I != E; ++I) {
1733      if (Reachable.count(*I) &&
1734          (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
1735           SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
1736        report("The entry stack state of a successor is inconsistent.", MBB);
1737        *OS << "Successor BB#" << (*I)->getNumber() << " has entry state ("
1738            << SPState[(*I)->getNumber()].EntryValue << ", "
1739            << SPState[(*I)->getNumber()].EntryIsSetup
1740            << "), while BB#" << MBB->getNumber() << " has exit state ("
1741            << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
1742      }
1743    }
1744
1745    // Make sure a basic block with return ends with zero stack adjustment.
1746    if (!MBB->empty() && MBB->back().isReturn()) {
1747      if (BBState.ExitIsSetup)
1748        report("A return block ends with a FrameSetup.", MBB);
1749      if (BBState.ExitValue)
1750        report("A return block ends with a nonzero stack adjustment.", MBB);
1751    }
1752  }
1753}
1754