MachineVerifier.cpp revision 62679fb6f8f1555afc9617e05301e5feb0b8dd7e
1//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Function.h"
27#include "llvm/CodeGen/LiveVariables.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineMemOperand.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/ADT/DenseSet.h"
37#include "llvm/ADT/SetOperations.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42using namespace llvm;
43
44namespace {
45  struct MachineVerifier {
46
47    MachineVerifier(Pass *pass, bool allowDoubleDefs) :
48      PASS(pass),
49      allowVirtDoubleDefs(allowDoubleDefs),
50      allowPhysDoubleDefs(true),
51      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
52      {}
53
54    bool runOnMachineFunction(MachineFunction &MF);
55
56    Pass *const PASS;
57    const bool allowVirtDoubleDefs;
58    const bool allowPhysDoubleDefs;
59
60    const char *const OutFileName;
61    raw_ostream *OS;
62    const MachineFunction *MF;
63    const TargetMachine *TM;
64    const TargetRegisterInfo *TRI;
65    const MachineRegisterInfo *MRI;
66
67    unsigned foundErrors;
68
69    typedef SmallVector<unsigned, 16> RegVector;
70    typedef DenseSet<unsigned> RegSet;
71    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
72
73    BitVector regsReserved;
74    RegSet regsLive;
75    RegVector regsDefined, regsDead, regsKilled;
76    RegSet regsLiveInButUnused;
77
78    // Add Reg and any sub-registers to RV
79    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
80      RV.push_back(Reg);
81      if (TargetRegisterInfo::isPhysicalRegister(Reg))
82        for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
83          RV.push_back(*R);
84    }
85
86    struct BBInfo {
87      // Is this MBB reachable from the MF entry point?
88      bool reachable;
89
90      // Vregs that must be live in because they are used without being
91      // defined. Map value is the user.
92      RegMap vregsLiveIn;
93
94      // Vregs that must be dead in because they are defined without being
95      // killed first. Map value is the defining instruction.
96      RegMap vregsDeadIn;
97
98      // Regs killed in MBB. They may be defined again, and will then be in both
99      // regsKilled and regsLiveOut.
100      RegSet regsKilled;
101
102      // Regs defined in MBB and live out. Note that vregs passing through may
103      // be live out without being mentioned here.
104      RegSet regsLiveOut;
105
106      // Vregs that pass through MBB untouched. This set is disjoint from
107      // regsKilled and regsLiveOut.
108      RegSet vregsPassed;
109
110      // Vregs that must pass through MBB because they are needed by a successor
111      // block. This set is disjoint from regsLiveOut.
112      RegSet vregsRequired;
113
114      BBInfo() : reachable(false) {}
115
116      // Add register to vregsPassed if it belongs there. Return true if
117      // anything changed.
118      bool addPassed(unsigned Reg) {
119        if (!TargetRegisterInfo::isVirtualRegister(Reg))
120          return false;
121        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
122          return false;
123        return vregsPassed.insert(Reg).second;
124      }
125
126      // Same for a full set.
127      bool addPassed(const RegSet &RS) {
128        bool changed = false;
129        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
130          if (addPassed(*I))
131            changed = true;
132        return changed;
133      }
134
135      // Add register to vregsRequired if it belongs there. Return true if
136      // anything changed.
137      bool addRequired(unsigned Reg) {
138        if (!TargetRegisterInfo::isVirtualRegister(Reg))
139          return false;
140        if (regsLiveOut.count(Reg))
141          return false;
142        return vregsRequired.insert(Reg).second;
143      }
144
145      // Same for a full set.
146      bool addRequired(const RegSet &RS) {
147        bool changed = false;
148        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
149          if (addRequired(*I))
150            changed = true;
151        return changed;
152      }
153
154      // Same for a full map.
155      bool addRequired(const RegMap &RM) {
156        bool changed = false;
157        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
158          if (addRequired(I->first))
159            changed = true;
160        return changed;
161      }
162
163      // Live-out registers are either in regsLiveOut or vregsPassed.
164      bool isLiveOut(unsigned Reg) const {
165        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
166      }
167    };
168
169    // Extra register info per MBB.
170    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
171
172    bool isReserved(unsigned Reg) {
173      return Reg < regsReserved.size() && regsReserved.test(Reg);
174    }
175
176    // Analysis information if available
177    LiveVariables *LiveVars;
178
179    void visitMachineFunctionBefore();
180    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
181    void visitMachineInstrBefore(const MachineInstr *MI);
182    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
183    void visitMachineInstrAfter(const MachineInstr *MI);
184    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
185    void visitMachineFunctionAfter();
186
187    void report(const char *msg, const MachineFunction *MF);
188    void report(const char *msg, const MachineBasicBlock *MBB);
189    void report(const char *msg, const MachineInstr *MI);
190    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
191
192    void markReachable(const MachineBasicBlock *MBB);
193    void calcRegsPassed();
194    void checkPHIOps(const MachineBasicBlock *MBB);
195
196    void calcRegsRequired();
197    void verifyLiveVariables();
198  };
199
200  struct MachineVerifierPass : public MachineFunctionPass {
201    static char ID; // Pass ID, replacement for typeid
202    bool AllowDoubleDefs;
203
204    explicit MachineVerifierPass(bool allowDoubleDefs = false)
205      : MachineFunctionPass(&ID),
206        AllowDoubleDefs(allowDoubleDefs) {}
207
208    void getAnalysisUsage(AnalysisUsage &AU) const {
209      AU.setPreservesAll();
210      MachineFunctionPass::getAnalysisUsage(AU);
211    }
212
213    bool runOnMachineFunction(MachineFunction &MF) {
214      MF.verify(this, AllowDoubleDefs);
215      return false;
216    }
217  };
218
219}
220
221char MachineVerifierPass::ID = 0;
222static RegisterPass<MachineVerifierPass>
223MachineVer("machineverifier", "Verify generated machine code");
224static const PassInfo *const MachineVerifyID = &MachineVer;
225
226FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
227  return new MachineVerifierPass(allowPhysDoubleDefs);
228}
229
230void MachineFunction::verify(Pass *p, bool allowDoubleDefs) const {
231  MachineVerifier(p, allowDoubleDefs)
232    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
233}
234
235bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
236  raw_ostream *OutFile = 0;
237  if (OutFileName) {
238    std::string ErrorInfo;
239    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
240                                 raw_fd_ostream::F_Append);
241    if (!ErrorInfo.empty()) {
242      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
243      exit(1);
244    }
245
246    OS = OutFile;
247  } else {
248    OS = &errs();
249  }
250
251  foundErrors = 0;
252
253  this->MF = &MF;
254  TM = &MF.getTarget();
255  TRI = TM->getRegisterInfo();
256  MRI = &MF.getRegInfo();
257
258  if (PASS) {
259    LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
260  } else {
261    LiveVars = NULL;
262  }
263
264  visitMachineFunctionBefore();
265  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
266       MFI!=MFE; ++MFI) {
267    visitMachineBasicBlockBefore(MFI);
268    for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
269           MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
270      visitMachineInstrBefore(MBBI);
271      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
272        visitMachineOperand(&MBBI->getOperand(I), I);
273      visitMachineInstrAfter(MBBI);
274    }
275    visitMachineBasicBlockAfter(MFI);
276  }
277  visitMachineFunctionAfter();
278
279  if (OutFile)
280    delete OutFile;
281  else if (foundErrors)
282    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
283
284  // Clean up.
285  regsLive.clear();
286  regsDefined.clear();
287  regsDead.clear();
288  regsKilled.clear();
289  regsLiveInButUnused.clear();
290  MBBInfoMap.clear();
291
292  return false;                 // no changes
293}
294
295void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
296  assert(MF);
297  *OS << '\n';
298  if (!foundErrors++)
299    MF->print(*OS);
300  *OS << "*** Bad machine code: " << msg << " ***\n"
301      << "- function:    " << MF->getFunction()->getNameStr() << "\n";
302}
303
304void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
305  assert(MBB);
306  report(msg, MBB->getParent());
307  *OS << "- basic block: " << MBB->getName()
308      << " " << (void*)MBB
309      << " (BB#" << MBB->getNumber() << ")\n";
310}
311
312void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
313  assert(MI);
314  report(msg, MI->getParent());
315  *OS << "- instruction: ";
316  MI->print(*OS, TM);
317}
318
319void MachineVerifier::report(const char *msg,
320                             const MachineOperand *MO, unsigned MONum) {
321  assert(MO);
322  report(msg, MO->getParent());
323  *OS << "- operand " << MONum << ":   ";
324  MO->print(*OS, TM);
325  *OS << "\n";
326}
327
328void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
329  BBInfo &MInfo = MBBInfoMap[MBB];
330  if (!MInfo.reachable) {
331    MInfo.reachable = true;
332    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
333           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
334      markReachable(*SuI);
335  }
336}
337
338void MachineVerifier::visitMachineFunctionBefore() {
339  regsReserved = TRI->getReservedRegs(*MF);
340
341  // A sub-register of a reserved register is also reserved
342  for (int Reg = regsReserved.find_first(); Reg>=0;
343       Reg = regsReserved.find_next(Reg)) {
344    for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
345      // FIXME: This should probably be:
346      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
347      regsReserved.set(*Sub);
348    }
349  }
350  markReachable(&MF->front());
351}
352
353// Does iterator point to a and b as the first two elements?
354static bool matchPair(MachineBasicBlock::const_succ_iterator i,
355                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
356  if (*i == a)
357    return *++i == b;
358  if (*i == b)
359    return *++i == a;
360  return false;
361}
362
363void
364MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
365  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
366
367  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
368  MachineBasicBlock *TBB = 0, *FBB = 0;
369  SmallVector<MachineOperand, 4> Cond;
370  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
371                          TBB, FBB, Cond)) {
372    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
373    // check whether its answers match up with reality.
374    if (!TBB && !FBB) {
375      // Block falls through to its successor.
376      MachineFunction::const_iterator MBBI = MBB;
377      ++MBBI;
378      if (MBBI == MF->end()) {
379        // It's possible that the block legitimately ends with a noreturn
380        // call or an unreachable, in which case it won't actually fall
381        // out the bottom of the function.
382      } else if (MBB->succ_empty()) {
383        // It's possible that the block legitimately ends with a noreturn
384        // call or an unreachable, in which case it won't actuall fall
385        // out of the block.
386      } else if (MBB->succ_size() != 1) {
387        report("MBB exits via unconditional fall-through but doesn't have "
388               "exactly one CFG successor!", MBB);
389      } else if (MBB->succ_begin()[0] != MBBI) {
390        report("MBB exits via unconditional fall-through but its successor "
391               "differs from its CFG successor!", MBB);
392      }
393      if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
394        report("MBB exits via unconditional fall-through but ends with a "
395               "barrier instruction!", MBB);
396      }
397      if (!Cond.empty()) {
398        report("MBB exits via unconditional fall-through but has a condition!",
399               MBB);
400      }
401    } else if (TBB && !FBB && Cond.empty()) {
402      // Block unconditionally branches somewhere.
403      if (MBB->succ_size() != 1) {
404        report("MBB exits via unconditional branch but doesn't have "
405               "exactly one CFG successor!", MBB);
406      } else if (MBB->succ_begin()[0] != TBB) {
407        report("MBB exits via unconditional branch but the CFG "
408               "successor doesn't match the actual successor!", MBB);
409      }
410      if (MBB->empty()) {
411        report("MBB exits via unconditional branch but doesn't contain "
412               "any instructions!", MBB);
413      } else if (!MBB->back().getDesc().isBarrier()) {
414        report("MBB exits via unconditional branch but doesn't end with a "
415               "barrier instruction!", MBB);
416      } else if (!MBB->back().getDesc().isTerminator()) {
417        report("MBB exits via unconditional branch but the branch isn't a "
418               "terminator instruction!", MBB);
419      }
420    } else if (TBB && !FBB && !Cond.empty()) {
421      // Block conditionally branches somewhere, otherwise falls through.
422      MachineFunction::const_iterator MBBI = MBB;
423      ++MBBI;
424      if (MBBI == MF->end()) {
425        report("MBB conditionally falls through out of function!", MBB);
426      } if (MBB->succ_size() != 2) {
427        report("MBB exits via conditional branch/fall-through but doesn't have "
428               "exactly two CFG successors!", MBB);
429      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
430        report("MBB exits via conditional branch/fall-through but the CFG "
431               "successors don't match the actual successors!", MBB);
432      }
433      if (MBB->empty()) {
434        report("MBB exits via conditional branch/fall-through but doesn't "
435               "contain any instructions!", MBB);
436      } else if (MBB->back().getDesc().isBarrier()) {
437        report("MBB exits via conditional branch/fall-through but ends with a "
438               "barrier instruction!", MBB);
439      } else if (!MBB->back().getDesc().isTerminator()) {
440        report("MBB exits via conditional branch/fall-through but the branch "
441               "isn't a terminator instruction!", MBB);
442      }
443    } else if (TBB && FBB) {
444      // Block conditionally branches somewhere, otherwise branches
445      // somewhere else.
446      if (MBB->succ_size() != 2) {
447        report("MBB exits via conditional branch/branch but doesn't have "
448               "exactly two CFG successors!", MBB);
449      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
450        report("MBB exits via conditional branch/branch but the CFG "
451               "successors don't match the actual successors!", MBB);
452      }
453      if (MBB->empty()) {
454        report("MBB exits via conditional branch/branch but doesn't "
455               "contain any instructions!", MBB);
456      } else if (!MBB->back().getDesc().isBarrier()) {
457        report("MBB exits via conditional branch/branch but doesn't end with a "
458               "barrier instruction!", MBB);
459      } else if (!MBB->back().getDesc().isTerminator()) {
460        report("MBB exits via conditional branch/branch but the branch "
461               "isn't a terminator instruction!", MBB);
462      }
463      if (Cond.empty()) {
464        report("MBB exits via conditinal branch/branch but there's no "
465               "condition!", MBB);
466      }
467    } else {
468      report("AnalyzeBranch returned invalid data!", MBB);
469    }
470  }
471
472  regsLive.clear();
473  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
474         E = MBB->livein_end(); I != E; ++I) {
475    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
476      report("MBB live-in list contains non-physical register", MBB);
477      continue;
478    }
479    regsLive.insert(*I);
480    for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
481      regsLive.insert(*R);
482  }
483  regsLiveInButUnused = regsLive;
484
485  const MachineFrameInfo *MFI = MF->getFrameInfo();
486  assert(MFI && "Function has no frame info");
487  BitVector PR = MFI->getPristineRegs(MBB);
488  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
489    regsLive.insert(I);
490    for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
491      regsLive.insert(*R);
492  }
493
494  regsKilled.clear();
495  regsDefined.clear();
496}
497
498void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
499  const TargetInstrDesc &TI = MI->getDesc();
500  if (MI->getNumOperands() < TI.getNumOperands()) {
501    report("Too few operands", MI);
502    *OS << TI.getNumOperands() << " operands expected, but "
503        << MI->getNumExplicitOperands() << " given.\n";
504  }
505
506  // Check the MachineMemOperands for basic consistency.
507  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
508       E = MI->memoperands_end(); I != E; ++I) {
509    if ((*I)->isLoad() && !TI.mayLoad())
510      report("Missing mayLoad flag", MI);
511    if ((*I)->isStore() && !TI.mayStore())
512      report("Missing mayStore flag", MI);
513  }
514}
515
516void
517MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
518  const MachineInstr *MI = MO->getParent();
519  const TargetInstrDesc &TI = MI->getDesc();
520
521  // The first TI.NumDefs operands must be explicit register defines
522  if (MONum < TI.getNumDefs()) {
523    if (!MO->isReg())
524      report("Explicit definition must be a register", MO, MONum);
525    else if (!MO->isDef())
526      report("Explicit definition marked as use", MO, MONum);
527    else if (MO->isImplicit())
528      report("Explicit definition marked as implicit", MO, MONum);
529  } else if (MONum < TI.getNumOperands()) {
530    if (MO->isReg()) {
531      if (MO->isDef())
532        report("Explicit operand marked as def", MO, MONum);
533      if (MO->isImplicit())
534        report("Explicit operand marked as implicit", MO, MONum);
535    }
536  } else {
537    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
538    if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg())
539      report("Extra explicit operand on non-variadic instruction", MO, MONum);
540  }
541
542  switch (MO->getType()) {
543  case MachineOperand::MO_Register: {
544    const unsigned Reg = MO->getReg();
545    if (!Reg)
546      return;
547
548    // Check Live Variables.
549    if (MO->isUndef()) {
550      // An <undef> doesn't refer to any register, so just skip it.
551    } else if (MO->isUse()) {
552      regsLiveInButUnused.erase(Reg);
553
554      bool isKill = false;
555      unsigned defIdx;
556      if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
557        // A two-addr use counts as a kill if use and def are the same.
558        unsigned DefReg = MI->getOperand(defIdx).getReg();
559        if (Reg == DefReg) {
560          isKill = true;
561          // ANd in that case an explicit kill flag is not allowed.
562          if (MO->isKill())
563            report("Illegal kill flag on two-address instruction operand",
564                   MO, MONum);
565        } else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
566          report("Two-address instruction operands must be identical",
567                 MO, MONum);
568        }
569      } else
570        isKill = MO->isKill();
571
572      if (isKill) {
573        addRegWithSubRegs(regsKilled, Reg);
574
575        // Check that LiveVars knows this kill
576        if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg)) {
577          LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
578          if (std::find(VI.Kills.begin(),
579                        VI.Kills.end(), MI) == VI.Kills.end())
580            report("Kill missing from LiveVariables", MO, MONum);
581        }
582      }
583
584      // Use of a dead register.
585      if (!regsLive.count(Reg)) {
586        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
587          // Reserved registers may be used even when 'dead'.
588          if (!isReserved(Reg))
589            report("Using an undefined physical register", MO, MONum);
590        } else {
591          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
592          // We don't know which virtual registers are live in, so only complain
593          // if vreg was killed in this MBB. Otherwise keep track of vregs that
594          // must be live in. PHI instructions are handled separately.
595          if (MInfo.regsKilled.count(Reg))
596            report("Using a killed virtual register", MO, MONum);
597          else if (!MI->isPHI())
598            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
599        }
600      }
601    } else {
602      assert(MO->isDef());
603      // Register defined.
604      // TODO: verify that earlyclobber ops are not used.
605      if (MO->isDead())
606        addRegWithSubRegs(regsDead, Reg);
607      else
608        addRegWithSubRegs(regsDefined, Reg);
609    }
610
611    // Check register classes.
612    if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
613      const TargetOperandInfo &TOI = TI.OpInfo[MONum];
614      unsigned SubIdx = MO->getSubReg();
615
616      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
617        unsigned sr = Reg;
618        if (SubIdx) {
619          unsigned s = TRI->getSubReg(Reg, SubIdx);
620          if (!s) {
621            report("Invalid subregister index for physical register",
622                   MO, MONum);
623            return;
624          }
625          sr = s;
626        }
627        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
628          if (!DRC->contains(sr)) {
629            report("Illegal physical register for instruction", MO, MONum);
630            *OS << TRI->getName(sr) << " is not a "
631                << DRC->getName() << " register.\n";
632          }
633        }
634      } else {
635        // Virtual register.
636        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
637        if (SubIdx) {
638          const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx);
639          if (!SRC) {
640            report("Invalid subregister index for virtual register", MO, MONum);
641            *OS << "Register class " << RC->getName()
642                << " does not support subreg index " << SubIdx << "\n";
643            return;
644          }
645          RC = SRC;
646        }
647        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
648          if (RC != DRC && !RC->hasSuperClass(DRC)) {
649            report("Illegal virtual register for instruction", MO, MONum);
650            *OS << "Expected a " << DRC->getName() << " register, but got a "
651                << RC->getName() << " register\n";
652          }
653        }
654      }
655    }
656    break;
657  }
658
659  case MachineOperand::MO_MachineBasicBlock:
660    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
661      report("PHI operand is not in the CFG", MO, MONum);
662    break;
663
664  default:
665    break;
666  }
667}
668
669void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
670  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
671  set_union(MInfo.regsKilled, regsKilled);
672  set_subtract(regsLive, regsKilled);
673  regsKilled.clear();
674
675  // Verify that both <def> and <def,dead> operands refer to dead registers.
676  RegVector defs(regsDefined);
677  defs.append(regsDead.begin(), regsDead.end());
678
679  for (RegVector::const_iterator I = defs.begin(), E = defs.end();
680       I != E; ++I) {
681    if (regsLive.count(*I)) {
682      if (TargetRegisterInfo::isPhysicalRegister(*I)) {
683        if (!allowPhysDoubleDefs && !isReserved(*I) &&
684            !regsLiveInButUnused.count(*I)) {
685          report("Redefining a live physical register", MI);
686          *OS << "Register " << TRI->getName(*I)
687              << " was defined but already live.\n";
688        }
689      } else {
690        if (!allowVirtDoubleDefs) {
691          report("Redefining a live virtual register", MI);
692          *OS << "Virtual register %reg" << *I
693              << " was defined but already live.\n";
694        }
695      }
696    } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
697               !MInfo.regsKilled.count(*I)) {
698      // Virtual register defined without being killed first must be dead on
699      // entry.
700      MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
701    }
702  }
703
704  set_subtract(regsLive, regsDead); regsDead.clear();
705  set_union(regsLive, regsDefined); regsDefined.clear();
706}
707
708void
709MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
710  MBBInfoMap[MBB].regsLiveOut = regsLive;
711  regsLive.clear();
712}
713
714// Calculate the largest possible vregsPassed sets. These are the registers that
715// can pass through an MBB live, but may not be live every time. It is assumed
716// that all vregsPassed sets are empty before the call.
717void MachineVerifier::calcRegsPassed() {
718  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
719  // have any vregsPassed.
720  DenseSet<const MachineBasicBlock*> todo;
721  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
722       MFI != MFE; ++MFI) {
723    const MachineBasicBlock &MBB(*MFI);
724    BBInfo &MInfo = MBBInfoMap[&MBB];
725    if (!MInfo.reachable)
726      continue;
727    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
728           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
729      BBInfo &SInfo = MBBInfoMap[*SuI];
730      if (SInfo.addPassed(MInfo.regsLiveOut))
731        todo.insert(*SuI);
732    }
733  }
734
735  // Iteratively push vregsPassed to successors. This will converge to the same
736  // final state regardless of DenseSet iteration order.
737  while (!todo.empty()) {
738    const MachineBasicBlock *MBB = *todo.begin();
739    todo.erase(MBB);
740    BBInfo &MInfo = MBBInfoMap[MBB];
741    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
742           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
743      if (*SuI == MBB)
744        continue;
745      BBInfo &SInfo = MBBInfoMap[*SuI];
746      if (SInfo.addPassed(MInfo.vregsPassed))
747        todo.insert(*SuI);
748    }
749  }
750}
751
752// Calculate the set of virtual registers that must be passed through each basic
753// block in order to satisfy the requirements of successor blocks. This is very
754// similar to calcRegsPassed, only backwards.
755void MachineVerifier::calcRegsRequired() {
756  // First push live-in regs to predecessors' vregsRequired.
757  DenseSet<const MachineBasicBlock*> todo;
758  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
759       MFI != MFE; ++MFI) {
760    const MachineBasicBlock &MBB(*MFI);
761    BBInfo &MInfo = MBBInfoMap[&MBB];
762    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
763           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
764      BBInfo &PInfo = MBBInfoMap[*PrI];
765      if (PInfo.addRequired(MInfo.vregsLiveIn))
766        todo.insert(*PrI);
767    }
768  }
769
770  // Iteratively push vregsRequired to predecessors. This will converge to the
771  // same final state regardless of DenseSet iteration order.
772  while (!todo.empty()) {
773    const MachineBasicBlock *MBB = *todo.begin();
774    todo.erase(MBB);
775    BBInfo &MInfo = MBBInfoMap[MBB];
776    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
777           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
778      if (*PrI == MBB)
779        continue;
780      BBInfo &SInfo = MBBInfoMap[*PrI];
781      if (SInfo.addRequired(MInfo.vregsRequired))
782        todo.insert(*PrI);
783    }
784  }
785}
786
787// Check PHI instructions at the beginning of MBB. It is assumed that
788// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
789void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
790  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
791       BBI != BBE && BBI->isPHI(); ++BBI) {
792    DenseSet<const MachineBasicBlock*> seen;
793
794    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
795      unsigned Reg = BBI->getOperand(i).getReg();
796      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
797      if (!Pre->isSuccessor(MBB))
798        continue;
799      seen.insert(Pre);
800      BBInfo &PrInfo = MBBInfoMap[Pre];
801      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
802        report("PHI operand is not live-out from predecessor",
803               &BBI->getOperand(i), i);
804    }
805
806    // Did we see all predecessors?
807    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
808           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
809      if (!seen.count(*PrI)) {
810        report("Missing PHI operand", BBI);
811        *OS << "BB#" << (*PrI)->getNumber()
812            << " is a predecessor according to the CFG.\n";
813      }
814    }
815  }
816}
817
818void MachineVerifier::visitMachineFunctionAfter() {
819  calcRegsPassed();
820
821  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
822       MFI != MFE; ++MFI) {
823    BBInfo &MInfo = MBBInfoMap[MFI];
824
825    // Skip unreachable MBBs.
826    if (!MInfo.reachable)
827      continue;
828
829    checkPHIOps(MFI);
830
831    // Verify dead-in virtual registers.
832    if (!allowVirtDoubleDefs) {
833      for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
834             PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
835        BBInfo &PrInfo = MBBInfoMap[*PrI];
836        if (!PrInfo.reachable)
837          continue;
838
839        for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
840               E = MInfo.vregsDeadIn.end(); I != E; ++I) {
841          // DeadIn register must be in neither regsLiveOut or vregsPassed of
842          // any predecessor.
843          if (PrInfo.isLiveOut(I->first)) {
844            report("Live-in virtual register redefined", I->second);
845            *OS << "Register %reg" << I->first
846                << " was live-out from predecessor MBB #"
847                << (*PrI)->getNumber() << ".\n";
848          }
849        }
850      }
851    }
852  }
853
854  // Now check LiveVariables info if available
855  if (LiveVars) {
856    calcRegsRequired();
857    verifyLiveVariables();
858  }
859}
860
861void MachineVerifier::verifyLiveVariables() {
862  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
863  for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
864         RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) {
865    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
866    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
867         MFI != MFE; ++MFI) {
868      BBInfo &MInfo = MBBInfoMap[MFI];
869
870      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
871      if (MInfo.vregsRequired.count(Reg)) {
872        if (!VI.AliveBlocks.test(MFI->getNumber())) {
873          report("LiveVariables: Block missing from AliveBlocks", MFI);
874          *OS << "Virtual register %reg" << Reg
875              << " must be live through the block.\n";
876        }
877      } else {
878        if (VI.AliveBlocks.test(MFI->getNumber())) {
879          report("LiveVariables: Block should not be in AliveBlocks", MFI);
880          *OS << "Virtual register %reg" << Reg
881              << " is not needed live through the block.\n";
882        }
883      }
884    }
885  }
886}
887
888
889