MachineVerifier.cpp revision 7569322765651f19eea0609fb082e6b267d5d2b5
1//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/Function.h"
27#include "llvm/CodeGen/LiveIntervalAnalysis.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/CodeGen/MachineFunctionPass.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineMemOperand.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/Passes.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Target/TargetRegisterInfo.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/ADT/DenseSet.h"
38#include "llvm/ADT/SetOperations.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/raw_ostream.h"
43using namespace llvm;
44
45namespace {
46  struct MachineVerifier {
47
48    MachineVerifier(Pass *pass) :
49      PASS(pass),
50      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
51      {}
52
53    bool runOnMachineFunction(MachineFunction &MF);
54
55    Pass *const PASS;
56    const char *const OutFileName;
57    raw_ostream *OS;
58    const MachineFunction *MF;
59    const TargetMachine *TM;
60    const TargetRegisterInfo *TRI;
61    const MachineRegisterInfo *MRI;
62
63    unsigned foundErrors;
64
65    typedef SmallVector<unsigned, 16> RegVector;
66    typedef DenseSet<unsigned> RegSet;
67    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
68
69    BitVector regsReserved;
70    RegSet regsLive;
71    RegVector regsDefined, regsDead, regsKilled;
72    RegSet regsLiveInButUnused;
73
74    // Add Reg and any sub-registers to RV
75    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
76      RV.push_back(Reg);
77      if (TargetRegisterInfo::isPhysicalRegister(Reg))
78        for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
79          RV.push_back(*R);
80    }
81
82    struct BBInfo {
83      // Is this MBB reachable from the MF entry point?
84      bool reachable;
85
86      // Vregs that must be live in because they are used without being
87      // defined. Map value is the user.
88      RegMap vregsLiveIn;
89
90      // Regs killed in MBB. They may be defined again, and will then be in both
91      // regsKilled and regsLiveOut.
92      RegSet regsKilled;
93
94      // Regs defined in MBB and live out. Note that vregs passing through may
95      // be live out without being mentioned here.
96      RegSet regsLiveOut;
97
98      // Vregs that pass through MBB untouched. This set is disjoint from
99      // regsKilled and regsLiveOut.
100      RegSet vregsPassed;
101
102      // Vregs that must pass through MBB because they are needed by a successor
103      // block. This set is disjoint from regsLiveOut.
104      RegSet vregsRequired;
105
106      BBInfo() : reachable(false) {}
107
108      // Add register to vregsPassed if it belongs there. Return true if
109      // anything changed.
110      bool addPassed(unsigned Reg) {
111        if (!TargetRegisterInfo::isVirtualRegister(Reg))
112          return false;
113        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
114          return false;
115        return vregsPassed.insert(Reg).second;
116      }
117
118      // Same for a full set.
119      bool addPassed(const RegSet &RS) {
120        bool changed = false;
121        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
122          if (addPassed(*I))
123            changed = true;
124        return changed;
125      }
126
127      // Add register to vregsRequired if it belongs there. Return true if
128      // anything changed.
129      bool addRequired(unsigned Reg) {
130        if (!TargetRegisterInfo::isVirtualRegister(Reg))
131          return false;
132        if (regsLiveOut.count(Reg))
133          return false;
134        return vregsRequired.insert(Reg).second;
135      }
136
137      // Same for a full set.
138      bool addRequired(const RegSet &RS) {
139        bool changed = false;
140        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141          if (addRequired(*I))
142            changed = true;
143        return changed;
144      }
145
146      // Same for a full map.
147      bool addRequired(const RegMap &RM) {
148        bool changed = false;
149        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
150          if (addRequired(I->first))
151            changed = true;
152        return changed;
153      }
154
155      // Live-out registers are either in regsLiveOut or vregsPassed.
156      bool isLiveOut(unsigned Reg) const {
157        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
158      }
159    };
160
161    // Extra register info per MBB.
162    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
163
164    bool isReserved(unsigned Reg) {
165      return Reg < regsReserved.size() && regsReserved.test(Reg);
166    }
167
168    // Analysis information if available
169    LiveVariables *LiveVars;
170    const LiveIntervals *LiveInts;
171
172    void visitMachineFunctionBefore();
173    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
174    void visitMachineInstrBefore(const MachineInstr *MI);
175    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
176    void visitMachineInstrAfter(const MachineInstr *MI);
177    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
178    void visitMachineFunctionAfter();
179
180    void report(const char *msg, const MachineFunction *MF);
181    void report(const char *msg, const MachineBasicBlock *MBB);
182    void report(const char *msg, const MachineInstr *MI);
183    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
184
185    void markReachable(const MachineBasicBlock *MBB);
186    void calcRegsPassed();
187    void checkPHIOps(const MachineBasicBlock *MBB);
188
189    void calcRegsRequired();
190    void verifyLiveVariables();
191    void verifyLiveIntervals();
192  };
193
194  struct MachineVerifierPass : public MachineFunctionPass {
195    static char ID; // Pass ID, replacement for typeid
196
197    MachineVerifierPass()
198      : MachineFunctionPass(ID) {}
199
200    void getAnalysisUsage(AnalysisUsage &AU) const {
201      AU.setPreservesAll();
202      MachineFunctionPass::getAnalysisUsage(AU);
203    }
204
205    bool runOnMachineFunction(MachineFunction &MF) {
206      MF.verify(this);
207      return false;
208    }
209  };
210
211}
212
213char MachineVerifierPass::ID = 0;
214static RegisterPass<MachineVerifierPass>
215MachineVer("machineverifier", "Verify generated machine code");
216static const PassInfo *const MachineVerifyID = &MachineVer;
217
218FunctionPass *llvm::createMachineVerifierPass() {
219  return new MachineVerifierPass();
220}
221
222void MachineFunction::verify(Pass *p) const {
223  MachineVerifier(p).runOnMachineFunction(const_cast<MachineFunction&>(*this));
224}
225
226bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
227  raw_ostream *OutFile = 0;
228  if (OutFileName) {
229    std::string ErrorInfo;
230    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
231                                 raw_fd_ostream::F_Append);
232    if (!ErrorInfo.empty()) {
233      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
234      exit(1);
235    }
236
237    OS = OutFile;
238  } else {
239    OS = &errs();
240  }
241
242  foundErrors = 0;
243
244  this->MF = &MF;
245  TM = &MF.getTarget();
246  TRI = TM->getRegisterInfo();
247  MRI = &MF.getRegInfo();
248
249  LiveVars = NULL;
250  LiveInts = NULL;
251  if (PASS) {
252    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
253    // We don't want to verify LiveVariables if LiveIntervals is available.
254    if (!LiveInts)
255      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
256  }
257
258  visitMachineFunctionBefore();
259  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
260       MFI!=MFE; ++MFI) {
261    visitMachineBasicBlockBefore(MFI);
262    for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
263           MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
264      visitMachineInstrBefore(MBBI);
265      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
266        visitMachineOperand(&MBBI->getOperand(I), I);
267      visitMachineInstrAfter(MBBI);
268    }
269    visitMachineBasicBlockAfter(MFI);
270  }
271  visitMachineFunctionAfter();
272
273  if (OutFile)
274    delete OutFile;
275  else if (foundErrors)
276    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
277
278  // Clean up.
279  regsLive.clear();
280  regsDefined.clear();
281  regsDead.clear();
282  regsKilled.clear();
283  regsLiveInButUnused.clear();
284  MBBInfoMap.clear();
285
286  return false;                 // no changes
287}
288
289void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
290  assert(MF);
291  *OS << '\n';
292  if (!foundErrors++)
293    MF->print(*OS);
294  *OS << "*** Bad machine code: " << msg << " ***\n"
295      << "- function:    " << MF->getFunction()->getNameStr() << "\n";
296}
297
298void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
299  assert(MBB);
300  report(msg, MBB->getParent());
301  *OS << "- basic block: " << MBB->getName()
302      << " " << (void*)MBB
303      << " (BB#" << MBB->getNumber() << ")\n";
304}
305
306void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
307  assert(MI);
308  report(msg, MI->getParent());
309  *OS << "- instruction: ";
310  MI->print(*OS, TM);
311}
312
313void MachineVerifier::report(const char *msg,
314                             const MachineOperand *MO, unsigned MONum) {
315  assert(MO);
316  report(msg, MO->getParent());
317  *OS << "- operand " << MONum << ":   ";
318  MO->print(*OS, TM);
319  *OS << "\n";
320}
321
322void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
323  BBInfo &MInfo = MBBInfoMap[MBB];
324  if (!MInfo.reachable) {
325    MInfo.reachable = true;
326    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
327           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
328      markReachable(*SuI);
329  }
330}
331
332void MachineVerifier::visitMachineFunctionBefore() {
333  regsReserved = TRI->getReservedRegs(*MF);
334
335  // A sub-register of a reserved register is also reserved
336  for (int Reg = regsReserved.find_first(); Reg>=0;
337       Reg = regsReserved.find_next(Reg)) {
338    for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
339      // FIXME: This should probably be:
340      // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
341      regsReserved.set(*Sub);
342    }
343  }
344  markReachable(&MF->front());
345}
346
347// Does iterator point to a and b as the first two elements?
348static bool matchPair(MachineBasicBlock::const_succ_iterator i,
349                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
350  if (*i == a)
351    return *++i == b;
352  if (*i == b)
353    return *++i == a;
354  return false;
355}
356
357void
358MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
359  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
360
361  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
362  MachineBasicBlock *TBB = 0, *FBB = 0;
363  SmallVector<MachineOperand, 4> Cond;
364  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
365                          TBB, FBB, Cond)) {
366    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
367    // check whether its answers match up with reality.
368    if (!TBB && !FBB) {
369      // Block falls through to its successor.
370      MachineFunction::const_iterator MBBI = MBB;
371      ++MBBI;
372      if (MBBI == MF->end()) {
373        // It's possible that the block legitimately ends with a noreturn
374        // call or an unreachable, in which case it won't actually fall
375        // out the bottom of the function.
376      } else if (MBB->succ_empty()) {
377        // It's possible that the block legitimately ends with a noreturn
378        // call or an unreachable, in which case it won't actuall fall
379        // out of the block.
380      } else if (MBB->succ_size() != 1) {
381        report("MBB exits via unconditional fall-through but doesn't have "
382               "exactly one CFG successor!", MBB);
383      } else if (MBB->succ_begin()[0] != MBBI) {
384        report("MBB exits via unconditional fall-through but its successor "
385               "differs from its CFG successor!", MBB);
386      }
387      if (!MBB->empty() && MBB->back().getDesc().isBarrier() &&
388          !TII->isPredicated(&MBB->back())) {
389        report("MBB exits via unconditional fall-through but ends with a "
390               "barrier instruction!", MBB);
391      }
392      if (!Cond.empty()) {
393        report("MBB exits via unconditional fall-through but has a condition!",
394               MBB);
395      }
396    } else if (TBB && !FBB && Cond.empty()) {
397      // Block unconditionally branches somewhere.
398      if (MBB->succ_size() != 1) {
399        report("MBB exits via unconditional branch but doesn't have "
400               "exactly one CFG successor!", MBB);
401      } else if (MBB->succ_begin()[0] != TBB) {
402        report("MBB exits via unconditional branch but the CFG "
403               "successor doesn't match the actual successor!", MBB);
404      }
405      if (MBB->empty()) {
406        report("MBB exits via unconditional branch but doesn't contain "
407               "any instructions!", MBB);
408      } else if (!MBB->back().getDesc().isBarrier()) {
409        report("MBB exits via unconditional branch but doesn't end with a "
410               "barrier instruction!", MBB);
411      } else if (!MBB->back().getDesc().isTerminator()) {
412        report("MBB exits via unconditional branch but the branch isn't a "
413               "terminator instruction!", MBB);
414      }
415    } else if (TBB && !FBB && !Cond.empty()) {
416      // Block conditionally branches somewhere, otherwise falls through.
417      MachineFunction::const_iterator MBBI = MBB;
418      ++MBBI;
419      if (MBBI == MF->end()) {
420        report("MBB conditionally falls through out of function!", MBB);
421      } if (MBB->succ_size() != 2) {
422        report("MBB exits via conditional branch/fall-through but doesn't have "
423               "exactly two CFG successors!", MBB);
424      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
425        report("MBB exits via conditional branch/fall-through but the CFG "
426               "successors don't match the actual successors!", MBB);
427      }
428      if (MBB->empty()) {
429        report("MBB exits via conditional branch/fall-through but doesn't "
430               "contain any instructions!", MBB);
431      } else if (MBB->back().getDesc().isBarrier()) {
432        report("MBB exits via conditional branch/fall-through but ends with a "
433               "barrier instruction!", MBB);
434      } else if (!MBB->back().getDesc().isTerminator()) {
435        report("MBB exits via conditional branch/fall-through but the branch "
436               "isn't a terminator instruction!", MBB);
437      }
438    } else if (TBB && FBB) {
439      // Block conditionally branches somewhere, otherwise branches
440      // somewhere else.
441      if (MBB->succ_size() != 2) {
442        report("MBB exits via conditional branch/branch but doesn't have "
443               "exactly two CFG successors!", MBB);
444      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
445        report("MBB exits via conditional branch/branch but the CFG "
446               "successors don't match the actual successors!", MBB);
447      }
448      if (MBB->empty()) {
449        report("MBB exits via conditional branch/branch but doesn't "
450               "contain any instructions!", MBB);
451      } else if (!MBB->back().getDesc().isBarrier()) {
452        report("MBB exits via conditional branch/branch but doesn't end with a "
453               "barrier instruction!", MBB);
454      } else if (!MBB->back().getDesc().isTerminator()) {
455        report("MBB exits via conditional branch/branch but the branch "
456               "isn't a terminator instruction!", MBB);
457      }
458      if (Cond.empty()) {
459        report("MBB exits via conditinal branch/branch but there's no "
460               "condition!", MBB);
461      }
462    } else {
463      report("AnalyzeBranch returned invalid data!", MBB);
464    }
465  }
466
467  regsLive.clear();
468  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
469         E = MBB->livein_end(); I != E; ++I) {
470    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
471      report("MBB live-in list contains non-physical register", MBB);
472      continue;
473    }
474    regsLive.insert(*I);
475    for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
476      regsLive.insert(*R);
477  }
478  regsLiveInButUnused = regsLive;
479
480  const MachineFrameInfo *MFI = MF->getFrameInfo();
481  assert(MFI && "Function has no frame info");
482  BitVector PR = MFI->getPristineRegs(MBB);
483  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
484    regsLive.insert(I);
485    for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
486      regsLive.insert(*R);
487  }
488
489  regsKilled.clear();
490  regsDefined.clear();
491}
492
493void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
494  const TargetInstrDesc &TI = MI->getDesc();
495  if (MI->getNumOperands() < TI.getNumOperands()) {
496    report("Too few operands", MI);
497    *OS << TI.getNumOperands() << " operands expected, but "
498        << MI->getNumExplicitOperands() << " given.\n";
499  }
500
501  // Check the MachineMemOperands for basic consistency.
502  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
503       E = MI->memoperands_end(); I != E; ++I) {
504    if ((*I)->isLoad() && !TI.mayLoad())
505      report("Missing mayLoad flag", MI);
506    if ((*I)->isStore() && !TI.mayStore())
507      report("Missing mayStore flag", MI);
508  }
509
510  // Debug values must not have a slot index.
511  // Other instructions must have one.
512  if (LiveInts) {
513    bool mapped = !LiveInts->isNotInMIMap(MI);
514    if (MI->isDebugValue()) {
515      if (mapped)
516        report("Debug instruction has a slot index", MI);
517    } else {
518      if (!mapped)
519        report("Missing slot index", MI);
520    }
521  }
522
523}
524
525void
526MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
527  const MachineInstr *MI = MO->getParent();
528  const TargetInstrDesc &TI = MI->getDesc();
529
530  // The first TI.NumDefs operands must be explicit register defines
531  if (MONum < TI.getNumDefs()) {
532    if (!MO->isReg())
533      report("Explicit definition must be a register", MO, MONum);
534    else if (!MO->isDef())
535      report("Explicit definition marked as use", MO, MONum);
536    else if (MO->isImplicit())
537      report("Explicit definition marked as implicit", MO, MONum);
538  } else if (MONum < TI.getNumOperands()) {
539    if (MO->isReg()) {
540      if (MO->isDef())
541        report("Explicit operand marked as def", MO, MONum);
542      if (MO->isImplicit())
543        report("Explicit operand marked as implicit", MO, MONum);
544    }
545  } else {
546    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
547    if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg())
548      report("Extra explicit operand on non-variadic instruction", MO, MONum);
549  }
550
551  switch (MO->getType()) {
552  case MachineOperand::MO_Register: {
553    const unsigned Reg = MO->getReg();
554    if (!Reg)
555      return;
556
557    // Check Live Variables.
558    if (MO->isUndef()) {
559      // An <undef> doesn't refer to any register, so just skip it.
560    } else if (MO->isUse()) {
561      regsLiveInButUnused.erase(Reg);
562
563      bool isKill = false;
564      unsigned defIdx;
565      if (MI->isRegTiedToDefOperand(MONum, &defIdx)) {
566        // A two-addr use counts as a kill if use and def are the same.
567        unsigned DefReg = MI->getOperand(defIdx).getReg();
568        if (Reg == DefReg) {
569          isKill = true;
570          // ANd in that case an explicit kill flag is not allowed.
571          if (MO->isKill())
572            report("Illegal kill flag on two-address instruction operand",
573                   MO, MONum);
574        } else if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
575          report("Two-address instruction operands must be identical",
576                 MO, MONum);
577        }
578      } else
579        isKill = MO->isKill();
580
581      if (isKill)
582        addRegWithSubRegs(regsKilled, Reg);
583
584      // Check that LiveVars knows this kill.
585      if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
586          MO->isKill()) {
587        LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
588        if (std::find(VI.Kills.begin(),
589                      VI.Kills.end(), MI) == VI.Kills.end())
590          report("Kill missing from LiveVariables", MO, MONum);
591      }
592
593      // Check LiveInts liveness and kill.
594      if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
595        SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getUseIndex();
596        if (LiveInts->hasInterval(Reg)) {
597          const LiveInterval &LI = LiveInts->getInterval(Reg);
598          if (!LI.liveAt(UseIdx)) {
599            report("No live range at use", MO, MONum);
600            *OS << UseIdx << " is not live in " << LI << '\n';
601          }
602          // TODO: Verify isKill == LI.killedAt.
603        } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
604          report("Virtual register has no Live interval", MO, MONum);
605        }
606      }
607
608      // Use of a dead register.
609      if (!regsLive.count(Reg)) {
610        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
611          // Reserved registers may be used even when 'dead'.
612          if (!isReserved(Reg))
613            report("Using an undefined physical register", MO, MONum);
614        } else {
615          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
616          // We don't know which virtual registers are live in, so only complain
617          // if vreg was killed in this MBB. Otherwise keep track of vregs that
618          // must be live in. PHI instructions are handled separately.
619          if (MInfo.regsKilled.count(Reg))
620            report("Using a killed virtual register", MO, MONum);
621          else if (!MI->isPHI())
622            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
623        }
624      }
625    } else {
626      assert(MO->isDef());
627      // Register defined.
628      // TODO: verify that earlyclobber ops are not used.
629      if (MO->isDead())
630        addRegWithSubRegs(regsDead, Reg);
631      else
632        addRegWithSubRegs(regsDefined, Reg);
633
634      // Check LiveInts for a live range, but only for virtual registers.
635      if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
636          !LiveInts->isNotInMIMap(MI)) {
637        SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getDefIndex();
638        if (LiveInts->hasInterval(Reg)) {
639          const LiveInterval &LI = LiveInts->getInterval(Reg);
640          if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx)) {
641            assert(LR->valno && "NULL valno is not allowed");
642            if (LR->valno->def != DefIdx) {
643              report("Inconsistent valno->def", MO, MONum);
644              *OS << "Valno " << LR->valno->id << " is not defined at "
645                  << DefIdx << " in " << LI << '\n';
646            }
647          } else {
648            report("No live range at def", MO, MONum);
649            *OS << DefIdx << " is not live in " << LI << '\n';
650          }
651        } else {
652          report("Virtual register has no Live interval", MO, MONum);
653        }
654      }
655    }
656
657    // Check register classes.
658    if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
659      const TargetOperandInfo &TOI = TI.OpInfo[MONum];
660      unsigned SubIdx = MO->getSubReg();
661
662      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
663        unsigned sr = Reg;
664        if (SubIdx) {
665          unsigned s = TRI->getSubReg(Reg, SubIdx);
666          if (!s) {
667            report("Invalid subregister index for physical register",
668                   MO, MONum);
669            return;
670          }
671          sr = s;
672        }
673        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
674          if (!DRC->contains(sr)) {
675            report("Illegal physical register for instruction", MO, MONum);
676            *OS << TRI->getName(sr) << " is not a "
677                << DRC->getName() << " register.\n";
678          }
679        }
680      } else {
681        // Virtual register.
682        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
683        if (SubIdx) {
684          const TargetRegisterClass *SRC = RC->getSubRegisterRegClass(SubIdx);
685          if (!SRC) {
686            report("Invalid subregister index for virtual register", MO, MONum);
687            *OS << "Register class " << RC->getName()
688                << " does not support subreg index " << SubIdx << "\n";
689            return;
690          }
691          RC = SRC;
692        }
693        if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
694          if (RC != DRC && !RC->hasSuperClass(DRC)) {
695            report("Illegal virtual register for instruction", MO, MONum);
696            *OS << "Expected a " << DRC->getName() << " register, but got a "
697                << RC->getName() << " register\n";
698          }
699        }
700      }
701    }
702    break;
703  }
704
705  case MachineOperand::MO_MachineBasicBlock:
706    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
707      report("PHI operand is not in the CFG", MO, MONum);
708    break;
709
710  default:
711    break;
712  }
713}
714
715void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
716  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
717  set_union(MInfo.regsKilled, regsKilled);
718  set_subtract(regsLive, regsKilled); regsKilled.clear();
719  set_subtract(regsLive, regsDead);   regsDead.clear();
720  set_union(regsLive, regsDefined);   regsDefined.clear();
721}
722
723void
724MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
725  MBBInfoMap[MBB].regsLiveOut = regsLive;
726  regsLive.clear();
727}
728
729// Calculate the largest possible vregsPassed sets. These are the registers that
730// can pass through an MBB live, but may not be live every time. It is assumed
731// that all vregsPassed sets are empty before the call.
732void MachineVerifier::calcRegsPassed() {
733  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
734  // have any vregsPassed.
735  DenseSet<const MachineBasicBlock*> todo;
736  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
737       MFI != MFE; ++MFI) {
738    const MachineBasicBlock &MBB(*MFI);
739    BBInfo &MInfo = MBBInfoMap[&MBB];
740    if (!MInfo.reachable)
741      continue;
742    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
743           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
744      BBInfo &SInfo = MBBInfoMap[*SuI];
745      if (SInfo.addPassed(MInfo.regsLiveOut))
746        todo.insert(*SuI);
747    }
748  }
749
750  // Iteratively push vregsPassed to successors. This will converge to the same
751  // final state regardless of DenseSet iteration order.
752  while (!todo.empty()) {
753    const MachineBasicBlock *MBB = *todo.begin();
754    todo.erase(MBB);
755    BBInfo &MInfo = MBBInfoMap[MBB];
756    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
757           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
758      if (*SuI == MBB)
759        continue;
760      BBInfo &SInfo = MBBInfoMap[*SuI];
761      if (SInfo.addPassed(MInfo.vregsPassed))
762        todo.insert(*SuI);
763    }
764  }
765}
766
767// Calculate the set of virtual registers that must be passed through each basic
768// block in order to satisfy the requirements of successor blocks. This is very
769// similar to calcRegsPassed, only backwards.
770void MachineVerifier::calcRegsRequired() {
771  // First push live-in regs to predecessors' vregsRequired.
772  DenseSet<const MachineBasicBlock*> todo;
773  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
774       MFI != MFE; ++MFI) {
775    const MachineBasicBlock &MBB(*MFI);
776    BBInfo &MInfo = MBBInfoMap[&MBB];
777    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
778           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
779      BBInfo &PInfo = MBBInfoMap[*PrI];
780      if (PInfo.addRequired(MInfo.vregsLiveIn))
781        todo.insert(*PrI);
782    }
783  }
784
785  // Iteratively push vregsRequired to predecessors. This will converge to the
786  // same final state regardless of DenseSet iteration order.
787  while (!todo.empty()) {
788    const MachineBasicBlock *MBB = *todo.begin();
789    todo.erase(MBB);
790    BBInfo &MInfo = MBBInfoMap[MBB];
791    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
792           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
793      if (*PrI == MBB)
794        continue;
795      BBInfo &SInfo = MBBInfoMap[*PrI];
796      if (SInfo.addRequired(MInfo.vregsRequired))
797        todo.insert(*PrI);
798    }
799  }
800}
801
802// Check PHI instructions at the beginning of MBB. It is assumed that
803// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
804void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
805  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
806       BBI != BBE && BBI->isPHI(); ++BBI) {
807    DenseSet<const MachineBasicBlock*> seen;
808
809    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
810      unsigned Reg = BBI->getOperand(i).getReg();
811      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
812      if (!Pre->isSuccessor(MBB))
813        continue;
814      seen.insert(Pre);
815      BBInfo &PrInfo = MBBInfoMap[Pre];
816      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
817        report("PHI operand is not live-out from predecessor",
818               &BBI->getOperand(i), i);
819    }
820
821    // Did we see all predecessors?
822    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
823           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
824      if (!seen.count(*PrI)) {
825        report("Missing PHI operand", BBI);
826        *OS << "BB#" << (*PrI)->getNumber()
827            << " is a predecessor according to the CFG.\n";
828      }
829    }
830  }
831}
832
833void MachineVerifier::visitMachineFunctionAfter() {
834  calcRegsPassed();
835
836  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
837       MFI != MFE; ++MFI) {
838    BBInfo &MInfo = MBBInfoMap[MFI];
839
840    // Skip unreachable MBBs.
841    if (!MInfo.reachable)
842      continue;
843
844    checkPHIOps(MFI);
845  }
846
847  // Now check liveness info if available
848  if (LiveVars || LiveInts)
849    calcRegsRequired();
850  if (LiveVars)
851    verifyLiveVariables();
852  if (LiveInts)
853    verifyLiveIntervals();
854}
855
856void MachineVerifier::verifyLiveVariables() {
857  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
858  for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
859         RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) {
860    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
861    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
862         MFI != MFE; ++MFI) {
863      BBInfo &MInfo = MBBInfoMap[MFI];
864
865      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
866      if (MInfo.vregsRequired.count(Reg)) {
867        if (!VI.AliveBlocks.test(MFI->getNumber())) {
868          report("LiveVariables: Block missing from AliveBlocks", MFI);
869          *OS << "Virtual register %reg" << Reg
870              << " must be live through the block.\n";
871        }
872      } else {
873        if (VI.AliveBlocks.test(MFI->getNumber())) {
874          report("LiveVariables: Block should not be in AliveBlocks", MFI);
875          *OS << "Virtual register %reg" << Reg
876              << " is not needed live through the block.\n";
877        }
878      }
879    }
880  }
881}
882
883void MachineVerifier::verifyLiveIntervals() {
884  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
885  for (LiveIntervals::const_iterator LVI = LiveInts->begin(),
886       LVE = LiveInts->end(); LVI != LVE; ++LVI) {
887    const LiveInterval &LI = *LVI->second;
888    assert(LVI->first == LI.reg && "Invalid reg to interval mapping");
889
890    for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
891         I!=E; ++I) {
892      VNInfo *VNI = *I;
893      const LiveRange *DefLR = LI.getLiveRangeContaining(VNI->def);
894
895      if (!DefLR) {
896        if (!VNI->isUnused()) {
897          report("Valno not live at def and not marked unused", MF);
898          *OS << "Valno #" << VNI->id << " in " << LI << '\n';
899        }
900        continue;
901      }
902
903      if (VNI->isUnused())
904        continue;
905
906      if (DefLR->valno != VNI) {
907        report("Live range at def has different valno", MF);
908        DefLR->print(*OS);
909        *OS << " should use valno #" << VNI->id << " in " << LI << '\n';
910      }
911
912    }
913
914    for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) {
915      const LiveRange &LR = *I;
916      assert(LR.valno && "Live range has no valno");
917
918      if (LR.valno->id >= LI.getNumValNums() ||
919          LR.valno != LI.getValNumInfo(LR.valno->id)) {
920        report("Foreign valno in live range", MF);
921        LR.print(*OS);
922        *OS << " has a valno not in " << LI << '\n';
923      }
924
925      if (LR.valno->isUnused()) {
926        report("Live range valno is marked unused", MF);
927        LR.print(*OS);
928        *OS << " in " << LI << '\n';
929      }
930
931    }
932  }
933}
934
935