PHIElimination.cpp revision 04223909b74fd0634ba26d434fa7fdf2f3c7444f
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIEliminationUtils.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Function.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include <algorithm>
34#include <map>
35using namespace llvm;
36
37namespace {
38  class PHIElimination : public MachineFunctionPass {
39    MachineRegisterInfo *MRI; // Machine register information
40
41  public:
42    static char ID; // Pass identification, replacement for typeid
43    PHIElimination() : MachineFunctionPass(ID) {
44      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
45    }
46
47    virtual bool runOnMachineFunction(MachineFunction &Fn);
48    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
49
50  private:
51    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
52    /// in predecessor basic blocks.
53    ///
54    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
55    void LowerAtomicPHINode(MachineBasicBlock &MBB,
56                            MachineBasicBlock::iterator AfterPHIsIt);
57
58    /// analyzePHINodes - Gather information about the PHI nodes in
59    /// here. In particular, we want to map the number of uses of a virtual
60    /// register which is used in a PHI node. We map that to the BB the
61    /// vreg is coming from. This is used later to determine when the vreg
62    /// is killed in the BB.
63    ///
64    void analyzePHINodes(const MachineFunction& Fn);
65
66    /// Split critical edges where necessary for good coalescer performance.
67    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
68                       LiveVariables &LV, MachineLoopInfo *MLI);
69
70    typedef std::pair<unsigned, unsigned> BBVRegPair;
71    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
72
73    VRegPHIUse VRegPHIUseCount;
74
75    // Defs of PHI sources which are implicit_def.
76    SmallPtrSet<MachineInstr*, 4> ImpDefs;
77
78    // Map reusable lowered PHI node -> incoming join register.
79    typedef DenseMap<MachineInstr*, unsigned,
80                     MachineInstrExpressionTrait> LoweredPHIMap;
81    LoweredPHIMap LoweredPHIs;
82  };
83}
84
85STATISTIC(NumAtomic, "Number of atomic phis lowered");
86STATISTIC(NumReused, "Number of reused lowered phis");
87
88char PHIElimination::ID = 0;
89INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
90                "Eliminate PHI nodes for register allocation", false, false)
91
92char& llvm::PHIEliminationID = PHIElimination::ID;
93
94void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
95  AU.addPreserved<LiveVariables>();
96  AU.addPreserved<MachineDominatorTree>();
97  AU.addPreserved<MachineLoopInfo>();
98  MachineFunctionPass::getAnalysisUsage(AU);
99}
100
101bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
102  MRI = &MF.getRegInfo();
103
104  bool Changed = false;
105
106  // Split critical edges to help the coalescer
107  if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
108    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
109    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
110      Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
111  }
112
113  // Populate VRegPHIUseCount
114  analyzePHINodes(MF);
115
116  // Eliminate PHI instructions by inserting copies into predecessor blocks.
117  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
118    Changed |= EliminatePHINodes(MF, *I);
119
120  // Remove dead IMPLICIT_DEF instructions.
121  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
122         E = ImpDefs.end(); I != E; ++I) {
123    MachineInstr *DefMI = *I;
124    unsigned DefReg = DefMI->getOperand(0).getReg();
125    if (MRI->use_nodbg_empty(DefReg))
126      DefMI->eraseFromParent();
127  }
128
129  // Clean up the lowered PHI instructions.
130  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
131       I != E; ++I)
132    MF.DeleteMachineInstr(I->first);
133
134  LoweredPHIs.clear();
135  ImpDefs.clear();
136  VRegPHIUseCount.clear();
137
138  return Changed;
139}
140
141/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
142/// predecessor basic blocks.
143///
144bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
145                                             MachineBasicBlock &MBB) {
146  if (MBB.empty() || !MBB.front().isPHI())
147    return false;   // Quick exit for basic blocks without PHIs.
148
149  // Get an iterator to the first instruction after the last PHI node (this may
150  // also be the end of the basic block).
151  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
152
153  while (MBB.front().isPHI())
154    LowerAtomicPHINode(MBB, AfterPHIsIt);
155
156  return true;
157}
158
159/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
160/// are implicit_def's.
161static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
162                                         const MachineRegisterInfo *MRI) {
163  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
164    unsigned SrcReg = MPhi->getOperand(i).getReg();
165    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
166    if (!DefMI || !DefMI->isImplicitDef())
167      return false;
168  }
169  return true;
170}
171
172
173
174/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
175/// under the assuption that it needs to be lowered in a way that supports
176/// atomic execution of PHIs.  This lowering method is always correct all of the
177/// time.
178///
179void PHIElimination::LowerAtomicPHINode(
180                                      MachineBasicBlock &MBB,
181                                      MachineBasicBlock::iterator AfterPHIsIt) {
182  ++NumAtomic;
183  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
184  MachineInstr *MPhi = MBB.remove(MBB.begin());
185
186  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
187  unsigned DestReg = MPhi->getOperand(0).getReg();
188  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
189  bool isDead = MPhi->getOperand(0).isDead();
190
191  // Create a new register for the incoming PHI arguments.
192  MachineFunction &MF = *MBB.getParent();
193  unsigned IncomingReg = 0;
194  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
195
196  // Insert a register to register copy at the top of the current block (but
197  // after any remaining phi nodes) which copies the new incoming register
198  // into the phi node destination.
199  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
200  if (isSourceDefinedByImplicitDef(MPhi, MRI))
201    // If all sources of a PHI node are implicit_def, just emit an
202    // implicit_def instead of a copy.
203    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
204            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
205  else {
206    // Can we reuse an earlier PHI node? This only happens for critical edges,
207    // typically those created by tail duplication.
208    unsigned &entry = LoweredPHIs[MPhi];
209    if (entry) {
210      // An identical PHI node was already lowered. Reuse the incoming register.
211      IncomingReg = entry;
212      reusedIncoming = true;
213      ++NumReused;
214      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
215    } else {
216      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
217      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
218    }
219    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
220            TII->get(TargetOpcode::COPY), DestReg)
221      .addReg(IncomingReg);
222  }
223
224  // Update live variable information if there is any.
225  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
226  if (LV) {
227    MachineInstr *PHICopy = prior(AfterPHIsIt);
228
229    if (IncomingReg) {
230      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
231
232      // Increment use count of the newly created virtual register.
233      VI.NumUses++;
234      LV->setPHIJoin(IncomingReg);
235
236      // When we are reusing the incoming register, it may already have been
237      // killed in this block. The old kill will also have been inserted at
238      // AfterPHIsIt, so it appears before the current PHICopy.
239      if (reusedIncoming)
240        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
241          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
242          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
243          DEBUG(MBB.dump());
244        }
245
246      // Add information to LiveVariables to know that the incoming value is
247      // killed.  Note that because the value is defined in several places (once
248      // each for each incoming block), the "def" block and instruction fields
249      // for the VarInfo is not filled in.
250      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
251    }
252
253    // Since we are going to be deleting the PHI node, if it is the last use of
254    // any registers, or if the value itself is dead, we need to move this
255    // information over to the new copy we just inserted.
256    LV->removeVirtualRegistersKilled(MPhi);
257
258    // If the result is dead, update LV.
259    if (isDead) {
260      LV->addVirtualRegisterDead(DestReg, PHICopy);
261      LV->removeVirtualRegisterDead(DestReg, MPhi);
262    }
263  }
264
265  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
266  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
267    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
268                                 MPhi->getOperand(i).getReg())];
269
270  // Now loop over all of the incoming arguments, changing them to copy into the
271  // IncomingReg register in the corresponding predecessor basic block.
272  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
273  for (int i = NumSrcs - 1; i >= 0; --i) {
274    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
275    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
276
277    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
278           "Machine PHI Operands must all be virtual registers!");
279
280    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
281    // path the PHI.
282    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
283
284    // If source is defined by an implicit def, there is no need to insert a
285    // copy.
286    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
287    if (DefMI->isImplicitDef()) {
288      ImpDefs.insert(DefMI);
289      continue;
290    }
291
292    // Check to make sure we haven't already emitted the copy for this block.
293    // This can happen because PHI nodes may have multiple entries for the same
294    // basic block.
295    if (!MBBsInsertedInto.insert(&opBlock))
296      continue;  // If the copy has already been emitted, we're done.
297
298    // Find a safe location to insert the copy, this may be the first terminator
299    // in the block (or end()).
300    MachineBasicBlock::iterator InsertPos =
301      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
302
303    // Insert the copy.
304    if (!reusedIncoming && IncomingReg)
305      BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
306              TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
307
308    // Now update live variable information if we have it.  Otherwise we're done
309    if (!LV) continue;
310
311    // We want to be able to insert a kill of the register if this PHI (aka, the
312    // copy we just inserted) is the last use of the source value.  Live
313    // variable analysis conservatively handles this by saying that the value is
314    // live until the end of the block the PHI entry lives in.  If the value
315    // really is dead at the PHI copy, there will be no successor blocks which
316    // have the value live-in.
317
318    // Also check to see if this register is in use by another PHI node which
319    // has not yet been eliminated.  If so, it will be killed at an appropriate
320    // point later.
321
322    // Is it used by any PHI instructions in this block?
323    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
324
325    // Okay, if we now know that the value is not live out of the block, we can
326    // add a kill marker in this block saying that it kills the incoming value!
327    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
328      // In our final twist, we have to decide which instruction kills the
329      // register.  In most cases this is the copy, however, the first
330      // terminator instruction at the end of the block may also use the value.
331      // In this case, we should mark *it* as being the killing block, not the
332      // copy.
333      MachineBasicBlock::iterator KillInst;
334      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
335      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
336        KillInst = Term;
337
338        // Check that no other terminators use values.
339#ifndef NDEBUG
340        for (MachineBasicBlock::iterator TI = llvm::next(Term);
341             TI != opBlock.end(); ++TI) {
342          if (TI->isDebugValue())
343            continue;
344          assert(!TI->readsRegister(SrcReg) &&
345                 "Terminator instructions cannot use virtual registers unless"
346                 "they are the first terminator in a block!");
347        }
348#endif
349      } else if (reusedIncoming || !IncomingReg) {
350        // We may have to rewind a bit if we didn't insert a copy this time.
351        KillInst = Term;
352        while (KillInst != opBlock.begin()) {
353          --KillInst;
354          if (KillInst->isDebugValue())
355            continue;
356          if (KillInst->readsRegister(SrcReg))
357            break;
358        }
359      } else {
360        // We just inserted this copy.
361        KillInst = prior(InsertPos);
362      }
363      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
364
365      // Finally, mark it killed.
366      LV->addVirtualRegisterKilled(SrcReg, KillInst);
367
368      // This vreg no longer lives all of the way through opBlock.
369      unsigned opBlockNum = opBlock.getNumber();
370      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
371    }
372  }
373
374  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
375  if (reusedIncoming || !IncomingReg)
376    MF.DeleteMachineInstr(MPhi);
377}
378
379/// analyzePHINodes - Gather information about the PHI nodes in here. In
380/// particular, we want to map the number of uses of a virtual register which is
381/// used in a PHI node. We map that to the BB the vreg is coming from. This is
382/// used later to determine when the vreg is killed in the BB.
383///
384void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
385  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
386       I != E; ++I)
387    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
388         BBI != BBE && BBI->isPHI(); ++BBI)
389      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
390        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
391                                     BBI->getOperand(i).getReg())];
392}
393
394bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
395                                         MachineBasicBlock &MBB,
396                                         LiveVariables &LV,
397                                         MachineLoopInfo *MLI) {
398  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
399    return false;   // Quick exit for basic blocks without PHIs.
400
401  bool Changed = false;
402  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
403       BBI != BBE && BBI->isPHI(); ++BBI) {
404    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
405      unsigned Reg = BBI->getOperand(i).getReg();
406      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
407      // We break edges when registers are live out from the predecessor block
408      // (not considering PHI nodes). If the register is live in to this block
409      // anyway, we would gain nothing from splitting.
410      // Avoid splitting backedges of loops. It would introduce small
411      // out-of-line blocks into the loop which is very bad for code placement.
412      if (PreMBB != &MBB &&
413          !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
414        if (!MLI ||
415            !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
416              MLI->isLoopHeader(&MBB)))
417          Changed |= PreMBB->SplitCriticalEdge(&MBB, this) != 0;
418      }
419    }
420  }
421  return true;
422}
423