PHIElimination.cpp revision 1088317675dd34a1823f427e472fb9e43c616cb1
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/LiveVariables.h"
18#include "llvm/CodeGen/Passes.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Support/Compiler.h"
27#include <algorithm>
28#include <map>
29#include <set>
30using namespace llvm;
31
32STATISTIC(NumAtomic, "Number of atomic phis lowered");
33//STATISTIC(NumSimple, "Number of simple phis lowered");
34
35namespace {
36  struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
37    static char ID; // Pass identification, replacement for typeid
38    PNE() : MachineFunctionPass((intptr_t)&ID) {}
39
40    bool runOnMachineFunction(MachineFunction &Fn) {
41      analyzePHINodes(Fn);
42
43      bool Changed = false;
44
45      // Eliminate PHI instructions by inserting copies into predecessor blocks.
46      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
47        Changed |= EliminatePHINodes(Fn, *I);
48
49      VRegPHIUseCount.clear();
50      return Changed;
51    }
52
53    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
54      AU.addPreserved<LiveVariables>();
55      AU.addPreservedID(MachineLoopInfoID);
56      AU.addPreservedID(MachineDominatorsID);
57      MachineFunctionPass::getAnalysisUsage(AU);
58    }
59
60  private:
61    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
62    /// in predecessor basic blocks.
63    ///
64    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
65    void LowerAtomicPHINode(MachineBasicBlock &MBB,
66                            MachineBasicBlock::iterator AfterPHIsIt);
67
68    /// analyzePHINodes - Gather information about the PHI nodes in
69    /// here. In particular, we want to map the number of uses of a virtual
70    /// register which is used in a PHI node. We map that to the BB the
71    /// vreg is coming from. This is used later to determine when the vreg
72    /// is killed in the BB.
73    ///
74    void analyzePHINodes(const MachineFunction& Fn);
75
76    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
77    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
78
79    VRegPHIUse VRegPHIUseCount;
80  };
81
82  char PNE::ID = 0;
83  RegisterPass<PNE> X("phi-node-elimination",
84                      "Eliminate PHI nodes for register allocation");
85}
86
87const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
88
89/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
90/// predecessor basic blocks.
91///
92bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
93  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
94    return false;   // Quick exit for basic blocks without PHIs.
95
96  // Get an iterator to the first instruction after the last PHI node (this may
97  // also be the end of the basic block).
98  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
99  while (AfterPHIsIt != MBB.end() &&
100         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
101    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
102
103  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
104    LowerAtomicPHINode(MBB, AfterPHIsIt);
105
106  return true;
107}
108
109/// InstructionUsesRegister - Return true if the specified machine instr has a
110/// use of the specified register.
111static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) {
112  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
113    if (MI->getOperand(i).isRegister() &&
114        MI->getOperand(i).getReg() == SrcReg &&
115        MI->getOperand(i).isUse())
116      return true;
117  return false;
118}
119
120/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
121/// under the assuption that it needs to be lowered in a way that supports
122/// atomic execution of PHIs.  This lowering method is always correct all of the
123/// time.
124void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
125                             MachineBasicBlock::iterator AfterPHIsIt) {
126  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
127  MachineInstr *MPhi = MBB.remove(MBB.begin());
128
129  unsigned DestReg = MPhi->getOperand(0).getReg();
130
131  // Create a new register for the incoming PHI arguments.
132  MachineFunction &MF = *MBB.getParent();
133  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
134  unsigned IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
135
136  // Insert a register to register copy in the top of the current block (but
137  // after any remaining phi nodes) which copies the new incoming register
138  // into the phi node destination.
139  //
140  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
141  TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
142
143  // Update live variable information if there is any...
144  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
145  if (LV) {
146    MachineInstr *PHICopy = prior(AfterPHIsIt);
147
148    // Increment use count of the newly created virtual register.
149    LV->getVarInfo(IncomingReg).NumUses++;
150
151    // Add information to LiveVariables to know that the incoming value is
152    // killed.  Note that because the value is defined in several places (once
153    // each for each incoming block), the "def" block and instruction fields
154    // for the VarInfo is not filled in.
155    //
156    LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
157
158    // Since we are going to be deleting the PHI node, if it is the last use
159    // of any registers, or if the value itself is dead, we need to move this
160    // information over to the new copy we just inserted.
161    //
162    LV->removeVirtualRegistersKilled(MPhi);
163
164    // If the result is dead, update LV.
165    if (MPhi->registerDefIsDead(DestReg)) {
166      LV->addVirtualRegisterDead(DestReg, PHICopy);
167      LV->removeVirtualRegistersDead(MPhi);
168    }
169
170    LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
171  }
172
173  // Adjust the VRegPHIUseCount map to account for the removal of this PHI
174  // node.
175  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
176    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
177                                 MPhi->getOperand(i).getReg())];
178
179  // Now loop over all of the incoming arguments, changing them to copy into
180  // the IncomingReg register in the corresponding predecessor basic block.
181  //
182  std::set<MachineBasicBlock*> MBBsInsertedInto;
183  for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
184    unsigned SrcReg = MPhi->getOperand(i-1).getReg();
185    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
186           "Machine PHI Operands must all be virtual registers!");
187
188    // Get the MachineBasicBlock equivalent of the BasicBlock that is the
189    // source path the PHI.
190    MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMBB();
191
192    // Check to make sure we haven't already emitted the copy for this block.
193    // This can happen because PHI nodes may have multiple entries for the
194    // same basic block.
195    if (!MBBsInsertedInto.insert(&opBlock).second)
196      continue;  // If the copy has already been emitted, we're done.
197
198    // Get an iterator pointing to the first terminator in the block (or end()).
199    // This is the point where we can insert a copy if we'd like to.
200    MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
201
202    // Insert the copy.
203    TII->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC, RC);
204
205    // Now update live variable information if we have it.  Otherwise we're done
206    if (!LV) continue;
207
208    // We want to be able to insert a kill of the register if this PHI
209    // (aka, the copy we just inserted) is the last use of the source
210    // value.  Live variable analysis conservatively handles this by
211    // saying that the value is live until the end of the block the PHI
212    // entry lives in.  If the value really is dead at the PHI copy, there
213    // will be no successor blocks which have the value live-in.
214    //
215    // Check to see if the copy is the last use, and if so, update the
216    // live variables information so that it knows the copy source
217    // instruction kills the incoming value.
218    //
219    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
220    InRegVI.UsedBlocks[opBlock.getNumber()] = true;
221
222    // Loop over all of the successors of the basic block, checking to see
223    // if the value is either live in the block, or if it is killed in the
224    // block.  Also check to see if this register is in use by another PHI
225    // node which has not yet been eliminated.  If so, it will be killed
226    // at an appropriate point later.
227    //
228
229    // Is it used by any PHI instructions in this block?
230    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
231
232    std::vector<MachineBasicBlock*> OpSuccBlocks;
233
234    // Otherwise, scan successors, including the BB the PHI node lives in.
235    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
236           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
237      MachineBasicBlock *SuccMBB = *SI;
238
239      // Is it alive in this successor?
240      unsigned SuccIdx = SuccMBB->getNumber();
241      if (SuccIdx < InRegVI.AliveBlocks.size() &&
242          InRegVI.AliveBlocks[SuccIdx]) {
243        ValueIsLive = true;
244        break;
245      }
246
247      OpSuccBlocks.push_back(SuccMBB);
248    }
249
250    // Check to see if this value is live because there is a use in a successor
251    // that kills it.
252    if (!ValueIsLive) {
253      switch (OpSuccBlocks.size()) {
254      case 1: {
255        MachineBasicBlock *MBB = OpSuccBlocks[0];
256        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
257          if (InRegVI.Kills[i]->getParent() == MBB) {
258            ValueIsLive = true;
259            break;
260          }
261        break;
262      }
263      case 2: {
264        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
265        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
266          if (InRegVI.Kills[i]->getParent() == MBB1 ||
267              InRegVI.Kills[i]->getParent() == MBB2) {
268            ValueIsLive = true;
269            break;
270          }
271        break;
272      }
273      default:
274        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
275        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
276          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
277                                 InRegVI.Kills[i]->getParent())) {
278            ValueIsLive = true;
279            break;
280          }
281      }
282    }
283
284    // Okay, if we now know that the value is not live out of the block,
285    // we can add a kill marker in this block saying that it kills the incoming
286    // value!
287    if (!ValueIsLive) {
288      // In our final twist, we have to decide which instruction kills the
289      // register.  In most cases this is the copy, however, the first
290      // terminator instruction at the end of the block may also use the value.
291      // In this case, we should mark *it* as being the killing block, not the
292      // copy.
293      bool FirstTerminatorUsesValue = false;
294      if (I != opBlock.end()) {
295        FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg);
296
297        // Check that no other terminators use values.
298#ifndef NDEBUG
299        for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end();
300             ++TI) {
301          assert(!InstructionUsesRegister(TI, SrcReg) &&
302                 "Terminator instructions cannot use virtual registers unless"
303                 "they are the first terminator in a block!");
304        }
305#endif
306      }
307
308      MachineBasicBlock::iterator KillInst;
309      if (!FirstTerminatorUsesValue)
310        KillInst = prior(I);
311      else
312        KillInst = I;
313
314      // Finally, mark it killed.
315      LV->addVirtualRegisterKilled(SrcReg, KillInst);
316
317      // This vreg no longer lives all of the way through opBlock.
318      unsigned opBlockNum = opBlock.getNumber();
319      if (opBlockNum < InRegVI.AliveBlocks.size())
320        InRegVI.AliveBlocks[opBlockNum] = false;
321    }
322  }
323
324  // Really delete the PHI instruction now!
325  delete MPhi;
326  ++NumAtomic;
327}
328
329/// analyzePHINodes - Gather information about the PHI nodes in here. In
330/// particular, we want to map the number of uses of a virtual register which is
331/// used in a PHI node. We map that to the BB the vreg is coming from. This is
332/// used later to determine when the vreg is killed in the BB.
333///
334void PNE::analyzePHINodes(const MachineFunction& Fn) {
335  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
336       I != E; ++I)
337    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
338         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
339      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
340        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
341                                     BBI->getOperand(i).getReg())];
342}
343