PHIElimination.cpp revision 226f307c9fd011e31a1b9194017941265ce644d9
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIElimination.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/RegAllocRegistry.h"
25#include "llvm/Function.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include <algorithm>
34#include <map>
35using namespace llvm;
36
37STATISTIC(NumAtomic, "Number of atomic phis lowered");
38STATISTIC(NumSplits, "Number of critical edges split on demand");
39
40static cl::opt<bool>
41SplitEdges("split-phi-edges",
42           cl::desc("Split critical edges during phi elimination"),
43           cl::init(true), cl::Hidden);
44
45char PHIElimination::ID = 0;
46static RegisterPass<PHIElimination>
47X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
48
49const PassInfo *const llvm::PHIEliminationID = &X;
50
51namespace llvm { FunctionPass *createLocalRegisterAllocator(); }
52
53// Should we run edge splitting?
54static bool shouldSplitEdges() {
55  // Edge splitting breaks the local register allocator. It cannot tolerate
56  // LiveVariables being run.
57  if (RegisterRegAlloc::getDefault() == createLocalRegisterAllocator)
58    return false;
59  return SplitEdges;
60}
61
62void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
63  AU.addPreserved<LiveVariables>();
64  AU.addPreserved<MachineDominatorTree>();
65  if (shouldSplitEdges()) {
66    AU.addRequired<LiveVariables>();
67  } else {
68    AU.setPreservesCFG();
69    AU.addPreservedID(MachineLoopInfoID);
70  }
71  MachineFunctionPass::getAnalysisUsage(AU);
72}
73
74bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
75  MRI = &Fn.getRegInfo();
76
77  PHIDefs.clear();
78  PHIKills.clear();
79  bool Changed = false;
80
81  // Split critical edges to help the coalescer
82  if (shouldSplitEdges())
83    for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
84      Changed |= SplitPHIEdges(Fn, *I);
85
86  // Populate VRegPHIUseCount
87  analyzePHINodes(Fn);
88
89  // Eliminate PHI instructions by inserting copies into predecessor blocks.
90  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
91    Changed |= EliminatePHINodes(Fn, *I);
92
93  // Remove dead IMPLICIT_DEF instructions.
94  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
95         E = ImpDefs.end(); I != E; ++I) {
96    MachineInstr *DefMI = *I;
97    unsigned DefReg = DefMI->getOperand(0).getReg();
98    if (MRI->use_empty(DefReg))
99      DefMI->eraseFromParent();
100  }
101
102  ImpDefs.clear();
103  VRegPHIUseCount.clear();
104  return Changed;
105}
106
107/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
108/// predecessor basic blocks.
109///
110bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
111                                             MachineBasicBlock &MBB) {
112  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
113    return false;   // Quick exit for basic blocks without PHIs.
114
115  // Get an iterator to the first instruction after the last PHI node (this may
116  // also be the end of the basic block).
117  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
118
119  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
120    LowerAtomicPHINode(MBB, AfterPHIsIt);
121
122  return true;
123}
124
125/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
126/// are implicit_def's.
127static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
128                                         const MachineRegisterInfo *MRI) {
129  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
130    unsigned SrcReg = MPhi->getOperand(i).getReg();
131    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
132    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
133      return false;
134  }
135  return true;
136}
137
138// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
139// when following the CFG edge to SuccMBB. This needs to be after any def of
140// SrcReg, but before any subsequent point where control flow might jump out of
141// the basic block.
142MachineBasicBlock::iterator
143llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
144                                          MachineBasicBlock &SuccMBB,
145                                          unsigned SrcReg) {
146  // Handle the trivial case trivially.
147  if (MBB.empty())
148    return MBB.begin();
149
150  // Usually, we just want to insert the copy before the first terminator
151  // instruction. However, for the edge going to a landing pad, we must insert
152  // the copy before the call/invoke instruction.
153  if (!SuccMBB.isLandingPad())
154    return MBB.getFirstTerminator();
155
156  // Discover any defs/uses in this basic block.
157  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
158  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
159         RE = MRI->reg_end(); RI != RE; ++RI) {
160    MachineInstr *DefUseMI = &*RI;
161    if (DefUseMI->getParent() == &MBB)
162      DefUsesInMBB.insert(DefUseMI);
163  }
164
165  MachineBasicBlock::iterator InsertPoint;
166  if (DefUsesInMBB.empty()) {
167    // No defs.  Insert the copy at the start of the basic block.
168    InsertPoint = MBB.begin();
169  } else if (DefUsesInMBB.size() == 1) {
170    // Insert the copy immediately after the def/use.
171    InsertPoint = *DefUsesInMBB.begin();
172    ++InsertPoint;
173  } else {
174    // Insert the copy immediately after the last def/use.
175    InsertPoint = MBB.end();
176    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
177    ++InsertPoint;
178  }
179
180  // Make sure the copy goes after any phi nodes however.
181  return SkipPHIsAndLabels(MBB, InsertPoint);
182}
183
184/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
185/// under the assuption that it needs to be lowered in a way that supports
186/// atomic execution of PHIs.  This lowering method is always correct all of the
187/// time.
188///
189void llvm::PHIElimination::LowerAtomicPHINode(
190                                      MachineBasicBlock &MBB,
191                                      MachineBasicBlock::iterator AfterPHIsIt) {
192  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
193  MachineInstr *MPhi = MBB.remove(MBB.begin());
194
195  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
196  unsigned DestReg = MPhi->getOperand(0).getReg();
197  bool isDead = MPhi->getOperand(0).isDead();
198
199  // Create a new register for the incoming PHI arguments.
200  MachineFunction &MF = *MBB.getParent();
201  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
202  unsigned IncomingReg = 0;
203
204  // Insert a register to register copy at the top of the current block (but
205  // after any remaining phi nodes) which copies the new incoming register
206  // into the phi node destination.
207  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
208  if (isSourceDefinedByImplicitDef(MPhi, MRI))
209    // If all sources of a PHI node are implicit_def, just emit an
210    // implicit_def instead of a copy.
211    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
212            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
213  else {
214    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
215    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
216  }
217
218  // Record PHI def.
219  assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
220  PHIDefs[DestReg] = &MBB;
221
222  // Update live variable information if there is any.
223  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
224  if (LV) {
225    MachineInstr *PHICopy = prior(AfterPHIsIt);
226
227    if (IncomingReg) {
228      // Increment use count of the newly created virtual register.
229      LV->getVarInfo(IncomingReg).NumUses++;
230
231      // Add information to LiveVariables to know that the incoming value is
232      // killed.  Note that because the value is defined in several places (once
233      // each for each incoming block), the "def" block and instruction fields
234      // for the VarInfo is not filled in.
235      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
236    }
237
238    // Since we are going to be deleting the PHI node, if it is the last use of
239    // any registers, or if the value itself is dead, we need to move this
240    // information over to the new copy we just inserted.
241    LV->removeVirtualRegistersKilled(MPhi);
242
243    // If the result is dead, update LV.
244    if (isDead) {
245      LV->addVirtualRegisterDead(DestReg, PHICopy);
246      LV->removeVirtualRegisterDead(DestReg, MPhi);
247    }
248  }
249
250  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
251  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
252    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
253                                 MPhi->getOperand(i).getReg())];
254
255  // Now loop over all of the incoming arguments, changing them to copy into the
256  // IncomingReg register in the corresponding predecessor basic block.
257  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
258  for (int i = NumSrcs - 1; i >= 0; --i) {
259    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
260    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
261           "Machine PHI Operands must all be virtual registers!");
262
263    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
264    // path the PHI.
265    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
266
267    // Record the kill.
268    PHIKills[SrcReg].insert(&opBlock);
269
270    // If source is defined by an implicit def, there is no need to insert a
271    // copy.
272    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
273    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
274      ImpDefs.insert(DefMI);
275      continue;
276    }
277
278    // Check to make sure we haven't already emitted the copy for this block.
279    // This can happen because PHI nodes may have multiple entries for the same
280    // basic block.
281    if (!MBBsInsertedInto.insert(&opBlock))
282      continue;  // If the copy has already been emitted, we're done.
283
284    // Find a safe location to insert the copy, this may be the first terminator
285    // in the block (or end()).
286    MachineBasicBlock::iterator InsertPos =
287      FindCopyInsertPoint(opBlock, MBB, SrcReg);
288
289    // Insert the copy.
290    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
291
292    // Now update live variable information if we have it.  Otherwise we're done
293    if (!LV) continue;
294
295    // We want to be able to insert a kill of the register if this PHI (aka, the
296    // copy we just inserted) is the last use of the source value.  Live
297    // variable analysis conservatively handles this by saying that the value is
298    // live until the end of the block the PHI entry lives in.  If the value
299    // really is dead at the PHI copy, there will be no successor blocks which
300    // have the value live-in.
301
302    // Also check to see if this register is in use by another PHI node which
303    // has not yet been eliminated.  If so, it will be killed at an appropriate
304    // point later.
305
306    // Is it used by any PHI instructions in this block?
307    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
308
309    // Okay, if we now know that the value is not live out of the block, we can
310    // add a kill marker in this block saying that it kills the incoming value!
311    if (!ValueIsUsed && !isLiveOut(SrcReg, opBlock, *LV)) {
312      // In our final twist, we have to decide which instruction kills the
313      // register.  In most cases this is the copy, however, the first
314      // terminator instruction at the end of the block may also use the value.
315      // In this case, we should mark *it* as being the killing block, not the
316      // copy.
317      MachineBasicBlock::iterator KillInst = prior(InsertPos);
318      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
319      if (Term != opBlock.end()) {
320        if (Term->readsRegister(SrcReg))
321          KillInst = Term;
322
323        // Check that no other terminators use values.
324#ifndef NDEBUG
325        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
326             ++TI) {
327          assert(!TI->readsRegister(SrcReg) &&
328                 "Terminator instructions cannot use virtual registers unless"
329                 "they are the first terminator in a block!");
330        }
331#endif
332      }
333
334      // Finally, mark it killed.
335      LV->addVirtualRegisterKilled(SrcReg, KillInst);
336
337      // This vreg no longer lives all of the way through opBlock.
338      unsigned opBlockNum = opBlock.getNumber();
339      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
340    }
341  }
342
343  // Really delete the PHI instruction now!
344  MF.DeleteMachineInstr(MPhi);
345  ++NumAtomic;
346}
347
348/// analyzePHINodes - Gather information about the PHI nodes in here. In
349/// particular, we want to map the number of uses of a virtual register which is
350/// used in a PHI node. We map that to the BB the vreg is coming from. This is
351/// used later to determine when the vreg is killed in the BB.
352///
353void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
354  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
355       I != E; ++I)
356    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
357         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
358      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
359        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
360                                     BBI->getOperand(i).getReg())];
361}
362
363bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
364                                         MachineBasicBlock &MBB) {
365  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
366    return false;   // Quick exit for basic blocks without PHIs.
367  LiveVariables &LV = getAnalysis<LiveVariables>();
368  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
369       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
370    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
371      unsigned Reg = BBI->getOperand(i).getReg();
372      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
373      // We break edges when registers are live out from the predecessor block
374      // (not considering PHI nodes). If the register is live in to this block
375      // anyway, we would gain nothing from splitting.
376      if (isLiveOut(Reg, *PreMBB, LV) && !isLiveIn(Reg, MBB, LV))
377        SplitCriticalEdge(PreMBB, &MBB);
378    }
379  }
380  return true;
381}
382
383bool llvm::PHIElimination::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB,
384                                     LiveVariables &LV) {
385  LiveVariables::VarInfo &VI = LV.getVarInfo(Reg);
386
387  // Loop over all of the successors of the basic block, checking to see if
388  // the value is either live in the block, or if it is killed in the block.
389  std::vector<MachineBasicBlock*> OpSuccBlocks;
390  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
391         E = MBB.succ_end(); SI != E; ++SI) {
392    MachineBasicBlock *SuccMBB = *SI;
393
394    // Is it alive in this successor?
395    unsigned SuccIdx = SuccMBB->getNumber();
396    if (VI.AliveBlocks.test(SuccIdx))
397      return true;
398    OpSuccBlocks.push_back(SuccMBB);
399  }
400
401  // Check to see if this value is live because there is a use in a successor
402  // that kills it.
403  switch (OpSuccBlocks.size()) {
404  case 1: {
405    MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
406    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
407      if (VI.Kills[i]->getParent() == SuccMBB)
408        return true;
409    break;
410  }
411  case 2: {
412    MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
413    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
414      if (VI.Kills[i]->getParent() == SuccMBB1 ||
415          VI.Kills[i]->getParent() == SuccMBB2)
416        return true;
417    break;
418  }
419  default:
420    std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
421    for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
422      if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
423                             VI.Kills[i]->getParent()))
424        return true;
425  }
426  return false;
427}
428
429bool llvm::PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock &MBB,
430                                    LiveVariables &LV) {
431  LiveVariables::VarInfo &VI = LV.getVarInfo(Reg);
432
433  if (VI.AliveBlocks.test(MBB.getNumber()))
434    return true;
435
436  // defined in MBB?
437  const MachineInstr *Def = MRI->getVRegDef(Reg);
438  if (Def && Def->getParent() == &MBB)
439    return false;
440
441  // killed in MBB?
442  return VI.findKill(&MBB);
443}
444
445MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
446                                                     MachineBasicBlock *B) {
447  assert(A && B && "Missing MBB end point");
448  ++NumSplits;
449
450  MachineFunction *MF = A->getParent();
451  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
452  MF->push_back(NMBB);
453  DEBUG(errs() << "PHIElimination splitting critical edge:"
454        " BB#" << A->getNumber()
455        << " -- BB#" << NMBB->getNumber()
456        << " -- BB#" << B->getNumber() << '\n');
457
458  A->ReplaceUsesOfBlockWith(B, NMBB);
459  // If A may fall through to B, we may have to insert a branch.
460  if (A->isLayoutSuccessor(B))
461    A->updateTerminator();
462
463  // Insert unconditional "jump B" instruction in NMBB.
464  NMBB->addSuccessor(B);
465  SmallVector<MachineOperand, 4> Cond;
466  MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
467
468  // Fix PHI nodes in B so they refer to NMBB instead of A
469  for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
470       i != e && i->getOpcode() == TargetInstrInfo::PHI; ++i)
471    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
472      if (i->getOperand(ni+1).getMBB() == A)
473        i->getOperand(ni+1).setMBB(NMBB);
474
475  if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>())
476    LV->addNewBlock(NMBB, A);
477
478  if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>())
479    MDT->addNewBlock(NMBB, A);
480
481  return NMBB;
482}
483