PHIElimination.cpp revision 4930e7266b7643410cfbbed5ef6e4d3b19178918
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/Passes.h"
18#include "PHIEliminationUtils.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/IR/Function.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include <algorithm>
36using namespace llvm;
37
38static cl::opt<bool>
39DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40                     cl::Hidden, cl::desc("Disable critical edge splitting "
41                                          "during PHI elimination"));
42
43static cl::opt<bool>
44SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
45                      cl::Hidden, cl::desc("Split all critical edges during "
46                                           "PHI elimination"));
47
48namespace {
49  class PHIElimination : public MachineFunctionPass {
50    MachineRegisterInfo *MRI; // Machine register information
51    LiveVariables *LV;
52    LiveIntervals *LIS;
53
54  public:
55    static char ID; // Pass identification, replacement for typeid
56    PHIElimination() : MachineFunctionPass(ID) {
57      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
58    }
59
60    virtual bool runOnMachineFunction(MachineFunction &Fn);
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
62
63  private:
64    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
65    /// in predecessor basic blocks.
66    ///
67    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
68    void LowerPHINode(MachineBasicBlock &MBB,
69                      MachineBasicBlock::iterator AfterPHIsIt);
70
71    /// analyzePHINodes - Gather information about the PHI nodes in
72    /// here. In particular, we want to map the number of uses of a virtual
73    /// register which is used in a PHI node. We map that to the BB the
74    /// vreg is coming from. This is used later to determine when the vreg
75    /// is killed in the BB.
76    ///
77    void analyzePHINodes(const MachineFunction& Fn);
78
79    /// Split critical edges where necessary for good coalescer performance.
80    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
81                       MachineLoopInfo *MLI);
82
83    // These functions are temporary abstractions around LiveVariables and
84    // LiveIntervals, so they can go away when LiveVariables does.
85    bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
86    bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
87
88    typedef std::pair<unsigned, unsigned> BBVRegPair;
89    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
90
91    VRegPHIUse VRegPHIUseCount;
92
93    // Defs of PHI sources which are implicit_def.
94    SmallPtrSet<MachineInstr*, 4> ImpDefs;
95
96    // Map reusable lowered PHI node -> incoming join register.
97    typedef DenseMap<MachineInstr*, unsigned,
98                     MachineInstrExpressionTrait> LoweredPHIMap;
99    LoweredPHIMap LoweredPHIs;
100  };
101}
102
103STATISTIC(NumLowered, "Number of phis lowered");
104STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
105STATISTIC(NumReused, "Number of reused lowered phis");
106
107char PHIElimination::ID = 0;
108char& llvm::PHIEliminationID = PHIElimination::ID;
109
110INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
111                      "Eliminate PHI nodes for register allocation",
112                      false, false)
113INITIALIZE_PASS_DEPENDENCY(LiveVariables)
114INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
115                    "Eliminate PHI nodes for register allocation", false, false)
116
117void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
118  AU.addPreserved<LiveVariables>();
119  AU.addPreserved<LiveIntervals>();
120  AU.addPreserved<MachineDominatorTree>();
121  AU.addPreserved<MachineLoopInfo>();
122  MachineFunctionPass::getAnalysisUsage(AU);
123}
124
125bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
126  MRI = &MF.getRegInfo();
127  LV = getAnalysisIfAvailable<LiveVariables>();
128  LIS = getAnalysisIfAvailable<LiveIntervals>();
129
130  bool Changed = false;
131
132  // This pass takes the function out of SSA form.
133  MRI->leaveSSA();
134
135  // Split critical edges to help the coalescer. This does not yet support
136  // updating LiveIntervals, so we disable it.
137  if (!DisableEdgeSplitting && (LV || LIS)) {
138    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
139    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
140      Changed |= SplitPHIEdges(MF, *I, MLI);
141  }
142
143  // Populate VRegPHIUseCount
144  analyzePHINodes(MF);
145
146  // Eliminate PHI instructions by inserting copies into predecessor blocks.
147  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
148    Changed |= EliminatePHINodes(MF, *I);
149
150  // Remove dead IMPLICIT_DEF instructions.
151  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
152         E = ImpDefs.end(); I != E; ++I) {
153    MachineInstr *DefMI = *I;
154    unsigned DefReg = DefMI->getOperand(0).getReg();
155    if (MRI->use_nodbg_empty(DefReg)) {
156      if (LIS)
157        LIS->RemoveMachineInstrFromMaps(DefMI);
158      DefMI->eraseFromParent();
159    }
160  }
161
162  // Clean up the lowered PHI instructions.
163  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
164       I != E; ++I) {
165    if (LIS)
166      LIS->RemoveMachineInstrFromMaps(I->first);
167    MF.DeleteMachineInstr(I->first);
168  }
169
170  LoweredPHIs.clear();
171  ImpDefs.clear();
172  VRegPHIUseCount.clear();
173
174  if (LIS)
175    MF.verify(this, "After PHI elimination");
176
177  return Changed;
178}
179
180/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
181/// predecessor basic blocks.
182///
183bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
184                                             MachineBasicBlock &MBB) {
185  if (MBB.empty() || !MBB.front().isPHI())
186    return false;   // Quick exit for basic blocks without PHIs.
187
188  // Get an iterator to the first instruction after the last PHI node (this may
189  // also be the end of the basic block).
190  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
191
192  while (MBB.front().isPHI())
193    LowerPHINode(MBB, AfterPHIsIt);
194
195  return true;
196}
197
198/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
199/// This includes registers with no defs.
200static bool isImplicitlyDefined(unsigned VirtReg,
201                                const MachineRegisterInfo *MRI) {
202  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
203       DE = MRI->def_end(); DI != DE; ++DI)
204    if (!DI->isImplicitDef())
205      return false;
206  return true;
207}
208
209/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
210/// are implicit_def's.
211static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
212                                         const MachineRegisterInfo *MRI) {
213  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
214    if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
215      return false;
216  return true;
217}
218
219
220/// LowerPHINode - Lower the PHI node at the top of the specified block,
221///
222void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
223                                  MachineBasicBlock::iterator AfterPHIsIt) {
224  ++NumLowered;
225  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
226  MachineInstr *MPhi = MBB.remove(MBB.begin());
227
228  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
229  unsigned DestReg = MPhi->getOperand(0).getReg();
230  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
231  bool isDead = MPhi->getOperand(0).isDead();
232
233  // Create a new register for the incoming PHI arguments.
234  MachineFunction &MF = *MBB.getParent();
235  unsigned IncomingReg = 0;
236  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
237
238  // Insert a register to register copy at the top of the current block (but
239  // after any remaining phi nodes) which copies the new incoming register
240  // into the phi node destination.
241  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
242  if (isSourceDefinedByImplicitDef(MPhi, MRI))
243    // If all sources of a PHI node are implicit_def, just emit an
244    // implicit_def instead of a copy.
245    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
246            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
247  else {
248    // Can we reuse an earlier PHI node? This only happens for critical edges,
249    // typically those created by tail duplication.
250    unsigned &entry = LoweredPHIs[MPhi];
251    if (entry) {
252      // An identical PHI node was already lowered. Reuse the incoming register.
253      IncomingReg = entry;
254      reusedIncoming = true;
255      ++NumReused;
256      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
257    } else {
258      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
259      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
260    }
261    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
262            TII->get(TargetOpcode::COPY), DestReg)
263      .addReg(IncomingReg);
264  }
265
266  // Update live variable information if there is any.
267  if (LV) {
268    MachineInstr *PHICopy = prior(AfterPHIsIt);
269
270    if (IncomingReg) {
271      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
272
273      // Increment use count of the newly created virtual register.
274      LV->setPHIJoin(IncomingReg);
275
276      // When we are reusing the incoming register, it may already have been
277      // killed in this block. The old kill will also have been inserted at
278      // AfterPHIsIt, so it appears before the current PHICopy.
279      if (reusedIncoming)
280        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
281          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
282          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
283          DEBUG(MBB.dump());
284        }
285
286      // Add information to LiveVariables to know that the incoming value is
287      // killed.  Note that because the value is defined in several places (once
288      // each for each incoming block), the "def" block and instruction fields
289      // for the VarInfo is not filled in.
290      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
291    }
292
293    // Since we are going to be deleting the PHI node, if it is the last use of
294    // any registers, or if the value itself is dead, we need to move this
295    // information over to the new copy we just inserted.
296    LV->removeVirtualRegistersKilled(MPhi);
297
298    // If the result is dead, update LV.
299    if (isDead) {
300      LV->addVirtualRegisterDead(DestReg, PHICopy);
301      LV->removeVirtualRegisterDead(DestReg, MPhi);
302    }
303  }
304
305  // Update LiveIntervals for the new copy or implicit def.
306  if (LIS) {
307    MachineInstr *NewInstr = prior(AfterPHIsIt);
308    LIS->InsertMachineInstrInMaps(NewInstr);
309
310    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
311    SlotIndex DestCopyIndex = LIS->getInstructionIndex(NewInstr);
312    if (IncomingReg) {
313      // Add the region from the beginning of MBB to the copy instruction to
314      // IncomingReg's live interval.
315      LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
316      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
317      if (!IncomingVNI)
318        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
319                                              LIS->getVNInfoAllocator());
320      IncomingLI.addRange(LiveRange(MBBStartIndex,
321                                    DestCopyIndex.getRegSlot(),
322                                    IncomingVNI));
323    }
324
325    LiveInterval &DestLI = LIS->getOrCreateInterval(DestReg);
326    if (NewInstr->getOperand(0).isDead()) {
327      // A dead PHI's live range begins and ends at the start of the MBB, but
328      // the lowered copy, which will still be dead, needs to begin and end at
329      // the copy instruction.
330      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
331      assert(OrigDestVNI && "PHI destination should be live at block entry.");
332      DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot());
333      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
334                           LIS->getVNInfoAllocator());
335      DestLI.removeValNo(OrigDestVNI);
336    } else {
337      // Otherwise, remove the region from the beginning of MBB to the copy
338      // instruction from DestReg's live interval.
339      DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot());
340      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
341      assert(DestVNI && "PHI destination should be live at its definition.");
342      DestVNI->def = DestCopyIndex.getRegSlot();
343    }
344  }
345
346  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
347  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
348    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
349                                 MPhi->getOperand(i).getReg())];
350
351  // Now loop over all of the incoming arguments, changing them to copy into the
352  // IncomingReg register in the corresponding predecessor basic block.
353  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
354  for (int i = NumSrcs - 1; i >= 0; --i) {
355    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
356    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
357    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
358      isImplicitlyDefined(SrcReg, MRI);
359    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
360           "Machine PHI Operands must all be virtual registers!");
361
362    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
363    // path the PHI.
364    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
365
366    // Check to make sure we haven't already emitted the copy for this block.
367    // This can happen because PHI nodes may have multiple entries for the same
368    // basic block.
369    if (!MBBsInsertedInto.insert(&opBlock))
370      continue;  // If the copy has already been emitted, we're done.
371
372    // Find a safe location to insert the copy, this may be the first terminator
373    // in the block (or end()).
374    MachineBasicBlock::iterator InsertPos =
375      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
376
377    // Insert the copy.
378    MachineInstr *NewSrcInstr = 0;
379    if (!reusedIncoming && IncomingReg) {
380      if (SrcUndef) {
381        // The source register is undefined, so there is no need for a real
382        // COPY, but we still need to ensure joint dominance by defs.
383        // Insert an IMPLICIT_DEF instruction.
384        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
385                              TII->get(TargetOpcode::IMPLICIT_DEF),
386                              IncomingReg);
387
388        // Clean up the old implicit-def, if there even was one.
389        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
390          if (DefMI->isImplicitDef())
391            ImpDefs.insert(DefMI);
392      } else {
393        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
394                            TII->get(TargetOpcode::COPY), IncomingReg)
395                        .addReg(SrcReg, 0, SrcSubReg);
396      }
397    }
398
399    // We only need to update the LiveVariables kill of SrcReg if this was the
400    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
401    // out of the predecessor. We can also ignore undef sources.
402    if (LV && !SrcUndef &&
403        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
404        !LV->isLiveOut(SrcReg, opBlock)) {
405      // We want to be able to insert a kill of the register if this PHI (aka,
406      // the copy we just inserted) is the last use of the source value. Live
407      // variable analysis conservatively handles this by saying that the value
408      // is live until the end of the block the PHI entry lives in. If the value
409      // really is dead at the PHI copy, there will be no successor blocks which
410      // have the value live-in.
411
412      // Okay, if we now know that the value is not live out of the block, we
413      // can add a kill marker in this block saying that it kills the incoming
414      // value!
415
416      // In our final twist, we have to decide which instruction kills the
417      // register.  In most cases this is the copy, however, terminator
418      // instructions at the end of the block may also use the value. In this
419      // case, we should mark the last such terminator as being the killing
420      // block, not the copy.
421      MachineBasicBlock::iterator KillInst = opBlock.end();
422      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
423      for (MachineBasicBlock::iterator Term = FirstTerm;
424          Term != opBlock.end(); ++Term) {
425        if (Term->readsRegister(SrcReg))
426          KillInst = Term;
427      }
428
429      if (KillInst == opBlock.end()) {
430        // No terminator uses the register.
431
432        if (reusedIncoming || !IncomingReg) {
433          // We may have to rewind a bit if we didn't insert a copy this time.
434          KillInst = FirstTerm;
435          while (KillInst != opBlock.begin()) {
436            --KillInst;
437            if (KillInst->isDebugValue())
438              continue;
439            if (KillInst->readsRegister(SrcReg))
440              break;
441          }
442        } else {
443          // We just inserted this copy.
444          KillInst = prior(InsertPos);
445        }
446      }
447      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
448
449      // Finally, mark it killed.
450      LV->addVirtualRegisterKilled(SrcReg, KillInst);
451
452      // This vreg no longer lives all of the way through opBlock.
453      unsigned opBlockNum = opBlock.getNumber();
454      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
455    }
456
457    if (LIS) {
458      if (NewSrcInstr) {
459        LIS->InsertMachineInstrInMaps(NewSrcInstr);
460        LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr);
461      }
462
463      if (!SrcUndef &&
464          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
465        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
466
467        bool isLiveOut = false;
468        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
469             SE = opBlock.succ_end(); SI != SE; ++SI) {
470          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
471          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
472
473          // Definitions by other PHIs are not truly live-in for our purposes.
474          if (VNI && VNI->def != startIdx) {
475            isLiveOut = true;
476            break;
477          }
478        }
479
480        if (!isLiveOut) {
481          MachineBasicBlock::iterator KillInst = opBlock.end();
482          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
483          for (MachineBasicBlock::iterator Term = FirstTerm;
484              Term != opBlock.end(); ++Term) {
485            if (Term->readsRegister(SrcReg))
486              KillInst = Term;
487          }
488
489          if (KillInst == opBlock.end()) {
490            // No terminator uses the register.
491
492            if (reusedIncoming || !IncomingReg) {
493              // We may have to rewind a bit if we didn't just insert a copy.
494              KillInst = FirstTerm;
495              while (KillInst != opBlock.begin()) {
496                --KillInst;
497                if (KillInst->isDebugValue())
498                  continue;
499                if (KillInst->readsRegister(SrcReg))
500                  break;
501              }
502            } else {
503              // We just inserted this copy.
504              KillInst = prior(InsertPos);
505            }
506          }
507          assert(KillInst->readsRegister(SrcReg) &&
508                 "Cannot find kill instruction");
509
510          SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
511          SrcLI.removeRange(LastUseIndex.getRegSlot(),
512                            LIS->getMBBEndIdx(&opBlock));
513        }
514      }
515    }
516  }
517
518  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
519  if (reusedIncoming || !IncomingReg) {
520    if (LIS)
521      LIS->RemoveMachineInstrFromMaps(MPhi);
522    MF.DeleteMachineInstr(MPhi);
523  }
524}
525
526/// analyzePHINodes - Gather information about the PHI nodes in here. In
527/// particular, we want to map the number of uses of a virtual register which is
528/// used in a PHI node. We map that to the BB the vreg is coming from. This is
529/// used later to determine when the vreg is killed in the BB.
530///
531void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
532  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
533       I != E; ++I)
534    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
535         BBI != BBE && BBI->isPHI(); ++BBI)
536      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
537        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
538                                     BBI->getOperand(i).getReg())];
539}
540
541bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
542                                   MachineBasicBlock &MBB,
543                                   MachineLoopInfo *MLI) {
544  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
545    return false;   // Quick exit for basic blocks without PHIs.
546
547  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
548  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
549
550  bool Changed = false;
551  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
552       BBI != BBE && BBI->isPHI(); ++BBI) {
553    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
554      unsigned Reg = BBI->getOperand(i).getReg();
555      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
556      // Is there a critical edge from PreMBB to MBB?
557      if (PreMBB->succ_size() == 1)
558        continue;
559
560      // Avoid splitting backedges of loops. It would introduce small
561      // out-of-line blocks into the loop which is very bad for code placement.
562      if (PreMBB == &MBB && !SplitAllCriticalEdges)
563        continue;
564      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
565      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
566        continue;
567
568      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
569      // when the source register is live-out for some other reason than a phi
570      // use. That means the copy we will insert in PreMBB won't be a kill, and
571      // there is a risk it may not be coalesced away.
572      //
573      // If the copy would be a kill, there is no need to split the edge.
574      if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
575        continue;
576
577      DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
578                   << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
579                   << ": " << *BBI);
580
581      // If Reg is not live-in to MBB, it means it must be live-in to some
582      // other PreMBB successor, and we can avoid the interference by splitting
583      // the edge.
584      //
585      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
586      // is likely to be left after coalescing. If we are looking at a loop
587      // exiting edge, split it so we won't insert code in the loop, otherwise
588      // don't bother.
589      bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
590
591      // Check for a loop exiting edge.
592      if (!ShouldSplit && CurLoop != PreLoop) {
593        DEBUG({
594          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
595          if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
596          if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
597        });
598        // This edge could be entering a loop, exiting a loop, or it could be
599        // both: Jumping directly form one loop to the header of a sibling
600        // loop.
601        // Split unless this edge is entering CurLoop from an outer loop.
602        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
603      }
604      if (!ShouldSplit)
605        continue;
606      if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
607        DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
608        continue;
609      }
610      Changed = true;
611      ++NumCriticalEdgesSplit;
612    }
613  }
614  return Changed;
615}
616
617bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
618  assert((LV || LIS) &&
619         "isLiveIn() requires either LiveVariables or LiveIntervals");
620  if (LIS)
621    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
622  else
623    return LV->isLiveIn(Reg, *MBB);
624}
625
626bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
627  assert((LV || LIS) &&
628         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
629  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
630  // so that a register used only in a PHI is not live out of the block. In
631  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
632  // in the predecessor basic block, so that a register used only in a PHI is live
633  // out of the block.
634  if (LIS) {
635    const LiveInterval &LI = LIS->getInterval(Reg);
636    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
637         SE = MBB->succ_end(); SI != SE; ++SI) {
638      if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
639        return true;
640    }
641    return false;
642  } else {
643    return LV->isLiveOut(Reg, *MBB);
644  }
645}
646