PHIElimination.cpp revision 4e0d6a7d48464188a1a25b544a6355326d3fd3bf
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/LiveVariables.h"
18#include "llvm/CodeGen/Passes.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Support/Compiler.h"
29#include <algorithm>
30#include <map>
31using namespace llvm;
32
33STATISTIC(NumAtomic, "Number of atomic phis lowered");
34
35namespace {
36  class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
37    MachineRegisterInfo  *MRI; // Machine register information
38
39  public:
40    static char ID; // Pass identification, replacement for typeid
41    PNE() : MachineFunctionPass(&ID) {}
42
43    virtual bool runOnMachineFunction(MachineFunction &Fn);
44
45    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
46      AU.addPreserved<LiveVariables>();
47      AU.addPreservedID(MachineLoopInfoID);
48      AU.addPreservedID(MachineDominatorsID);
49      MachineFunctionPass::getAnalysisUsage(AU);
50    }
51
52  private:
53    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
54    /// in predecessor basic blocks.
55    ///
56    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
57    void LowerAtomicPHINode(MachineBasicBlock &MBB,
58                            MachineBasicBlock::iterator AfterPHIsIt);
59
60    /// analyzePHINodes - Gather information about the PHI nodes in
61    /// here. In particular, we want to map the number of uses of a virtual
62    /// register which is used in a PHI node. We map that to the BB the
63    /// vreg is coming from. This is used later to determine when the vreg
64    /// is killed in the BB.
65    ///
66    void analyzePHINodes(const MachineFunction& Fn);
67
68    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
69    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
70
71    VRegPHIUse VRegPHIUseCount;
72
73    // Defs of PHI sources which are implicit_def.
74    SmallPtrSet<MachineInstr*, 4> ImpDefs;
75  };
76}
77
78char PNE::ID = 0;
79static RegisterPass<PNE>
80X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
81
82const PassInfo *const llvm::PHIEliminationID = &X;
83
84bool PNE::runOnMachineFunction(MachineFunction &Fn) {
85  MRI = &Fn.getRegInfo();
86
87  analyzePHINodes(Fn);
88
89  bool Changed = false;
90
91  // Eliminate PHI instructions by inserting copies into predecessor blocks.
92  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
93    Changed |= EliminatePHINodes(Fn, *I);
94
95  // Remove dead IMPLICIT_DEF instructions.
96  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
97         E = ImpDefs.end(); I != E; ++I) {
98    MachineInstr *DefMI = *I;
99    unsigned DefReg = DefMI->getOperand(0).getReg();
100    if (MRI->use_empty(DefReg))
101      DefMI->eraseFromParent();
102  }
103
104  ImpDefs.clear();
105  VRegPHIUseCount.clear();
106  return Changed;
107}
108
109
110/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
111/// predecessor basic blocks.
112///
113bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
114  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
115    return false;   // Quick exit for basic blocks without PHIs.
116
117  // Get an iterator to the first instruction after the last PHI node (this may
118  // also be the end of the basic block).
119  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
120  while (AfterPHIsIt != MBB.end() &&
121         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
122    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
123
124  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
125    LowerAtomicPHINode(MBB, AfterPHIsIt);
126
127  return true;
128}
129
130/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
131/// are implicit_def's.
132static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
133                                         const MachineRegisterInfo *MRI) {
134  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
135    unsigned SrcReg = MPhi->getOperand(i).getReg();
136    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
137    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
138      return false;
139  }
140  return true;
141}
142
143/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
144/// under the assuption that it needs to be lowered in a way that supports
145/// atomic execution of PHIs.  This lowering method is always correct all of the
146/// time.
147///
148void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
149                             MachineBasicBlock::iterator AfterPHIsIt) {
150  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
151  MachineInstr *MPhi = MBB.remove(MBB.begin());
152
153  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
154  unsigned DestReg = MPhi->getOperand(0).getReg();
155  bool isDead = MPhi->getOperand(0).isDead();
156
157  // Create a new register for the incoming PHI arguments.
158  MachineFunction &MF = *MBB.getParent();
159  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
160  unsigned IncomingReg = 0;
161
162  // Insert a register to register copy at the top of the current block (but
163  // after any remaining phi nodes) which copies the new incoming register
164  // into the phi node destination.
165  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
166  if (isSourceDefinedByImplicitDef(MPhi, MRI))
167    // If all sources of a PHI node are implicit_def, just emit an
168    // implicit_def instead of a copy.
169    BuildMI(MBB, AfterPHIsIt,
170            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
171  else {
172    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
173    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
174  }
175
176  // Update live variable information if there is any.
177  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
178  if (LV) {
179    MachineInstr *PHICopy = prior(AfterPHIsIt);
180
181    if (IncomingReg) {
182      // Increment use count of the newly created virtual register.
183      LV->getVarInfo(IncomingReg).NumUses++;
184
185      // Add information to LiveVariables to know that the incoming value is
186      // killed.  Note that because the value is defined in several places (once
187      // each for each incoming block), the "def" block and instruction fields
188      // for the VarInfo is not filled in.
189      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
190
191      LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
192    }
193
194    // Since we are going to be deleting the PHI node, if it is the last use of
195    // any registers, or if the value itself is dead, we need to move this
196    // information over to the new copy we just inserted.
197    LV->removeVirtualRegistersKilled(MPhi);
198
199    // If the result is dead, update LV.
200    if (isDead) {
201      LV->addVirtualRegisterDead(DestReg, PHICopy);
202      LV->removeVirtualRegisterDead(DestReg, MPhi);
203    }
204  }
205
206  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
207  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
208    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
209                                 MPhi->getOperand(i).getReg())];
210
211  // Now loop over all of the incoming arguments, changing them to copy into the
212  // IncomingReg register in the corresponding predecessor basic block.
213  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
214  for (int i = NumSrcs - 1; i >= 0; --i) {
215    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
216    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
217           "Machine PHI Operands must all be virtual registers!");
218
219    // If source is defined by an implicit def, there is no need to insert a
220    // copy.
221    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
222    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
223      ImpDefs.insert(DefMI);
224      continue;
225    }
226
227    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
228    // path the PHI.
229    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
230
231    // Check to make sure we haven't already emitted the copy for this block.
232    // This can happen because PHI nodes may have multiple entries for the same
233    // basic block.
234    if (!MBBsInsertedInto.insert(&opBlock))
235      continue;  // If the copy has already been emitted, we're done.
236
237    // Find a safe location to insert the copy, this may be the first terminator
238    // in the block (or end()).
239    MachineBasicBlock::iterator InsertPos = opBlock.getFirstTerminator();
240
241    // Insert the copy.
242    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
243
244    // Now update live variable information if we have it.  Otherwise we're done
245    if (!LV) continue;
246
247    // We want to be able to insert a kill of the register if this PHI (aka, the
248    // copy we just inserted) is the last use of the source value.  Live
249    // variable analysis conservatively handles this by saying that the value is
250    // live until the end of the block the PHI entry lives in.  If the value
251    // really is dead at the PHI copy, there will be no successor blocks which
252    // have the value live-in.
253    //
254    // Check to see if the copy is the last use, and if so, update the live
255    // variables information so that it knows the copy source instruction kills
256    // the incoming value.
257    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
258    InRegVI.UsedBlocks[opBlock.getNumber()] = true;
259
260    // Loop over all of the successors of the basic block, checking to see if
261    // the value is either live in the block, or if it is killed in the block.
262    // Also check to see if this register is in use by another PHI node which
263    // has not yet been eliminated.  If so, it will be killed at an appropriate
264    // point later.
265
266    // Is it used by any PHI instructions in this block?
267    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
268
269    std::vector<MachineBasicBlock*> OpSuccBlocks;
270
271    // Otherwise, scan successors, including the BB the PHI node lives in.
272    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
273           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
274      MachineBasicBlock *SuccMBB = *SI;
275
276      // Is it alive in this successor?
277      unsigned SuccIdx = SuccMBB->getNumber();
278      if (SuccIdx < InRegVI.AliveBlocks.size() &&
279          InRegVI.AliveBlocks[SuccIdx]) {
280        ValueIsLive = true;
281        break;
282      }
283
284      OpSuccBlocks.push_back(SuccMBB);
285    }
286
287    // Check to see if this value is live because there is a use in a successor
288    // that kills it.
289    if (!ValueIsLive) {
290      switch (OpSuccBlocks.size()) {
291      case 1: {
292        MachineBasicBlock *MBB = OpSuccBlocks[0];
293        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
294          if (InRegVI.Kills[i]->getParent() == MBB) {
295            ValueIsLive = true;
296            break;
297          }
298        break;
299      }
300      case 2: {
301        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
302        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
303          if (InRegVI.Kills[i]->getParent() == MBB1 ||
304              InRegVI.Kills[i]->getParent() == MBB2) {
305            ValueIsLive = true;
306            break;
307          }
308        break;
309      }
310      default:
311        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
312        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
313          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
314                                 InRegVI.Kills[i]->getParent())) {
315            ValueIsLive = true;
316            break;
317          }
318      }
319    }
320
321    // Okay, if we now know that the value is not live out of the block, we can
322    // add a kill marker in this block saying that it kills the incoming value!
323    if (!ValueIsLive) {
324      // In our final twist, we have to decide which instruction kills the
325      // register.  In most cases this is the copy, however, the first
326      // terminator instruction at the end of the block may also use the value.
327      // In this case, we should mark *it* as being the killing block, not the
328      // copy.
329      MachineBasicBlock::iterator KillInst = prior(InsertPos);
330      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
331      if (Term != opBlock.end()) {
332        if (Term->readsRegister(SrcReg))
333          KillInst = Term;
334
335        // Check that no other terminators use values.
336#ifndef NDEBUG
337        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
338             ++TI) {
339          assert(!TI->readsRegister(SrcReg) &&
340                 "Terminator instructions cannot use virtual registers unless"
341                 "they are the first terminator in a block!");
342        }
343#endif
344      }
345
346      // Finally, mark it killed.
347      LV->addVirtualRegisterKilled(SrcReg, KillInst);
348
349      // This vreg no longer lives all of the way through opBlock.
350      unsigned opBlockNum = opBlock.getNumber();
351      if (opBlockNum < InRegVI.AliveBlocks.size())
352        InRegVI.AliveBlocks[opBlockNum] = false;
353    }
354  }
355
356  // Really delete the PHI instruction now!
357  MF.DeleteMachineInstr(MPhi);
358  ++NumAtomic;
359}
360
361/// analyzePHINodes - Gather information about the PHI nodes in here. In
362/// particular, we want to map the number of uses of a virtual register which is
363/// used in a PHI node. We map that to the BB the vreg is coming from. This is
364/// used later to determine when the vreg is killed in the BB.
365///
366void PNE::analyzePHINodes(const MachineFunction& Fn) {
367  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
368       I != E; ++I)
369    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
370         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
371      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
372        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
373                                     BBI->getOperand(i).getReg())];
374}
375