PHIElimination.cpp revision 4f659eccafe34efea2a4ba6e57ad09977e9157c2
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/Passes.h"
18#include "PHIEliminationUtils.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/IR/Function.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include <algorithm>
36using namespace llvm;
37
38static cl::opt<bool>
39DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40                     cl::Hidden, cl::desc("Disable critical edge splitting "
41                                          "during PHI elimination"));
42
43static cl::opt<bool>
44SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
45                      cl::Hidden, cl::desc("Split all critical edges during "
46                                           "PHI elimination"));
47
48namespace {
49  class PHIElimination : public MachineFunctionPass {
50    MachineRegisterInfo *MRI; // Machine register information
51    LiveVariables *LV;
52    LiveIntervals *LIS;
53
54  public:
55    static char ID; // Pass identification, replacement for typeid
56    PHIElimination() : MachineFunctionPass(ID) {
57      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
58    }
59
60    virtual bool runOnMachineFunction(MachineFunction &Fn);
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
62
63  private:
64    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
65    /// in predecessor basic blocks.
66    ///
67    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
68    void LowerPHINode(MachineBasicBlock &MBB,
69                      MachineBasicBlock::iterator AfterPHIsIt);
70
71    /// analyzePHINodes - Gather information about the PHI nodes in
72    /// here. In particular, we want to map the number of uses of a virtual
73    /// register which is used in a PHI node. We map that to the BB the
74    /// vreg is coming from. This is used later to determine when the vreg
75    /// is killed in the BB.
76    ///
77    void analyzePHINodes(const MachineFunction& Fn);
78
79    /// Split critical edges where necessary for good coalescer performance.
80    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
81                       MachineLoopInfo *MLI);
82
83    // These functions are temporary abstractions around LiveVariables and
84    // LiveIntervals, so they can go away when LiveVariables does.
85    bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
86    bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
87
88    typedef std::pair<unsigned, unsigned> BBVRegPair;
89    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
90
91    VRegPHIUse VRegPHIUseCount;
92
93    // Defs of PHI sources which are implicit_def.
94    SmallPtrSet<MachineInstr*, 4> ImpDefs;
95
96    // Map reusable lowered PHI node -> incoming join register.
97    typedef DenseMap<MachineInstr*, unsigned,
98                     MachineInstrExpressionTrait> LoweredPHIMap;
99    LoweredPHIMap LoweredPHIs;
100  };
101}
102
103STATISTIC(NumLowered, "Number of phis lowered");
104STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
105STATISTIC(NumReused, "Number of reused lowered phis");
106
107char PHIElimination::ID = 0;
108char& llvm::PHIEliminationID = PHIElimination::ID;
109
110INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
111                      "Eliminate PHI nodes for register allocation",
112                      false, false)
113INITIALIZE_PASS_DEPENDENCY(LiveVariables)
114INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
115                    "Eliminate PHI nodes for register allocation", false, false)
116
117void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
118  AU.addPreserved<LiveVariables>();
119  AU.addPreserved<SlotIndexes>();
120  AU.addPreserved<LiveIntervals>();
121  AU.addPreserved<MachineDominatorTree>();
122  AU.addPreserved<MachineLoopInfo>();
123  MachineFunctionPass::getAnalysisUsage(AU);
124}
125
126bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
127  MRI = &MF.getRegInfo();
128  LV = getAnalysisIfAvailable<LiveVariables>();
129  LIS = getAnalysisIfAvailable<LiveIntervals>();
130
131  bool Changed = false;
132
133  // This pass takes the function out of SSA form.
134  MRI->leaveSSA();
135
136  // Split critical edges to help the coalescer. This does not yet support
137  // updating LiveIntervals, so we disable it.
138  if (!DisableEdgeSplitting && (LV || LIS)) {
139    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
140    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
141      Changed |= SplitPHIEdges(MF, *I, MLI);
142  }
143
144  // Populate VRegPHIUseCount
145  analyzePHINodes(MF);
146
147  // Eliminate PHI instructions by inserting copies into predecessor blocks.
148  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
149    Changed |= EliminatePHINodes(MF, *I);
150
151  // Remove dead IMPLICIT_DEF instructions.
152  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
153         E = ImpDefs.end(); I != E; ++I) {
154    MachineInstr *DefMI = *I;
155    unsigned DefReg = DefMI->getOperand(0).getReg();
156    if (MRI->use_nodbg_empty(DefReg)) {
157      if (LIS)
158        LIS->RemoveMachineInstrFromMaps(DefMI);
159      DefMI->eraseFromParent();
160    }
161  }
162
163  // Clean up the lowered PHI instructions.
164  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
165       I != E; ++I) {
166    if (LIS)
167      LIS->RemoveMachineInstrFromMaps(I->first);
168    MF.DeleteMachineInstr(I->first);
169  }
170
171  LoweredPHIs.clear();
172  ImpDefs.clear();
173  VRegPHIUseCount.clear();
174
175  if (LIS)
176    MF.verify(this, "After PHI elimination");
177
178  return Changed;
179}
180
181/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
182/// predecessor basic blocks.
183///
184bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
185                                             MachineBasicBlock &MBB) {
186  if (MBB.empty() || !MBB.front().isPHI())
187    return false;   // Quick exit for basic blocks without PHIs.
188
189  // Get an iterator to the first instruction after the last PHI node (this may
190  // also be the end of the basic block).
191  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
192
193  while (MBB.front().isPHI())
194    LowerPHINode(MBB, AfterPHIsIt);
195
196  return true;
197}
198
199/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
200/// This includes registers with no defs.
201static bool isImplicitlyDefined(unsigned VirtReg,
202                                const MachineRegisterInfo *MRI) {
203  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
204       DE = MRI->def_end(); DI != DE; ++DI)
205    if (!DI->isImplicitDef())
206      return false;
207  return true;
208}
209
210/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
211/// are implicit_def's.
212static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
213                                         const MachineRegisterInfo *MRI) {
214  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
215    if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
216      return false;
217  return true;
218}
219
220
221/// LowerPHINode - Lower the PHI node at the top of the specified block,
222///
223void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
224                                  MachineBasicBlock::iterator AfterPHIsIt) {
225  ++NumLowered;
226  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
227  MachineInstr *MPhi = MBB.remove(MBB.begin());
228
229  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
230  unsigned DestReg = MPhi->getOperand(0).getReg();
231  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
232  bool isDead = MPhi->getOperand(0).isDead();
233
234  // Create a new register for the incoming PHI arguments.
235  MachineFunction &MF = *MBB.getParent();
236  unsigned IncomingReg = 0;
237  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
238
239  // Insert a register to register copy at the top of the current block (but
240  // after any remaining phi nodes) which copies the new incoming register
241  // into the phi node destination.
242  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
243  if (isSourceDefinedByImplicitDef(MPhi, MRI))
244    // If all sources of a PHI node are implicit_def, just emit an
245    // implicit_def instead of a copy.
246    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
247            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
248  else {
249    // Can we reuse an earlier PHI node? This only happens for critical edges,
250    // typically those created by tail duplication.
251    unsigned &entry = LoweredPHIs[MPhi];
252    if (entry) {
253      // An identical PHI node was already lowered. Reuse the incoming register.
254      IncomingReg = entry;
255      reusedIncoming = true;
256      ++NumReused;
257      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
258    } else {
259      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
260      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
261    }
262    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
263            TII->get(TargetOpcode::COPY), DestReg)
264      .addReg(IncomingReg);
265  }
266
267  // Update live variable information if there is any.
268  if (LV) {
269    MachineInstr *PHICopy = prior(AfterPHIsIt);
270
271    if (IncomingReg) {
272      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
273
274      // Increment use count of the newly created virtual register.
275      LV->setPHIJoin(IncomingReg);
276
277      // When we are reusing the incoming register, it may already have been
278      // killed in this block. The old kill will also have been inserted at
279      // AfterPHIsIt, so it appears before the current PHICopy.
280      if (reusedIncoming)
281        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
282          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
283          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
284          DEBUG(MBB.dump());
285        }
286
287      // Add information to LiveVariables to know that the incoming value is
288      // killed.  Note that because the value is defined in several places (once
289      // each for each incoming block), the "def" block and instruction fields
290      // for the VarInfo is not filled in.
291      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
292    }
293
294    // Since we are going to be deleting the PHI node, if it is the last use of
295    // any registers, or if the value itself is dead, we need to move this
296    // information over to the new copy we just inserted.
297    LV->removeVirtualRegistersKilled(MPhi);
298
299    // If the result is dead, update LV.
300    if (isDead) {
301      LV->addVirtualRegisterDead(DestReg, PHICopy);
302      LV->removeVirtualRegisterDead(DestReg, MPhi);
303    }
304  }
305
306  // Update LiveIntervals for the new copy or implicit def.
307  if (LIS) {
308    MachineInstr *NewInstr = prior(AfterPHIsIt);
309    LIS->InsertMachineInstrInMaps(NewInstr);
310
311    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
312    SlotIndex DestCopyIndex = LIS->getInstructionIndex(NewInstr);
313    if (IncomingReg) {
314      // Add the region from the beginning of MBB to the copy instruction to
315      // IncomingReg's live interval.
316      LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
317      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
318      if (!IncomingVNI)
319        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
320                                              LIS->getVNInfoAllocator());
321      IncomingLI.addRange(LiveRange(MBBStartIndex,
322                                    DestCopyIndex.getRegSlot(),
323                                    IncomingVNI));
324    }
325
326    LiveInterval &DestLI = LIS->getOrCreateInterval(DestReg);
327    if (NewInstr->getOperand(0).isDead()) {
328      // A dead PHI's live range begins and ends at the start of the MBB, but
329      // the lowered copy, which will still be dead, needs to begin and end at
330      // the copy instruction.
331      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
332      assert(OrigDestVNI && "PHI destination should be live at block entry.");
333      DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot());
334      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
335                           LIS->getVNInfoAllocator());
336      DestLI.removeValNo(OrigDestVNI);
337    } else {
338      // Otherwise, remove the region from the beginning of MBB to the copy
339      // instruction from DestReg's live interval.
340      DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot());
341      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
342      assert(DestVNI && "PHI destination should be live at its definition.");
343      DestVNI->def = DestCopyIndex.getRegSlot();
344    }
345  }
346
347  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
348  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
349    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
350                                 MPhi->getOperand(i).getReg())];
351
352  // Now loop over all of the incoming arguments, changing them to copy into the
353  // IncomingReg register in the corresponding predecessor basic block.
354  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
355  for (int i = NumSrcs - 1; i >= 0; --i) {
356    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
357    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
358    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
359      isImplicitlyDefined(SrcReg, MRI);
360    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
361           "Machine PHI Operands must all be virtual registers!");
362
363    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
364    // path the PHI.
365    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
366
367    // Check to make sure we haven't already emitted the copy for this block.
368    // This can happen because PHI nodes may have multiple entries for the same
369    // basic block.
370    if (!MBBsInsertedInto.insert(&opBlock))
371      continue;  // If the copy has already been emitted, we're done.
372
373    // Find a safe location to insert the copy, this may be the first terminator
374    // in the block (or end()).
375    MachineBasicBlock::iterator InsertPos =
376      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
377
378    // Insert the copy.
379    MachineInstr *NewSrcInstr = 0;
380    if (!reusedIncoming && IncomingReg) {
381      if (SrcUndef) {
382        // The source register is undefined, so there is no need for a real
383        // COPY, but we still need to ensure joint dominance by defs.
384        // Insert an IMPLICIT_DEF instruction.
385        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
386                              TII->get(TargetOpcode::IMPLICIT_DEF),
387                              IncomingReg);
388
389        // Clean up the old implicit-def, if there even was one.
390        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
391          if (DefMI->isImplicitDef())
392            ImpDefs.insert(DefMI);
393      } else {
394        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
395                            TII->get(TargetOpcode::COPY), IncomingReg)
396                        .addReg(SrcReg, 0, SrcSubReg);
397      }
398    }
399
400    // We only need to update the LiveVariables kill of SrcReg if this was the
401    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
402    // out of the predecessor. We can also ignore undef sources.
403    if (LV && !SrcUndef &&
404        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
405        !LV->isLiveOut(SrcReg, opBlock)) {
406      // We want to be able to insert a kill of the register if this PHI (aka,
407      // the copy we just inserted) is the last use of the source value. Live
408      // variable analysis conservatively handles this by saying that the value
409      // is live until the end of the block the PHI entry lives in. If the value
410      // really is dead at the PHI copy, there will be no successor blocks which
411      // have the value live-in.
412
413      // Okay, if we now know that the value is not live out of the block, we
414      // can add a kill marker in this block saying that it kills the incoming
415      // value!
416
417      // In our final twist, we have to decide which instruction kills the
418      // register.  In most cases this is the copy, however, terminator
419      // instructions at the end of the block may also use the value. In this
420      // case, we should mark the last such terminator as being the killing
421      // block, not the copy.
422      MachineBasicBlock::iterator KillInst = opBlock.end();
423      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
424      for (MachineBasicBlock::iterator Term = FirstTerm;
425          Term != opBlock.end(); ++Term) {
426        if (Term->readsRegister(SrcReg))
427          KillInst = Term;
428      }
429
430      if (KillInst == opBlock.end()) {
431        // No terminator uses the register.
432
433        if (reusedIncoming || !IncomingReg) {
434          // We may have to rewind a bit if we didn't insert a copy this time.
435          KillInst = FirstTerm;
436          while (KillInst != opBlock.begin()) {
437            --KillInst;
438            if (KillInst->isDebugValue())
439              continue;
440            if (KillInst->readsRegister(SrcReg))
441              break;
442          }
443        } else {
444          // We just inserted this copy.
445          KillInst = prior(InsertPos);
446        }
447      }
448      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
449
450      // Finally, mark it killed.
451      LV->addVirtualRegisterKilled(SrcReg, KillInst);
452
453      // This vreg no longer lives all of the way through opBlock.
454      unsigned opBlockNum = opBlock.getNumber();
455      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
456    }
457
458    if (LIS) {
459      if (NewSrcInstr) {
460        LIS->InsertMachineInstrInMaps(NewSrcInstr);
461        LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr);
462      }
463
464      if (!SrcUndef &&
465          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
466        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
467
468        bool isLiveOut = false;
469        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
470             SE = opBlock.succ_end(); SI != SE; ++SI) {
471          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
472          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
473
474          // Definitions by other PHIs are not truly live-in for our purposes.
475          if (VNI && VNI->def != startIdx) {
476            isLiveOut = true;
477            break;
478          }
479        }
480
481        if (!isLiveOut) {
482          MachineBasicBlock::iterator KillInst = opBlock.end();
483          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
484          for (MachineBasicBlock::iterator Term = FirstTerm;
485              Term != opBlock.end(); ++Term) {
486            if (Term->readsRegister(SrcReg))
487              KillInst = Term;
488          }
489
490          if (KillInst == opBlock.end()) {
491            // No terminator uses the register.
492
493            if (reusedIncoming || !IncomingReg) {
494              // We may have to rewind a bit if we didn't just insert a copy.
495              KillInst = FirstTerm;
496              while (KillInst != opBlock.begin()) {
497                --KillInst;
498                if (KillInst->isDebugValue())
499                  continue;
500                if (KillInst->readsRegister(SrcReg))
501                  break;
502              }
503            } else {
504              // We just inserted this copy.
505              KillInst = prior(InsertPos);
506            }
507          }
508          assert(KillInst->readsRegister(SrcReg) &&
509                 "Cannot find kill instruction");
510
511          SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
512          SrcLI.removeRange(LastUseIndex.getRegSlot(),
513                            LIS->getMBBEndIdx(&opBlock));
514        }
515      }
516    }
517  }
518
519  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
520  if (reusedIncoming || !IncomingReg) {
521    if (LIS)
522      LIS->RemoveMachineInstrFromMaps(MPhi);
523    MF.DeleteMachineInstr(MPhi);
524  }
525}
526
527/// analyzePHINodes - Gather information about the PHI nodes in here. In
528/// particular, we want to map the number of uses of a virtual register which is
529/// used in a PHI node. We map that to the BB the vreg is coming from. This is
530/// used later to determine when the vreg is killed in the BB.
531///
532void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
533  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
534       I != E; ++I)
535    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
536         BBI != BBE && BBI->isPHI(); ++BBI)
537      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
538        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
539                                     BBI->getOperand(i).getReg())];
540}
541
542bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
543                                   MachineBasicBlock &MBB,
544                                   MachineLoopInfo *MLI) {
545  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
546    return false;   // Quick exit for basic blocks without PHIs.
547
548  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
549  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
550
551  bool Changed = false;
552  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
553       BBI != BBE && BBI->isPHI(); ++BBI) {
554    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
555      unsigned Reg = BBI->getOperand(i).getReg();
556      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
557      // Is there a critical edge from PreMBB to MBB?
558      if (PreMBB->succ_size() == 1)
559        continue;
560
561      // Avoid splitting backedges of loops. It would introduce small
562      // out-of-line blocks into the loop which is very bad for code placement.
563      if (PreMBB == &MBB && !SplitAllCriticalEdges)
564        continue;
565      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
566      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
567        continue;
568
569      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
570      // when the source register is live-out for some other reason than a phi
571      // use. That means the copy we will insert in PreMBB won't be a kill, and
572      // there is a risk it may not be coalesced away.
573      //
574      // If the copy would be a kill, there is no need to split the edge.
575      if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
576        continue;
577
578      DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
579                   << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
580                   << ": " << *BBI);
581
582      // If Reg is not live-in to MBB, it means it must be live-in to some
583      // other PreMBB successor, and we can avoid the interference by splitting
584      // the edge.
585      //
586      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
587      // is likely to be left after coalescing. If we are looking at a loop
588      // exiting edge, split it so we won't insert code in the loop, otherwise
589      // don't bother.
590      bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
591
592      // Check for a loop exiting edge.
593      if (!ShouldSplit && CurLoop != PreLoop) {
594        DEBUG({
595          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
596          if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
597          if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
598        });
599        // This edge could be entering a loop, exiting a loop, or it could be
600        // both: Jumping directly form one loop to the header of a sibling
601        // loop.
602        // Split unless this edge is entering CurLoop from an outer loop.
603        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
604      }
605      if (!ShouldSplit)
606        continue;
607      if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
608        DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
609        continue;
610      }
611      Changed = true;
612      ++NumCriticalEdgesSplit;
613    }
614  }
615  return Changed;
616}
617
618bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
619  assert((LV || LIS) &&
620         "isLiveIn() requires either LiveVariables or LiveIntervals");
621  if (LIS)
622    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
623  else
624    return LV->isLiveIn(Reg, *MBB);
625}
626
627bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
628  assert((LV || LIS) &&
629         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
630  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
631  // so that a register used only in a PHI is not live out of the block. In
632  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
633  // in the predecessor basic block, so that a register used only in a PHI is live
634  // out of the block.
635  if (LIS) {
636    const LiveInterval &LI = LIS->getInterval(Reg);
637    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
638         SE = MBB->succ_end(); SI != SE; ++SI) {
639      if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
640        return true;
641    }
642    return false;
643  } else {
644    return LV->isLiveOut(Reg, *MBB);
645  }
646}
647