PHIElimination.cpp revision 53a79aaae988d9dc9d12af8970f8b8fe58cc478d
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/LiveVariables.h"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/CodeGen/MachineFunctionPass.h"
19#include "llvm/CodeGen/MachineInstr.h"
20#include "llvm/CodeGen/SSARegMap.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include <set>
26using namespace llvm;
27
28namespace {
29  struct PNE : public MachineFunctionPass {
30    bool runOnMachineFunction(MachineFunction &Fn) {
31      bool Changed = false;
32
33      // Eliminate PHI instructions by inserting copies into predecessor blocks.
34      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
35        Changed |= EliminatePHINodes(Fn, *I);
36
37      return Changed;
38    }
39
40    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
41      AU.addPreserved<LiveVariables>();
42      MachineFunctionPass::getAnalysisUsage(AU);
43    }
44
45  private:
46    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
47    /// in predecessor basic blocks.
48    ///
49    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
50    void LowerAtomicPHINode(MachineBasicBlock &MBB,
51                            MachineBasicBlock::iterator AfterPHIsIt,
52                            DenseMap<unsigned, VirtReg2IndexFunctor> &VUC,
53                            unsigned BBIsSuccOfPreds);
54  };
55
56  RegisterPass<PNE> X("phi-node-elimination",
57                      "Eliminate PHI nodes for register allocation");
58}
59
60
61const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
62
63/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
64/// predecessor basic blocks.
65///
66bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
67  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
68    return false;   // Quick exit for basic blocks without PHIs.
69
70  // VRegPHIUseCount - Keep track of the number of times each virtual register
71  // is used by PHI nodes in successors of this block.
72  DenseMap<unsigned, VirtReg2IndexFunctor> VRegPHIUseCount;
73  VRegPHIUseCount.grow(MF.getSSARegMap()->getLastVirtReg());
74
75  unsigned BBIsSuccOfPreds = 0;  // Number of times MBB is a succ of preds
76  for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin(),
77         E = MBB.pred_end(); PI != E; ++PI)
78    for (MachineBasicBlock::succ_iterator SI = (*PI)->succ_begin(),
79           E = (*PI)->succ_end(); SI != E; ++SI) {
80    BBIsSuccOfPreds += *SI == &MBB;
81    for (MachineBasicBlock::iterator BBI = (*SI)->begin(); BBI !=(*SI)->end() &&
82           BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
83      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
84        VRegPHIUseCount[BBI->getOperand(i).getReg()]++;
85  }
86
87  // Get an iterator to the first instruction after the last PHI node (this may
88  // also be the end of the basic block).
89  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
90  while (AfterPHIsIt != MBB.end() &&
91         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
92    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
93
94  while (MBB.front().getOpcode() == TargetInstrInfo::PHI) {
95    LowerAtomicPHINode(MBB, AfterPHIsIt, VRegPHIUseCount, BBIsSuccOfPreds);
96  }
97  return true;
98}
99
100/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
101/// under the assuption that it needs to be lowered in a way that supports
102/// atomic execution of PHIs.  This lowering method is always correct all of the
103/// time.
104void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
105                             MachineBasicBlock::iterator AfterPHIsIt,
106                      DenseMap<unsigned, VirtReg2IndexFunctor> &VRegPHIUseCount,
107                             unsigned BBIsSuccOfPreds) {
108  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
109  MachineInstr *MPhi = MBB.remove(MBB.begin());
110
111  unsigned DestReg = MPhi->getOperand(0).getReg();
112
113  // Create a new register for the incoming PHI arguments/
114  MachineFunction &MF = *MBB.getParent();
115  const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg);
116  unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC);
117
118  // Insert a register to register copy in the top of the current block (but
119  // after any remaining phi nodes) which copies the new incoming register
120  // into the phi node destination.
121  //
122  const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo();
123  RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC);
124
125  // Update live variable information if there is any...
126  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
127  if (LV) {
128    MachineInstr *PHICopy = prior(AfterPHIsIt);
129
130    // Add information to LiveVariables to know that the incoming value is
131    // killed.  Note that because the value is defined in several places (once
132    // each for each incoming block), the "def" block and instruction fields
133    // for the VarInfo is not filled in.
134    //
135    LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
136
137    // Since we are going to be deleting the PHI node, if it is the last use
138    // of any registers, or if the value itself is dead, we need to move this
139    // information over to the new copy we just inserted.
140    //
141    LV->removeVirtualRegistersKilled(MPhi);
142
143    std::pair<LiveVariables::killed_iterator, LiveVariables::killed_iterator>
144      RKs = LV->dead_range(MPhi);
145    if (RKs.first != RKs.second) {
146      for (LiveVariables::killed_iterator I = RKs.first; I != RKs.second; ++I)
147        LV->addVirtualRegisterDead(*I, PHICopy);
148      LV->removeVirtualRegistersDead(MPhi);
149    }
150  }
151
152  // Adjust the VRegPHIUseCount map to account for the removal of this PHI
153  // node.
154  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
155    VRegPHIUseCount[MPhi->getOperand(i).getReg()] -= BBIsSuccOfPreds;
156
157  // Now loop over all of the incoming arguments, changing them to copy into
158  // the IncomingReg register in the corresponding predecessor basic block.
159  //
160  for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
161    MachineOperand &opVal = MPhi->getOperand(i-1);
162
163    // Get the MachineBasicBlock equivalent of the BasicBlock that is the
164    // source path the PHI.
165    MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock();
166
167    MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
168
169    // Check to make sure we haven't already emitted the copy for this block.
170    // This can happen because PHI nodes may have multiple entries for the
171    // same basic block.  It doesn't matter which entry we use though, because
172    // all incoming values are guaranteed to be the same for a particular bb.
173    //
174    // If we emitted a copy for this basic block already, it will be right
175    // where we want to insert one now.  Just check for a definition of the
176    // register we are interested in!
177    //
178    bool HaveNotEmitted = true;
179
180    if (I != opBlock.begin()) {
181      MachineBasicBlock::iterator PrevInst = prior(I);
182      for (unsigned i = 0, e = PrevInst->getNumOperands(); i != e; ++i) {
183        MachineOperand &MO = PrevInst->getOperand(i);
184        if (MO.isRegister() && MO.getReg() == IncomingReg)
185          if (MO.isDef()) {
186            HaveNotEmitted = false;
187            break;
188          }
189      }
190    }
191
192    if (HaveNotEmitted) { // If the copy has not already been emitted, do it.
193      assert(MRegisterInfo::isVirtualRegister(opVal.getReg()) &&
194             "Machine PHI Operands must all be virtual registers!");
195      unsigned SrcReg = opVal.getReg();
196      RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC);
197
198      // Now update live variable information if we have it.
199      if (LV) {
200        // We want to be able to insert a kill of the register if this PHI
201        // (aka, the copy we just inserted) is the last use of the source
202        // value.  Live variable analysis conservatively handles this by
203        // saying that the value is live until the end of the block the PHI
204        // entry lives in.  If the value really is dead at the PHI copy, there
205        // will be no successor blocks which have the value live-in.
206        //
207        // Check to see if the copy is the last use, and if so, update the
208        // live variables information so that it knows the copy source
209        // instruction kills the incoming value.
210        //
211        LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
212
213        // Loop over all of the successors of the basic block, checking to see
214        // if the value is either live in the block, or if it is killed in the
215        // block.  Also check to see if this register is in use by another PHI
216        // node which has not yet been eliminated.  If so, it will be killed
217        // at an appropriate point later.
218        //
219        bool ValueIsLive = false;
220        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
221               E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
222          MachineBasicBlock *SuccMBB = *SI;
223
224          // Is it alive in this successor?
225          unsigned SuccIdx = SuccMBB->getNumber();
226          if (SuccIdx < InRegVI.AliveBlocks.size() &&
227              InRegVI.AliveBlocks[SuccIdx]) {
228            ValueIsLive = true;
229            break;
230          }
231
232          // Is it killed in this successor?
233          for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
234            if (InRegVI.Kills[i]->getParent() == SuccMBB) {
235              ValueIsLive = true;
236              break;
237            }
238
239          // Is it used by any PHI instructions in this block?
240          if (!ValueIsLive)
241            ValueIsLive = VRegPHIUseCount[SrcReg] != 0;
242        }
243
244        // Okay, if we now know that the value is not live out of the block,
245        // we can add a kill marker to the copy we inserted saying that it
246        // kills the incoming value!
247        //
248        if (!ValueIsLive) {
249          MachineBasicBlock::iterator Prev = prior(I);
250          LV->addVirtualRegisterKilled(SrcReg, Prev);
251
252          // This vreg no longer lives all of the way through opBlock.
253          unsigned opBlockNum = opBlock.getNumber();
254          if (opBlockNum < InRegVI.AliveBlocks.size())
255            InRegVI.AliveBlocks[opBlockNum] = false;
256        }
257      }
258    }
259  }
260
261  // Really delete the PHI instruction now!
262  delete MPhi;
263}
264