PHIElimination.cpp revision 576a27043d95d0b9b8a010bccfd38ed9c0afa739
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/LiveVariables.h"
18#include "llvm/CodeGen/Passes.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Support/Compiler.h"
28#include <algorithm>
29#include <map>
30using namespace llvm;
31
32STATISTIC(NumAtomic, "Number of atomic phis lowered");
33
34namespace {
35  class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
36    MachineRegisterInfo  *MRI; // Machine register information
37
38  public:
39    static char ID; // Pass identification, replacement for typeid
40    PNE() : MachineFunctionPass((intptr_t)&ID) {}
41
42    virtual bool runOnMachineFunction(MachineFunction &Fn);
43
44    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45      AU.addPreserved<LiveVariables>();
46      AU.addPreservedID(MachineLoopInfoID);
47      AU.addPreservedID(MachineDominatorsID);
48      MachineFunctionPass::getAnalysisUsage(AU);
49    }
50
51  private:
52    /// findInsertionPoint - Find a safe location to insert a move to copy
53    /// source of a PHI instruction.
54    MachineBasicBlock::iterator
55      findInsertionPoint(MachineBasicBlock &MBB, MachineInstr *DefMI,
56                         unsigned DstReg, unsigned SrcReg) const;
57
58    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
59    /// in predecessor basic blocks.
60    ///
61    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
62    void LowerAtomicPHINode(MachineBasicBlock &MBB,
63                            MachineBasicBlock::iterator AfterPHIsIt);
64
65    /// analyzePHINodes - Gather information about the PHI nodes in
66    /// here. In particular, we want to map the number of uses of a virtual
67    /// register which is used in a PHI node. We map that to the BB the
68    /// vreg is coming from. This is used later to determine when the vreg
69    /// is killed in the BB.
70    ///
71    void analyzePHINodes(const MachineFunction& Fn);
72
73    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
74    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
75
76    VRegPHIUse VRegPHIUseCount;
77
78    // Defs of PHI sources which are implicit_def.
79    SmallPtrSet<MachineInstr*, 4> ImpDefs;
80  };
81
82  char PNE::ID = 0;
83  RegisterPass<PNE> X("phi-node-elimination",
84                      "Eliminate PHI nodes for register allocation");
85}
86
87const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
88
89bool PNE::runOnMachineFunction(MachineFunction &Fn) {
90  MRI = &Fn.getRegInfo();
91
92  analyzePHINodes(Fn);
93
94  bool Changed = false;
95
96  // Eliminate PHI instructions by inserting copies into predecessor blocks.
97  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
98    Changed |= EliminatePHINodes(Fn, *I);
99
100  // Remove dead IMPLICIT_DEF instructions.
101  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
102         E = ImpDefs.end(); I != E; ++I) {
103    MachineInstr *DefMI = *I;
104    unsigned DefReg = DefMI->getOperand(0).getReg();
105    if (MRI->use_begin(DefReg) == MRI->use_end())
106      DefMI->eraseFromParent();
107  }
108
109  ImpDefs.clear();
110  VRegPHIUseCount.clear();
111  return Changed;
112}
113
114
115/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
116/// predecessor basic blocks.
117///
118bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
119  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
120    return false;   // Quick exit for basic blocks without PHIs.
121
122  // Get an iterator to the first instruction after the last PHI node (this may
123  // also be the end of the basic block).
124  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
125  while (AfterPHIsIt != MBB.end() &&
126         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
127    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
128
129  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
130    LowerAtomicPHINode(MBB, AfterPHIsIt);
131
132  return true;
133}
134
135/// findInsertionPoint - Find a safe location to insert a move to copy
136/// source of a PHI instruction.
137MachineBasicBlock::iterator
138PNE::findInsertionPoint(MachineBasicBlock &MBB, MachineInstr *DefMI,
139                        unsigned DstReg, unsigned SrcReg) const {
140  if (DefMI->getOpcode() == TargetInstrInfo::PHI ||
141      DefMI->getParent() != &MBB)
142    return MBB.getFirstTerminator();
143
144  for (MachineRegisterInfo::use_iterator I = MRI->use_begin(SrcReg),
145         E = MRI->use_end(); I != E; ++I)
146    if (I->getParent() == &MBB)
147      return MBB.getFirstTerminator();
148  for (MachineRegisterInfo::use_iterator I = MRI->use_begin(DstReg),
149         E = MRI->use_end(); I != E; ++I)
150    if (I->getParent() == &MBB)
151      return MBB.getFirstTerminator();
152
153  MachineBasicBlock::iterator I = DefMI;
154  return ++I;
155}
156
157/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
158/// under the assuption that it needs to be lowered in a way that supports
159/// atomic execution of PHIs.  This lowering method is always correct all of the
160/// time.
161void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
162                             MachineBasicBlock::iterator AfterPHIsIt) {
163  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
164  MachineInstr *MPhi = MBB.remove(MBB.begin());
165
166  unsigned DestReg = MPhi->getOperand(0).getReg();
167
168  // Create a new register for the incoming PHI arguments.
169  MachineFunction &MF = *MBB.getParent();
170  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
171  unsigned IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
172
173  // Insert a register to register copy in the top of the current block (but
174  // after any remaining phi nodes) which copies the new incoming register
175  // into the phi node destination.
176  //
177  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
178  TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
179
180  // Update live variable information if there is any...
181  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
182  if (LV) {
183    MachineInstr *PHICopy = prior(AfterPHIsIt);
184
185    // Increment use count of the newly created virtual register.
186    LV->getVarInfo(IncomingReg).NumUses++;
187
188    // Add information to LiveVariables to know that the incoming value is
189    // killed.  Note that because the value is defined in several places (once
190    // each for each incoming block), the "def" block and instruction fields
191    // for the VarInfo is not filled in.
192    //
193    LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
194
195    // Since we are going to be deleting the PHI node, if it is the last use
196    // of any registers, or if the value itself is dead, we need to move this
197    // information over to the new copy we just inserted.
198    //
199    LV->removeVirtualRegistersKilled(MPhi);
200
201    // If the result is dead, update LV.
202    if (MPhi->registerDefIsDead(DestReg)) {
203      LV->addVirtualRegisterDead(DestReg, PHICopy);
204      LV->removeVirtualRegistersDead(MPhi);
205    }
206
207    LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
208  }
209
210  // Adjust the VRegPHIUseCount map to account for the removal of this PHI
211  // node.
212  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
213    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
214                                 MPhi->getOperand(i).getReg())];
215
216  // Now loop over all of the incoming arguments, changing them to copy into
217  // the IncomingReg register in the corresponding predecessor basic block.
218  //
219  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
220  for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
221    unsigned SrcReg = MPhi->getOperand(i-1).getReg();
222    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
223           "Machine PHI Operands must all be virtual registers!");
224
225    // If source is defined by an implicit def, there is no need to insert
226    // a copy.
227    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
228    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
229      ImpDefs.insert(DefMI);
230      continue;
231    }
232
233    // Get the MachineBasicBlock equivalent of the BasicBlock that is the
234    // source path the PHI.
235    MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMBB();
236
237    // Check to make sure we haven't already emitted the copy for this block.
238    // This can happen because PHI nodes may have multiple entries for the
239    // same basic block.
240    if (!MBBsInsertedInto.insert(&opBlock))
241      continue;  // If the copy has already been emitted, we're done.
242
243    // Find a safe location to insert the copy, this may be the first
244    // terminator in the block (or end()).
245    MachineBasicBlock::iterator InsertPos =
246      findInsertionPoint(opBlock, DefMI, IncomingReg, SrcReg);
247
248    // Insert the copy.
249    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
250
251    // Now update live variable information if we have it.  Otherwise we're done
252    if (!LV) continue;
253
254    // We want to be able to insert a kill of the register if this PHI
255    // (aka, the copy we just inserted) is the last use of the source
256    // value.  Live variable analysis conservatively handles this by
257    // saying that the value is live until the end of the block the PHI
258    // entry lives in.  If the value really is dead at the PHI copy, there
259    // will be no successor blocks which have the value live-in.
260    //
261    // Check to see if the copy is the last use, and if so, update the
262    // live variables information so that it knows the copy source
263    // instruction kills the incoming value.
264    //
265    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
266    InRegVI.UsedBlocks[opBlock.getNumber()] = true;
267
268    // Loop over all of the successors of the basic block, checking to see
269    // if the value is either live in the block, or if it is killed in the
270    // block.  Also check to see if this register is in use by another PHI
271    // node which has not yet been eliminated.  If so, it will be killed
272    // at an appropriate point later.
273    //
274
275    // Is it used by any PHI instructions in this block?
276    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
277
278    std::vector<MachineBasicBlock*> OpSuccBlocks;
279
280    // Otherwise, scan successors, including the BB the PHI node lives in.
281    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
282           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
283      MachineBasicBlock *SuccMBB = *SI;
284
285      // Is it alive in this successor?
286      unsigned SuccIdx = SuccMBB->getNumber();
287      if (SuccIdx < InRegVI.AliveBlocks.size() &&
288          InRegVI.AliveBlocks[SuccIdx]) {
289        ValueIsLive = true;
290        break;
291      }
292
293      OpSuccBlocks.push_back(SuccMBB);
294    }
295
296    // Check to see if this value is live because there is a use in a successor
297    // that kills it.
298    if (!ValueIsLive) {
299      switch (OpSuccBlocks.size()) {
300      case 1: {
301        MachineBasicBlock *MBB = OpSuccBlocks[0];
302        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
303          if (InRegVI.Kills[i]->getParent() == MBB) {
304            ValueIsLive = true;
305            break;
306          }
307        break;
308      }
309      case 2: {
310        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
311        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
312          if (InRegVI.Kills[i]->getParent() == MBB1 ||
313              InRegVI.Kills[i]->getParent() == MBB2) {
314            ValueIsLive = true;
315            break;
316          }
317        break;
318      }
319      default:
320        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
321        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
322          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
323                                 InRegVI.Kills[i]->getParent())) {
324            ValueIsLive = true;
325            break;
326          }
327      }
328    }
329
330    // Okay, if we now know that the value is not live out of the block,
331    // we can add a kill marker in this block saying that it kills the incoming
332    // value!
333    if (!ValueIsLive) {
334      // In our final twist, we have to decide which instruction kills the
335      // register.  In most cases this is the copy, however, the first
336      // terminator instruction at the end of the block may also use the value.
337      // In this case, we should mark *it* as being the killing block, not the
338      // copy.
339      MachineBasicBlock::iterator KillInst = prior(InsertPos);
340      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
341      if (Term != opBlock.end()) {
342        if (Term->readsRegister(SrcReg))
343          KillInst = Term;
344
345        // Check that no other terminators use values.
346#ifndef NDEBUG
347        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
348             ++TI) {
349          assert(!TI->readsRegister(SrcReg) &&
350                 "Terminator instructions cannot use virtual registers unless"
351                 "they are the first terminator in a block!");
352        }
353#endif
354      }
355
356      // Finally, mark it killed.
357      LV->addVirtualRegisterKilled(SrcReg, KillInst);
358
359      // This vreg no longer lives all of the way through opBlock.
360      unsigned opBlockNum = opBlock.getNumber();
361      if (opBlockNum < InRegVI.AliveBlocks.size())
362        InRegVI.AliveBlocks[opBlockNum] = false;
363    }
364  }
365
366  // Really delete the PHI instruction now!
367  delete MPhi;
368  ++NumAtomic;
369}
370
371/// analyzePHINodes - Gather information about the PHI nodes in here. In
372/// particular, we want to map the number of uses of a virtual register which is
373/// used in a PHI node. We map that to the BB the vreg is coming from. This is
374/// used later to determine when the vreg is killed in the BB.
375///
376void PNE::analyzePHINodes(const MachineFunction& Fn) {
377  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
378       I != E; ++I)
379    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
380         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
381      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
382        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
383                                     BBI->getOperand(i).getReg())];
384}
385