PHIElimination.cpp revision 6130f66eaae89f8878590796977678afa8448926
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/LiveVariables.h"
18#include "llvm/CodeGen/Passes.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/Support/Compiler.h"
27#include <set>
28#include <algorithm>
29using namespace llvm;
30
31STATISTIC(NumAtomic, "Number of atomic phis lowered");
32//STATISTIC(NumSimple, "Number of simple phis lowered");
33
34namespace {
35  struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
36    static char ID; // Pass identification, replacement for typeid
37    PNE() : MachineFunctionPass((intptr_t)&ID) {}
38
39    bool runOnMachineFunction(MachineFunction &Fn) {
40      analyzePHINodes(Fn);
41
42      bool Changed = false;
43
44      // Eliminate PHI instructions by inserting copies into predecessor blocks.
45      for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
46        Changed |= EliminatePHINodes(Fn, *I);
47
48      VRegPHIUseCount.clear();
49      return Changed;
50    }
51
52    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
53      AU.addPreserved<LiveVariables>();
54      AU.addPreservedID(MachineLoopInfoID);
55      AU.addPreservedID(MachineDominatorsID);
56      MachineFunctionPass::getAnalysisUsage(AU);
57    }
58
59  private:
60    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
61    /// in predecessor basic blocks.
62    ///
63    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
64    void LowerAtomicPHINode(MachineBasicBlock &MBB,
65                            MachineBasicBlock::iterator AfterPHIsIt);
66
67    /// analyzePHINodes - Gather information about the PHI nodes in
68    /// here. In particular, we want to map the number of uses of a virtual
69    /// register which is used in a PHI node. We map that to the BB the
70    /// vreg is coming from. This is used later to determine when the vreg
71    /// is killed in the BB.
72    ///
73    void analyzePHINodes(const MachineFunction& Fn);
74
75    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
76    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
77
78    VRegPHIUse VRegPHIUseCount;
79  };
80
81  char PNE::ID = 0;
82  RegisterPass<PNE> X("phi-node-elimination",
83                      "Eliminate PHI nodes for register allocation");
84}
85
86const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
87
88/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
89/// predecessor basic blocks.
90///
91bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
92  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
93    return false;   // Quick exit for basic blocks without PHIs.
94
95  // Get an iterator to the first instruction after the last PHI node (this may
96  // also be the end of the basic block).
97  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
98  while (AfterPHIsIt != MBB.end() &&
99         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
100    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
101
102  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
103    LowerAtomicPHINode(MBB, AfterPHIsIt);
104
105  return true;
106}
107
108/// InstructionUsesRegister - Return true if the specified machine instr has a
109/// use of the specified register.
110static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) {
111  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
112    if (MI->getOperand(i).isRegister() &&
113        MI->getOperand(i).getReg() == SrcReg &&
114        MI->getOperand(i).isUse())
115      return true;
116  return false;
117}
118
119/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
120/// under the assuption that it needs to be lowered in a way that supports
121/// atomic execution of PHIs.  This lowering method is always correct all of the
122/// time.
123void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
124                             MachineBasicBlock::iterator AfterPHIsIt) {
125  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
126  MachineInstr *MPhi = MBB.remove(MBB.begin());
127
128  unsigned DestReg = MPhi->getOperand(0).getReg();
129
130  // Create a new register for the incoming PHI arguments.
131  MachineFunction &MF = *MBB.getParent();
132  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
133  unsigned IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
134
135  // Insert a register to register copy in the top of the current block (but
136  // after any remaining phi nodes) which copies the new incoming register
137  // into the phi node destination.
138  //
139  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
140  TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
141
142  // Update live variable information if there is any...
143  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
144  if (LV) {
145    MachineInstr *PHICopy = prior(AfterPHIsIt);
146
147    // Increment use count of the newly created virtual register.
148    LV->getVarInfo(IncomingReg).NumUses++;
149
150    // Add information to LiveVariables to know that the incoming value is
151    // killed.  Note that because the value is defined in several places (once
152    // each for each incoming block), the "def" block and instruction fields
153    // for the VarInfo is not filled in.
154    //
155    LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
156
157    // Since we are going to be deleting the PHI node, if it is the last use
158    // of any registers, or if the value itself is dead, we need to move this
159    // information over to the new copy we just inserted.
160    //
161    LV->removeVirtualRegistersKilled(MPhi);
162
163    // If the result is dead, update LV.
164    if (MPhi->registerDefIsDead(DestReg)) {
165      LV->addVirtualRegisterDead(DestReg, PHICopy);
166      LV->removeVirtualRegistersDead(MPhi);
167    }
168
169    LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
170  }
171
172  // Adjust the VRegPHIUseCount map to account for the removal of this PHI
173  // node.
174  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
175    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
176                                 MPhi->getOperand(i).getReg())];
177
178  // Now loop over all of the incoming arguments, changing them to copy into
179  // the IncomingReg register in the corresponding predecessor basic block.
180  //
181  std::set<MachineBasicBlock*> MBBsInsertedInto;
182  for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
183    unsigned SrcReg = MPhi->getOperand(i-1).getReg();
184    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
185           "Machine PHI Operands must all be virtual registers!");
186
187    // Get the MachineBasicBlock equivalent of the BasicBlock that is the
188    // source path the PHI.
189    MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMBB();
190
191    // Check to make sure we haven't already emitted the copy for this block.
192    // This can happen because PHI nodes may have multiple entries for the
193    // same basic block.
194    if (!MBBsInsertedInto.insert(&opBlock).second)
195      continue;  // If the copy has already been emitted, we're done.
196
197    // Get an iterator pointing to the first terminator in the block (or end()).
198    // This is the point where we can insert a copy if we'd like to.
199    MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
200
201    // Insert the copy.
202    TII->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC, RC);
203
204    // Now update live variable information if we have it.  Otherwise we're done
205    if (!LV) continue;
206
207    // We want to be able to insert a kill of the register if this PHI
208    // (aka, the copy we just inserted) is the last use of the source
209    // value.  Live variable analysis conservatively handles this by
210    // saying that the value is live until the end of the block the PHI
211    // entry lives in.  If the value really is dead at the PHI copy, there
212    // will be no successor blocks which have the value live-in.
213    //
214    // Check to see if the copy is the last use, and if so, update the
215    // live variables information so that it knows the copy source
216    // instruction kills the incoming value.
217    //
218    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
219    InRegVI.UsedBlocks[opBlock.getNumber()] = true;
220
221    // Loop over all of the successors of the basic block, checking to see
222    // if the value is either live in the block, or if it is killed in the
223    // block.  Also check to see if this register is in use by another PHI
224    // node which has not yet been eliminated.  If so, it will be killed
225    // at an appropriate point later.
226    //
227
228    // Is it used by any PHI instructions in this block?
229    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
230
231    std::vector<MachineBasicBlock*> OpSuccBlocks;
232
233    // Otherwise, scan successors, including the BB the PHI node lives in.
234    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
235           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
236      MachineBasicBlock *SuccMBB = *SI;
237
238      // Is it alive in this successor?
239      unsigned SuccIdx = SuccMBB->getNumber();
240      if (SuccIdx < InRegVI.AliveBlocks.size() &&
241          InRegVI.AliveBlocks[SuccIdx]) {
242        ValueIsLive = true;
243        break;
244      }
245
246      OpSuccBlocks.push_back(SuccMBB);
247    }
248
249    // Check to see if this value is live because there is a use in a successor
250    // that kills it.
251    if (!ValueIsLive) {
252      switch (OpSuccBlocks.size()) {
253      case 1: {
254        MachineBasicBlock *MBB = OpSuccBlocks[0];
255        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
256          if (InRegVI.Kills[i]->getParent() == MBB) {
257            ValueIsLive = true;
258            break;
259          }
260        break;
261      }
262      case 2: {
263        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
264        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
265          if (InRegVI.Kills[i]->getParent() == MBB1 ||
266              InRegVI.Kills[i]->getParent() == MBB2) {
267            ValueIsLive = true;
268            break;
269          }
270        break;
271      }
272      default:
273        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
274        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
275          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
276                                 InRegVI.Kills[i]->getParent())) {
277            ValueIsLive = true;
278            break;
279          }
280      }
281    }
282
283    // Okay, if we now know that the value is not live out of the block,
284    // we can add a kill marker in this block saying that it kills the incoming
285    // value!
286    if (!ValueIsLive) {
287      // In our final twist, we have to decide which instruction kills the
288      // register.  In most cases this is the copy, however, the first
289      // terminator instruction at the end of the block may also use the value.
290      // In this case, we should mark *it* as being the killing block, not the
291      // copy.
292      bool FirstTerminatorUsesValue = false;
293      if (I != opBlock.end()) {
294        FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg);
295
296        // Check that no other terminators use values.
297#ifndef NDEBUG
298        for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end();
299             ++TI) {
300          assert(!InstructionUsesRegister(TI, SrcReg) &&
301                 "Terminator instructions cannot use virtual registers unless"
302                 "they are the first terminator in a block!");
303        }
304#endif
305      }
306
307      MachineBasicBlock::iterator KillInst;
308      if (!FirstTerminatorUsesValue)
309        KillInst = prior(I);
310      else
311        KillInst = I;
312
313      // Finally, mark it killed.
314      LV->addVirtualRegisterKilled(SrcReg, KillInst);
315
316      // This vreg no longer lives all of the way through opBlock.
317      unsigned opBlockNum = opBlock.getNumber();
318      if (opBlockNum < InRegVI.AliveBlocks.size())
319        InRegVI.AliveBlocks[opBlockNum] = false;
320    }
321  }
322
323  // Really delete the PHI instruction now!
324  delete MPhi;
325  ++NumAtomic;
326}
327
328/// analyzePHINodes - Gather information about the PHI nodes in here. In
329/// particular, we want to map the number of uses of a virtual register which is
330/// used in a PHI node. We map that to the BB the vreg is coming from. This is
331/// used later to determine when the vreg is killed in the BB.
332///
333void PNE::analyzePHINodes(const MachineFunction& Fn) {
334  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
335       I != E; ++I)
336    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
337         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
338      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
339        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
340                                     BBI->getOperand(i).getReg())];
341}
342