PHIElimination.cpp revision 619acdc63ab0a47d125dca0591285c8ac4c9ed20
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIElimination.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Function.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Debug.h"
32#include <algorithm>
33#include <map>
34using namespace llvm;
35
36STATISTIC(NumAtomic, "Number of atomic phis lowered");
37STATISTIC(NumReused, "Number of reused lowered phis");
38
39char PHIElimination::ID = 0;
40static RegisterPass<PHIElimination>
41X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
42
43const PassInfo *const llvm::PHIEliminationID = &X;
44
45void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
46  AU.addPreserved<LiveVariables>();
47  AU.addPreserved<MachineDominatorTree>();
48  // rdar://7401784 This would be nice:
49  // AU.addPreservedID(MachineLoopInfoID);
50  MachineFunctionPass::getAnalysisUsage(AU);
51}
52
53bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &MF) {
54  MRI = &MF.getRegInfo();
55
56  bool Changed = false;
57
58  // Split critical edges to help the coalescer
59  if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>())
60    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
61      Changed |= SplitPHIEdges(MF, *I, *LV);
62
63  // Populate VRegPHIUseCount
64  analyzePHINodes(MF);
65
66  // Eliminate PHI instructions by inserting copies into predecessor blocks.
67  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
68    Changed |= EliminatePHINodes(MF, *I);
69
70  // Remove dead IMPLICIT_DEF instructions.
71  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
72         E = ImpDefs.end(); I != E; ++I) {
73    MachineInstr *DefMI = *I;
74    unsigned DefReg = DefMI->getOperand(0).getReg();
75    if (MRI->use_nodbg_empty(DefReg))
76      DefMI->eraseFromParent();
77  }
78
79  // Clean up the lowered PHI instructions.
80  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
81       I != E; ++I)
82    MF.DeleteMachineInstr(I->first);
83
84  LoweredPHIs.clear();
85  ImpDefs.clear();
86  VRegPHIUseCount.clear();
87
88  return Changed;
89}
90
91/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
92/// predecessor basic blocks.
93///
94bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
95                                             MachineBasicBlock &MBB) {
96  if (MBB.empty() || !MBB.front().isPHI())
97    return false;   // Quick exit for basic blocks without PHIs.
98
99  // Get an iterator to the first instruction after the last PHI node (this may
100  // also be the end of the basic block).
101  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
102
103  while (MBB.front().isPHI())
104    LowerAtomicPHINode(MBB, AfterPHIsIt);
105
106  return true;
107}
108
109/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
110/// are implicit_def's.
111static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
112                                         const MachineRegisterInfo *MRI) {
113  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
114    unsigned SrcReg = MPhi->getOperand(i).getReg();
115    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
116    if (!DefMI || !DefMI->isImplicitDef())
117      return false;
118  }
119  return true;
120}
121
122// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
123// when following the CFG edge to SuccMBB. This needs to be after any def of
124// SrcReg, but before any subsequent point where control flow might jump out of
125// the basic block.
126MachineBasicBlock::iterator
127llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
128                                          MachineBasicBlock &SuccMBB,
129                                          unsigned SrcReg) {
130  // Handle the trivial case trivially.
131  if (MBB.empty())
132    return MBB.begin();
133
134  // Usually, we just want to insert the copy before the first terminator
135  // instruction. However, for the edge going to a landing pad, we must insert
136  // the copy before the call/invoke instruction.
137  if (!SuccMBB.isLandingPad())
138    return MBB.getFirstTerminator();
139
140  // Discover any defs/uses in this basic block.
141  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
142  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
143         RE = MRI->reg_end(); RI != RE; ++RI) {
144    MachineInstr *DefUseMI = &*RI;
145    if (DefUseMI->getParent() == &MBB)
146      DefUsesInMBB.insert(DefUseMI);
147  }
148
149  MachineBasicBlock::iterator InsertPoint;
150  if (DefUsesInMBB.empty()) {
151    // No defs.  Insert the copy at the start of the basic block.
152    InsertPoint = MBB.begin();
153  } else if (DefUsesInMBB.size() == 1) {
154    // Insert the copy immediately after the def/use.
155    InsertPoint = *DefUsesInMBB.begin();
156    ++InsertPoint;
157  } else {
158    // Insert the copy immediately after the last def/use.
159    InsertPoint = MBB.end();
160    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
161    ++InsertPoint;
162  }
163
164  // Make sure the copy goes after any phi nodes however.
165  return SkipPHIsAndLabels(MBB, InsertPoint);
166}
167
168/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
169/// under the assuption that it needs to be lowered in a way that supports
170/// atomic execution of PHIs.  This lowering method is always correct all of the
171/// time.
172///
173void llvm::PHIElimination::LowerAtomicPHINode(
174                                      MachineBasicBlock &MBB,
175                                      MachineBasicBlock::iterator AfterPHIsIt) {
176  ++NumAtomic;
177  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
178  MachineInstr *MPhi = MBB.remove(MBB.begin());
179
180  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
181  unsigned DestReg = MPhi->getOperand(0).getReg();
182  bool isDead = MPhi->getOperand(0).isDead();
183
184  // Create a new register for the incoming PHI arguments.
185  MachineFunction &MF = *MBB.getParent();
186  unsigned IncomingReg = 0;
187  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
188
189  // Insert a register to register copy at the top of the current block (but
190  // after any remaining phi nodes) which copies the new incoming register
191  // into the phi node destination.
192  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
193  if (isSourceDefinedByImplicitDef(MPhi, MRI))
194    // If all sources of a PHI node are implicit_def, just emit an
195    // implicit_def instead of a copy.
196    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
197            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
198  else {
199    // Can we reuse an earlier PHI node? This only happens for critical edges,
200    // typically those created by tail duplication.
201    unsigned &entry = LoweredPHIs[MPhi];
202    if (entry) {
203      // An identical PHI node was already lowered. Reuse the incoming register.
204      IncomingReg = entry;
205      reusedIncoming = true;
206      ++NumReused;
207      DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
208    } else {
209      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
210      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
211    }
212    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
213            TII->get(TargetOpcode::COPY), DestReg)
214      .addReg(IncomingReg);
215  }
216
217  // Update live variable information if there is any.
218  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
219  if (LV) {
220    MachineInstr *PHICopy = prior(AfterPHIsIt);
221
222    if (IncomingReg) {
223      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
224
225      // Increment use count of the newly created virtual register.
226      VI.NumUses++;
227      LV->setPHIJoin(IncomingReg);
228
229      // When we are reusing the incoming register, it may already have been
230      // killed in this block. The old kill will also have been inserted at
231      // AfterPHIsIt, so it appears before the current PHICopy.
232      if (reusedIncoming)
233        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
234          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
235          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
236          DEBUG(MBB.dump());
237        }
238
239      // Add information to LiveVariables to know that the incoming value is
240      // killed.  Note that because the value is defined in several places (once
241      // each for each incoming block), the "def" block and instruction fields
242      // for the VarInfo is not filled in.
243      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
244    }
245
246    // Since we are going to be deleting the PHI node, if it is the last use of
247    // any registers, or if the value itself is dead, we need to move this
248    // information over to the new copy we just inserted.
249    LV->removeVirtualRegistersKilled(MPhi);
250
251    // If the result is dead, update LV.
252    if (isDead) {
253      LV->addVirtualRegisterDead(DestReg, PHICopy);
254      LV->removeVirtualRegisterDead(DestReg, MPhi);
255    }
256  }
257
258  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
259  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
260    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
261                                 MPhi->getOperand(i).getReg())];
262
263  // Now loop over all of the incoming arguments, changing them to copy into the
264  // IncomingReg register in the corresponding predecessor basic block.
265  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
266  for (int i = NumSrcs - 1; i >= 0; --i) {
267    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
268    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
269           "Machine PHI Operands must all be virtual registers!");
270
271    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
272    // path the PHI.
273    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
274
275    // If source is defined by an implicit def, there is no need to insert a
276    // copy.
277    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
278    if (DefMI->isImplicitDef()) {
279      ImpDefs.insert(DefMI);
280      continue;
281    }
282
283    // Check to make sure we haven't already emitted the copy for this block.
284    // This can happen because PHI nodes may have multiple entries for the same
285    // basic block.
286    if (!MBBsInsertedInto.insert(&opBlock))
287      continue;  // If the copy has already been emitted, we're done.
288
289    // Find a safe location to insert the copy, this may be the first terminator
290    // in the block (or end()).
291    MachineBasicBlock::iterator InsertPos =
292      FindCopyInsertPoint(opBlock, MBB, SrcReg);
293
294    // Insert the copy.
295    if (!reusedIncoming && IncomingReg)
296      BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
297              TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg);
298
299    // Now update live variable information if we have it.  Otherwise we're done
300    if (!LV) continue;
301
302    // We want to be able to insert a kill of the register if this PHI (aka, the
303    // copy we just inserted) is the last use of the source value.  Live
304    // variable analysis conservatively handles this by saying that the value is
305    // live until the end of the block the PHI entry lives in.  If the value
306    // really is dead at the PHI copy, there will be no successor blocks which
307    // have the value live-in.
308
309    // Also check to see if this register is in use by another PHI node which
310    // has not yet been eliminated.  If so, it will be killed at an appropriate
311    // point later.
312
313    // Is it used by any PHI instructions in this block?
314    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
315
316    // Okay, if we now know that the value is not live out of the block, we can
317    // add a kill marker in this block saying that it kills the incoming value!
318    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
319      // In our final twist, we have to decide which instruction kills the
320      // register.  In most cases this is the copy, however, the first
321      // terminator instruction at the end of the block may also use the value.
322      // In this case, we should mark *it* as being the killing block, not the
323      // copy.
324      MachineBasicBlock::iterator KillInst;
325      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
326      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
327        KillInst = Term;
328
329        // Check that no other terminators use values.
330#ifndef NDEBUG
331        for (MachineBasicBlock::iterator TI = llvm::next(Term);
332             TI != opBlock.end(); ++TI) {
333          assert(!TI->readsRegister(SrcReg) &&
334                 "Terminator instructions cannot use virtual registers unless"
335                 "they are the first terminator in a block!");
336        }
337#endif
338      } else if (reusedIncoming || !IncomingReg) {
339        // We may have to rewind a bit if we didn't insert a copy this time.
340        KillInst = Term;
341        while (KillInst != opBlock.begin())
342          if ((--KillInst)->readsRegister(SrcReg))
343            break;
344      } else {
345        // We just inserted this copy.
346        KillInst = prior(InsertPos);
347      }
348      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
349
350      // Finally, mark it killed.
351      LV->addVirtualRegisterKilled(SrcReg, KillInst);
352
353      // This vreg no longer lives all of the way through opBlock.
354      unsigned opBlockNum = opBlock.getNumber();
355      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
356    }
357  }
358
359  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
360  if (reusedIncoming || !IncomingReg)
361    MF.DeleteMachineInstr(MPhi);
362}
363
364/// analyzePHINodes - Gather information about the PHI nodes in here. In
365/// particular, we want to map the number of uses of a virtual register which is
366/// used in a PHI node. We map that to the BB the vreg is coming from. This is
367/// used later to determine when the vreg is killed in the BB.
368///
369void llvm::PHIElimination::analyzePHINodes(const MachineFunction& MF) {
370  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
371       I != E; ++I)
372    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
373         BBI != BBE && BBI->isPHI(); ++BBI)
374      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
375        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
376                                     BBI->getOperand(i).getReg())];
377}
378
379bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
380                                         MachineBasicBlock &MBB,
381                                         LiveVariables &LV) {
382  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
383    return false;   // Quick exit for basic blocks without PHIs.
384
385  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
386       BBI != BBE && BBI->isPHI(); ++BBI) {
387    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
388      unsigned Reg = BBI->getOperand(i).getReg();
389      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
390      // We break edges when registers are live out from the predecessor block
391      // (not considering PHI nodes). If the register is live in to this block
392      // anyway, we would gain nothing from splitting.
393      if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB))
394        PreMBB->SplitCriticalEdge(&MBB, this);
395    }
396  }
397  return true;
398}
399