PHIElimination.cpp revision 6a951ac63fd6a9aa769c6d98b544b886e5b5d307
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIEliminationUtils.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Function.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include <algorithm>
35#include <map>
36using namespace llvm;
37
38static cl::opt<bool>
39DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40                     cl::Hidden, cl::desc("Disable critical edge splitting "
41                                          "during PHI elimination"));
42
43namespace {
44  class PHIElimination : public MachineFunctionPass {
45    MachineRegisterInfo *MRI; // Machine register information
46
47  public:
48    static char ID; // Pass identification, replacement for typeid
49    PHIElimination() : MachineFunctionPass(ID) {
50      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
51    }
52
53    virtual bool runOnMachineFunction(MachineFunction &Fn);
54    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
55
56  private:
57    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
58    /// in predecessor basic blocks.
59    ///
60    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
61    void LowerAtomicPHINode(MachineBasicBlock &MBB,
62                            MachineBasicBlock::iterator AfterPHIsIt);
63
64    /// analyzePHINodes - Gather information about the PHI nodes in
65    /// here. In particular, we want to map the number of uses of a virtual
66    /// register which is used in a PHI node. We map that to the BB the
67    /// vreg is coming from. This is used later to determine when the vreg
68    /// is killed in the BB.
69    ///
70    void analyzePHINodes(const MachineFunction& Fn);
71
72    /// Split critical edges where necessary for good coalescer performance.
73    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
74                       LiveVariables &LV, MachineLoopInfo *MLI);
75
76    typedef std::pair<unsigned, unsigned> BBVRegPair;
77    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
78
79    VRegPHIUse VRegPHIUseCount;
80
81    // Defs of PHI sources which are implicit_def.
82    SmallPtrSet<MachineInstr*, 4> ImpDefs;
83
84    // Map reusable lowered PHI node -> incoming join register.
85    typedef DenseMap<MachineInstr*, unsigned,
86                     MachineInstrExpressionTrait> LoweredPHIMap;
87    LoweredPHIMap LoweredPHIs;
88  };
89}
90
91STATISTIC(NumAtomic, "Number of atomic phis lowered");
92STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
93STATISTIC(NumReused, "Number of reused lowered phis");
94
95char PHIElimination::ID = 0;
96INITIALIZE_PASS(PHIElimination, "phi-node-elimination",
97                "Eliminate PHI nodes for register allocation", false, false)
98
99char& llvm::PHIEliminationID = PHIElimination::ID;
100
101void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
102  AU.addPreserved<LiveVariables>();
103  AU.addPreserved<MachineDominatorTree>();
104  AU.addPreserved<MachineLoopInfo>();
105  MachineFunctionPass::getAnalysisUsage(AU);
106}
107
108bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
109  MRI = &MF.getRegInfo();
110
111  bool Changed = false;
112
113  // Split critical edges to help the coalescer
114  if (!DisableEdgeSplitting) {
115    if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
116      MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
117      for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
118        Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
119    }
120  }
121
122  // Populate VRegPHIUseCount
123  analyzePHINodes(MF);
124
125  // Eliminate PHI instructions by inserting copies into predecessor blocks.
126  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
127    Changed |= EliminatePHINodes(MF, *I);
128
129  // Remove dead IMPLICIT_DEF instructions.
130  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
131         E = ImpDefs.end(); I != E; ++I) {
132    MachineInstr *DefMI = *I;
133    unsigned DefReg = DefMI->getOperand(0).getReg();
134    if (MRI->use_nodbg_empty(DefReg))
135      DefMI->eraseFromParent();
136  }
137
138  // Clean up the lowered PHI instructions.
139  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
140       I != E; ++I)
141    MF.DeleteMachineInstr(I->first);
142
143  LoweredPHIs.clear();
144  ImpDefs.clear();
145  VRegPHIUseCount.clear();
146
147  return Changed;
148}
149
150/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
151/// predecessor basic blocks.
152///
153bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
154                                             MachineBasicBlock &MBB) {
155  if (MBB.empty() || !MBB.front().isPHI())
156    return false;   // Quick exit for basic blocks without PHIs.
157
158  // Get an iterator to the first instruction after the last PHI node (this may
159  // also be the end of the basic block).
160  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
161
162  while (MBB.front().isPHI())
163    LowerAtomicPHINode(MBB, AfterPHIsIt);
164
165  return true;
166}
167
168/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
169/// are implicit_def's.
170static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
171                                         const MachineRegisterInfo *MRI) {
172  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
173    unsigned SrcReg = MPhi->getOperand(i).getReg();
174    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
175    if (!DefMI || !DefMI->isImplicitDef())
176      return false;
177  }
178  return true;
179}
180
181
182
183/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
184/// under the assuption that it needs to be lowered in a way that supports
185/// atomic execution of PHIs.  This lowering method is always correct all of the
186/// time.
187///
188void PHIElimination::LowerAtomicPHINode(
189                                      MachineBasicBlock &MBB,
190                                      MachineBasicBlock::iterator AfterPHIsIt) {
191  ++NumAtomic;
192  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
193  MachineInstr *MPhi = MBB.remove(MBB.begin());
194
195  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
196  unsigned DestReg = MPhi->getOperand(0).getReg();
197  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
198  bool isDead = MPhi->getOperand(0).isDead();
199
200  // Create a new register for the incoming PHI arguments.
201  MachineFunction &MF = *MBB.getParent();
202  unsigned IncomingReg = 0;
203  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
204
205  // Insert a register to register copy at the top of the current block (but
206  // after any remaining phi nodes) which copies the new incoming register
207  // into the phi node destination.
208  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
209  if (isSourceDefinedByImplicitDef(MPhi, MRI))
210    // If all sources of a PHI node are implicit_def, just emit an
211    // implicit_def instead of a copy.
212    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
213            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
214  else {
215    // Can we reuse an earlier PHI node? This only happens for critical edges,
216    // typically those created by tail duplication.
217    unsigned &entry = LoweredPHIs[MPhi];
218    if (entry) {
219      // An identical PHI node was already lowered. Reuse the incoming register.
220      IncomingReg = entry;
221      reusedIncoming = true;
222      ++NumReused;
223      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
224    } else {
225      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
226      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
227    }
228    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
229            TII->get(TargetOpcode::COPY), DestReg)
230      .addReg(IncomingReg);
231  }
232
233  // Update live variable information if there is any.
234  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
235  if (LV) {
236    MachineInstr *PHICopy = prior(AfterPHIsIt);
237
238    if (IncomingReg) {
239      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
240
241      // Increment use count of the newly created virtual register.
242      VI.NumUses++;
243      LV->setPHIJoin(IncomingReg);
244
245      // When we are reusing the incoming register, it may already have been
246      // killed in this block. The old kill will also have been inserted at
247      // AfterPHIsIt, so it appears before the current PHICopy.
248      if (reusedIncoming)
249        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
250          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
251          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
252          DEBUG(MBB.dump());
253        }
254
255      // Add information to LiveVariables to know that the incoming value is
256      // killed.  Note that because the value is defined in several places (once
257      // each for each incoming block), the "def" block and instruction fields
258      // for the VarInfo is not filled in.
259      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
260    }
261
262    // Since we are going to be deleting the PHI node, if it is the last use of
263    // any registers, or if the value itself is dead, we need to move this
264    // information over to the new copy we just inserted.
265    LV->removeVirtualRegistersKilled(MPhi);
266
267    // If the result is dead, update LV.
268    if (isDead) {
269      LV->addVirtualRegisterDead(DestReg, PHICopy);
270      LV->removeVirtualRegisterDead(DestReg, MPhi);
271    }
272  }
273
274  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
275  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
276    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
277                                 MPhi->getOperand(i).getReg())];
278
279  // Now loop over all of the incoming arguments, changing them to copy into the
280  // IncomingReg register in the corresponding predecessor basic block.
281  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
282  for (int i = NumSrcs - 1; i >= 0; --i) {
283    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
284    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
285
286    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
287           "Machine PHI Operands must all be virtual registers!");
288
289    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
290    // path the PHI.
291    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
292
293    // If source is defined by an implicit def, there is no need to insert a
294    // copy.
295    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
296    if (DefMI->isImplicitDef()) {
297      ImpDefs.insert(DefMI);
298      continue;
299    }
300
301    // Check to make sure we haven't already emitted the copy for this block.
302    // This can happen because PHI nodes may have multiple entries for the same
303    // basic block.
304    if (!MBBsInsertedInto.insert(&opBlock))
305      continue;  // If the copy has already been emitted, we're done.
306
307    // Find a safe location to insert the copy, this may be the first terminator
308    // in the block (or end()).
309    MachineBasicBlock::iterator InsertPos =
310      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
311
312    // Insert the copy.
313    if (!reusedIncoming && IncomingReg)
314      BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
315              TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
316
317    // Now update live variable information if we have it.  Otherwise we're done
318    if (!LV) continue;
319
320    // We want to be able to insert a kill of the register if this PHI (aka, the
321    // copy we just inserted) is the last use of the source value.  Live
322    // variable analysis conservatively handles this by saying that the value is
323    // live until the end of the block the PHI entry lives in.  If the value
324    // really is dead at the PHI copy, there will be no successor blocks which
325    // have the value live-in.
326
327    // Also check to see if this register is in use by another PHI node which
328    // has not yet been eliminated.  If so, it will be killed at an appropriate
329    // point later.
330
331    // Is it used by any PHI instructions in this block?
332    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
333
334    // Okay, if we now know that the value is not live out of the block, we can
335    // add a kill marker in this block saying that it kills the incoming value!
336    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
337      // In our final twist, we have to decide which instruction kills the
338      // register.  In most cases this is the copy, however, the first
339      // terminator instruction at the end of the block may also use the value.
340      // In this case, we should mark *it* as being the killing block, not the
341      // copy.
342      MachineBasicBlock::iterator KillInst;
343      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
344      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
345        KillInst = Term;
346
347        // Check that no other terminators use values.
348#ifndef NDEBUG
349        for (MachineBasicBlock::iterator TI = llvm::next(Term);
350             TI != opBlock.end(); ++TI) {
351          if (TI->isDebugValue())
352            continue;
353          assert(!TI->readsRegister(SrcReg) &&
354                 "Terminator instructions cannot use virtual registers unless"
355                 "they are the first terminator in a block!");
356        }
357#endif
358      } else if (reusedIncoming || !IncomingReg) {
359        // We may have to rewind a bit if we didn't insert a copy this time.
360        KillInst = Term;
361        while (KillInst != opBlock.begin()) {
362          --KillInst;
363          if (KillInst->isDebugValue())
364            continue;
365          if (KillInst->readsRegister(SrcReg))
366            break;
367        }
368      } else {
369        // We just inserted this copy.
370        KillInst = prior(InsertPos);
371      }
372      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
373
374      // Finally, mark it killed.
375      LV->addVirtualRegisterKilled(SrcReg, KillInst);
376
377      // This vreg no longer lives all of the way through opBlock.
378      unsigned opBlockNum = opBlock.getNumber();
379      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
380    }
381  }
382
383  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
384  if (reusedIncoming || !IncomingReg)
385    MF.DeleteMachineInstr(MPhi);
386}
387
388/// analyzePHINodes - Gather information about the PHI nodes in here. In
389/// particular, we want to map the number of uses of a virtual register which is
390/// used in a PHI node. We map that to the BB the vreg is coming from. This is
391/// used later to determine when the vreg is killed in the BB.
392///
393void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
394  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
395       I != E; ++I)
396    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
397         BBI != BBE && BBI->isPHI(); ++BBI)
398      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
399        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
400                                     BBI->getOperand(i).getReg())];
401}
402
403bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
404                                   MachineBasicBlock &MBB,
405                                   LiveVariables &LV,
406                                   MachineLoopInfo *MLI) {
407  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
408    return false;   // Quick exit for basic blocks without PHIs.
409
410  bool Changed = false;
411  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
412       BBI != BBE && BBI->isPHI(); ++BBI) {
413    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
414      unsigned Reg = BBI->getOperand(i).getReg();
415      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
416      // We break edges when registers are live out from the predecessor block
417      // (not considering PHI nodes). If the register is live in to this block
418      // anyway, we would gain nothing from splitting.
419      // Avoid splitting backedges of loops. It would introduce small
420      // out-of-line blocks into the loop which is very bad for code placement.
421      if (PreMBB != &MBB &&
422          !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
423        if (!MLI ||
424            !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
425              MLI->isLoopHeader(&MBB))) {
426          if (PreMBB->SplitCriticalEdge(&MBB, this)) {
427            Changed = true;
428            ++NumCriticalEdgesSplit;
429          }
430        }
431      }
432    }
433  }
434  return Changed;
435}
436