PHIElimination.cpp revision 7e3584d845088ea1f6303e95aa6ce611f8eb8733
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIElimination.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Function.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include <algorithm>
34#include <map>
35using namespace llvm;
36
37STATISTIC(NumAtomic, "Number of atomic phis lowered");
38STATISTIC(NumReused, "Number of reused lowered phis");
39
40char PHIElimination::ID = 0;
41static RegisterPass<PHIElimination>
42X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
43
44char &llvm::PHIEliminationID = PHIElimination::ID;
45
46void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
47  AU.addPreserved<LiveVariables>();
48  AU.addRequired<MachineLoopInfo>();
49  AU.addPreserved<MachineDominatorTree>();
50  AU.addPreservedID(MachineLoopInfoID);
51  MachineFunctionPass::getAnalysisUsage(AU);
52}
53
54bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &MF) {
55  MRI = &MF.getRegInfo();
56
57  bool Changed = false;
58
59  // Split critical edges to help the coalescer
60  if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>())
61    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
62      Changed |= SplitPHIEdges(MF, *I, *LV);
63
64  // Populate VRegPHIUseCount
65  analyzePHINodes(MF);
66
67  // Eliminate PHI instructions by inserting copies into predecessor blocks.
68  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
69    Changed |= EliminatePHINodes(MF, *I);
70
71  // Remove dead IMPLICIT_DEF instructions.
72  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
73         E = ImpDefs.end(); I != E; ++I) {
74    MachineInstr *DefMI = *I;
75    unsigned DefReg = DefMI->getOperand(0).getReg();
76    if (MRI->use_nodbg_empty(DefReg))
77      DefMI->eraseFromParent();
78  }
79
80  // Clean up the lowered PHI instructions.
81  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
82       I != E; ++I)
83    MF.DeleteMachineInstr(I->first);
84
85  LoweredPHIs.clear();
86  ImpDefs.clear();
87  VRegPHIUseCount.clear();
88
89  return Changed;
90}
91
92/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
93/// predecessor basic blocks.
94///
95bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
96                                             MachineBasicBlock &MBB) {
97  if (MBB.empty() || !MBB.front().isPHI())
98    return false;   // Quick exit for basic blocks without PHIs.
99
100  // Get an iterator to the first instruction after the last PHI node (this may
101  // also be the end of the basic block).
102  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
103
104  while (MBB.front().isPHI())
105    LowerAtomicPHINode(MBB, AfterPHIsIt);
106
107  return true;
108}
109
110/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
111/// are implicit_def's.
112static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
113                                         const MachineRegisterInfo *MRI) {
114  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
115    unsigned SrcReg = MPhi->getOperand(i).getReg();
116    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
117    if (!DefMI || !DefMI->isImplicitDef())
118      return false;
119  }
120  return true;
121}
122
123// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
124// when following the CFG edge to SuccMBB. This needs to be after any def of
125// SrcReg, but before any subsequent point where control flow might jump out of
126// the basic block.
127MachineBasicBlock::iterator
128llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
129                                          MachineBasicBlock &SuccMBB,
130                                          unsigned SrcReg) {
131  // Handle the trivial case trivially.
132  if (MBB.empty())
133    return MBB.begin();
134
135  // Usually, we just want to insert the copy before the first terminator
136  // instruction. However, for the edge going to a landing pad, we must insert
137  // the copy before the call/invoke instruction.
138  if (!SuccMBB.isLandingPad())
139    return MBB.getFirstTerminator();
140
141  // Discover any defs/uses in this basic block.
142  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
143  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
144         RE = MRI->reg_end(); RI != RE; ++RI) {
145    MachineInstr *DefUseMI = &*RI;
146    if (DefUseMI->getParent() == &MBB)
147      DefUsesInMBB.insert(DefUseMI);
148  }
149
150  MachineBasicBlock::iterator InsertPoint;
151  if (DefUsesInMBB.empty()) {
152    // No defs.  Insert the copy at the start of the basic block.
153    InsertPoint = MBB.begin();
154  } else if (DefUsesInMBB.size() == 1) {
155    // Insert the copy immediately after the def/use.
156    InsertPoint = *DefUsesInMBB.begin();
157    ++InsertPoint;
158  } else {
159    // Insert the copy immediately after the last def/use.
160    InsertPoint = MBB.end();
161    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
162    ++InsertPoint;
163  }
164
165  // Make sure the copy goes after any phi nodes however.
166  return SkipPHIsAndLabels(MBB, InsertPoint);
167}
168
169/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
170/// under the assuption that it needs to be lowered in a way that supports
171/// atomic execution of PHIs.  This lowering method is always correct all of the
172/// time.
173///
174void llvm::PHIElimination::LowerAtomicPHINode(
175                                      MachineBasicBlock &MBB,
176                                      MachineBasicBlock::iterator AfterPHIsIt) {
177  ++NumAtomic;
178  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
179  MachineInstr *MPhi = MBB.remove(MBB.begin());
180
181  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
182  unsigned DestReg = MPhi->getOperand(0).getReg();
183  bool isDead = MPhi->getOperand(0).isDead();
184
185  // Create a new register for the incoming PHI arguments.
186  MachineFunction &MF = *MBB.getParent();
187  unsigned IncomingReg = 0;
188  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
189
190  // Insert a register to register copy at the top of the current block (but
191  // after any remaining phi nodes) which copies the new incoming register
192  // into the phi node destination.
193  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
194  if (isSourceDefinedByImplicitDef(MPhi, MRI))
195    // If all sources of a PHI node are implicit_def, just emit an
196    // implicit_def instead of a copy.
197    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
198            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
199  else {
200    // Can we reuse an earlier PHI node? This only happens for critical edges,
201    // typically those created by tail duplication.
202    unsigned &entry = LoweredPHIs[MPhi];
203    if (entry) {
204      // An identical PHI node was already lowered. Reuse the incoming register.
205      IncomingReg = entry;
206      reusedIncoming = true;
207      ++NumReused;
208      DEBUG(dbgs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
209    } else {
210      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
211      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
212    }
213    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
214            TII->get(TargetOpcode::COPY), DestReg)
215      .addReg(IncomingReg);
216  }
217
218  // Update live variable information if there is any.
219  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
220  if (LV) {
221    MachineInstr *PHICopy = prior(AfterPHIsIt);
222
223    if (IncomingReg) {
224      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
225
226      // Increment use count of the newly created virtual register.
227      VI.NumUses++;
228      LV->setPHIJoin(IncomingReg);
229
230      // When we are reusing the incoming register, it may already have been
231      // killed in this block. The old kill will also have been inserted at
232      // AfterPHIsIt, so it appears before the current PHICopy.
233      if (reusedIncoming)
234        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
235          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
236          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
237          DEBUG(MBB.dump());
238        }
239
240      // Add information to LiveVariables to know that the incoming value is
241      // killed.  Note that because the value is defined in several places (once
242      // each for each incoming block), the "def" block and instruction fields
243      // for the VarInfo is not filled in.
244      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
245    }
246
247    // Since we are going to be deleting the PHI node, if it is the last use of
248    // any registers, or if the value itself is dead, we need to move this
249    // information over to the new copy we just inserted.
250    LV->removeVirtualRegistersKilled(MPhi);
251
252    // If the result is dead, update LV.
253    if (isDead) {
254      LV->addVirtualRegisterDead(DestReg, PHICopy);
255      LV->removeVirtualRegisterDead(DestReg, MPhi);
256    }
257  }
258
259  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
260  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
261    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
262                                 MPhi->getOperand(i).getReg())];
263
264  // Now loop over all of the incoming arguments, changing them to copy into the
265  // IncomingReg register in the corresponding predecessor basic block.
266  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
267  for (int i = NumSrcs - 1; i >= 0; --i) {
268    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
269    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
270           "Machine PHI Operands must all be virtual registers!");
271
272    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
273    // path the PHI.
274    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
275
276    // If source is defined by an implicit def, there is no need to insert a
277    // copy.
278    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
279    if (DefMI->isImplicitDef()) {
280      ImpDefs.insert(DefMI);
281      continue;
282    }
283
284    // Check to make sure we haven't already emitted the copy for this block.
285    // This can happen because PHI nodes may have multiple entries for the same
286    // basic block.
287    if (!MBBsInsertedInto.insert(&opBlock))
288      continue;  // If the copy has already been emitted, we're done.
289
290    // Find a safe location to insert the copy, this may be the first terminator
291    // in the block (or end()).
292    MachineBasicBlock::iterator InsertPos =
293      FindCopyInsertPoint(opBlock, MBB, SrcReg);
294
295    // Insert the copy.
296    if (!reusedIncoming && IncomingReg)
297      BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
298              TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg);
299
300    // Now update live variable information if we have it.  Otherwise we're done
301    if (!LV) continue;
302
303    // We want to be able to insert a kill of the register if this PHI (aka, the
304    // copy we just inserted) is the last use of the source value.  Live
305    // variable analysis conservatively handles this by saying that the value is
306    // live until the end of the block the PHI entry lives in.  If the value
307    // really is dead at the PHI copy, there will be no successor blocks which
308    // have the value live-in.
309
310    // Also check to see if this register is in use by another PHI node which
311    // has not yet been eliminated.  If so, it will be killed at an appropriate
312    // point later.
313
314    // Is it used by any PHI instructions in this block?
315    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
316
317    // Okay, if we now know that the value is not live out of the block, we can
318    // add a kill marker in this block saying that it kills the incoming value!
319    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
320      // In our final twist, we have to decide which instruction kills the
321      // register.  In most cases this is the copy, however, the first
322      // terminator instruction at the end of the block may also use the value.
323      // In this case, we should mark *it* as being the killing block, not the
324      // copy.
325      MachineBasicBlock::iterator KillInst;
326      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
327      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
328        KillInst = Term;
329
330        // Check that no other terminators use values.
331#ifndef NDEBUG
332        for (MachineBasicBlock::iterator TI = llvm::next(Term);
333             TI != opBlock.end(); ++TI) {
334          assert(!TI->readsRegister(SrcReg) &&
335                 "Terminator instructions cannot use virtual registers unless"
336                 "they are the first terminator in a block!");
337        }
338#endif
339      } else if (reusedIncoming || !IncomingReg) {
340        // We may have to rewind a bit if we didn't insert a copy this time.
341        KillInst = Term;
342        while (KillInst != opBlock.begin())
343          if ((--KillInst)->readsRegister(SrcReg))
344            break;
345      } else {
346        // We just inserted this copy.
347        KillInst = prior(InsertPos);
348      }
349      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
350
351      // Finally, mark it killed.
352      LV->addVirtualRegisterKilled(SrcReg, KillInst);
353
354      // This vreg no longer lives all of the way through opBlock.
355      unsigned opBlockNum = opBlock.getNumber();
356      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
357    }
358  }
359
360  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
361  if (reusedIncoming || !IncomingReg)
362    MF.DeleteMachineInstr(MPhi);
363}
364
365/// analyzePHINodes - Gather information about the PHI nodes in here. In
366/// particular, we want to map the number of uses of a virtual register which is
367/// used in a PHI node. We map that to the BB the vreg is coming from. This is
368/// used later to determine when the vreg is killed in the BB.
369///
370void llvm::PHIElimination::analyzePHINodes(const MachineFunction& MF) {
371  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
372       I != E; ++I)
373    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
374         BBI != BBE && BBI->isPHI(); ++BBI)
375      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
376        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
377                                     BBI->getOperand(i).getReg())];
378}
379
380bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
381                                         MachineBasicBlock &MBB,
382                                         LiveVariables &LV) {
383  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
384    return false;   // Quick exit for basic blocks without PHIs.
385
386  bool Changed = false;
387  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
388       BBI != BBE && BBI->isPHI(); ++BBI) {
389    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
390      unsigned Reg = BBI->getOperand(i).getReg();
391      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
392      // We break edges when registers are live out from the predecessor block
393      // (not considering PHI nodes). If the register is live in to this block
394      // anyway, we would gain nothing from splitting.
395      if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB))
396        Changed |= PreMBB->SplitCriticalEdge(&MBB, this) != 0;
397    }
398  }
399  return true;
400}
401