PHIElimination.cpp revision 844731a7f1909f55935e3514c9e713a62d67662e
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/LiveVariables.h"
18#include "llvm/CodeGen/Passes.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SmallPtrSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Support/Compiler.h"
29#include <algorithm>
30#include <map>
31using namespace llvm;
32
33STATISTIC(NumAtomic, "Number of atomic phis lowered");
34
35namespace {
36  class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
37    MachineRegisterInfo  *MRI; // Machine register information
38
39  public:
40    static char ID; // Pass identification, replacement for typeid
41    PNE() : MachineFunctionPass((intptr_t)&ID) {}
42
43    virtual bool runOnMachineFunction(MachineFunction &Fn);
44
45    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
46      AU.addPreserved<LiveVariables>();
47      AU.addPreservedID(MachineLoopInfoID);
48      AU.addPreservedID(MachineDominatorsID);
49      MachineFunctionPass::getAnalysisUsage(AU);
50    }
51
52  private:
53    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
54    /// in predecessor basic blocks.
55    ///
56    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
57    void LowerAtomicPHINode(MachineBasicBlock &MBB,
58                            MachineBasicBlock::iterator AfterPHIsIt);
59
60    /// analyzePHINodes - Gather information about the PHI nodes in
61    /// here. In particular, we want to map the number of uses of a virtual
62    /// register which is used in a PHI node. We map that to the BB the
63    /// vreg is coming from. This is used later to determine when the vreg
64    /// is killed in the BB.
65    ///
66    void analyzePHINodes(const MachineFunction& Fn);
67
68    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
69    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
70
71    VRegPHIUse VRegPHIUseCount;
72
73    // Defs of PHI sources which are implicit_def.
74    SmallPtrSet<MachineInstr*, 4> ImpDefs;
75  };
76}
77
78char PNE::ID = 0;
79static RegisterPass<PNE>
80X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
81
82const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
83
84bool PNE::runOnMachineFunction(MachineFunction &Fn) {
85  MRI = &Fn.getRegInfo();
86
87  analyzePHINodes(Fn);
88
89  bool Changed = false;
90
91  // Eliminate PHI instructions by inserting copies into predecessor blocks.
92  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
93    Changed |= EliminatePHINodes(Fn, *I);
94
95  // Remove dead IMPLICIT_DEF instructions.
96  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
97         E = ImpDefs.end(); I != E; ++I) {
98    MachineInstr *DefMI = *I;
99    unsigned DefReg = DefMI->getOperand(0).getReg();
100    if (MRI->use_begin(DefReg) == MRI->use_end())
101      DefMI->eraseFromParent();
102  }
103
104  ImpDefs.clear();
105  VRegPHIUseCount.clear();
106  return Changed;
107}
108
109
110/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
111/// predecessor basic blocks.
112///
113bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
114  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
115    return false;   // Quick exit for basic blocks without PHIs.
116
117  // Get an iterator to the first instruction after the last PHI node (this may
118  // also be the end of the basic block).
119  MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
120  while (AfterPHIsIt != MBB.end() &&
121         AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
122    ++AfterPHIsIt;    // Skip over all of the PHI nodes...
123
124  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
125    LowerAtomicPHINode(MBB, AfterPHIsIt);
126
127  return true;
128}
129
130static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
131                                         const MachineRegisterInfo  *MRI) {
132  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
133    unsigned SrcReg = MPhi->getOperand(i).getReg();
134    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
135    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
136      return false;
137  }
138  return true;
139}
140
141/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
142/// under the assuption that it needs to be lowered in a way that supports
143/// atomic execution of PHIs.  This lowering method is always correct all of the
144/// time.
145///
146void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
147                             MachineBasicBlock::iterator AfterPHIsIt) {
148  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
149  MachineInstr *MPhi = MBB.remove(MBB.begin());
150
151  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
152  unsigned DestReg = MPhi->getOperand(0).getReg();
153
154  // Create a new register for the incoming PHI arguments.
155  MachineFunction &MF = *MBB.getParent();
156  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
157  unsigned IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
158
159  // Insert a register to register copy at the top of the current block (but
160  // after any remaining phi nodes) which copies the new incoming register
161  // into the phi node destination.
162  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
163  if (isSourceDefinedByImplicitDef(MPhi, MRI))
164    // If all sources of a PHI node are implicit_def, just emit an implicit_def
165    // instead of a copy.
166    BuildMI(MBB, AfterPHIsIt, TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
167  else
168    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
169
170  // Update live variable information if there is any.
171  LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
172  if (LV) {
173    MachineInstr *PHICopy = prior(AfterPHIsIt);
174
175    // Increment use count of the newly created virtual register.
176    LV->getVarInfo(IncomingReg).NumUses++;
177
178    // Add information to LiveVariables to know that the incoming value is
179    // killed.  Note that because the value is defined in several places (once
180    // each for each incoming block), the "def" block and instruction fields for
181    // the VarInfo is not filled in.
182    LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
183
184    // Since we are going to be deleting the PHI node, if it is the last use of
185    // any registers, or if the value itself is dead, we need to move this
186    // information over to the new copy we just inserted.
187    LV->removeVirtualRegistersKilled(MPhi);
188
189    // If the result is dead, update LV.
190    if (MPhi->registerDefIsDead(DestReg)) {
191      LV->addVirtualRegisterDead(DestReg, PHICopy);
192      LV->removeVirtualRegistersDead(MPhi);
193    }
194
195    LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
196  }
197
198  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
199  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
200    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
201                                 MPhi->getOperand(i).getReg())];
202
203  // Now loop over all of the incoming arguments, changing them to copy into the
204  // IncomingReg register in the corresponding predecessor basic block.
205  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
206  for (int i = NumSrcs - 1; i >= 0; --i) {
207    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
208    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
209           "Machine PHI Operands must all be virtual registers!");
210
211    // If source is defined by an implicit def, there is no need to insert a
212    // copy unless it's the only source.
213    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
214    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
215      ImpDefs.insert(DefMI);
216      continue;
217    }
218
219    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
220    // path the PHI.
221    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
222
223    // Check to make sure we haven't already emitted the copy for this block.
224    // This can happen because PHI nodes may have multiple entries for the same
225    // basic block.
226    if (!MBBsInsertedInto.insert(&opBlock))
227      continue;  // If the copy has already been emitted, we're done.
228
229    // Find a safe location to insert the copy, this may be the first terminator
230    // in the block (or end()).
231    MachineBasicBlock::iterator InsertPos = opBlock.getFirstTerminator();
232
233    // Insert the copy.
234    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
235
236    // Now update live variable information if we have it.  Otherwise we're done
237    if (!LV) continue;
238
239    // We want to be able to insert a kill of the register if this PHI (aka, the
240    // copy we just inserted) is the last use of the source value.  Live
241    // variable analysis conservatively handles this by saying that the value is
242    // live until the end of the block the PHI entry lives in.  If the value
243    // really is dead at the PHI copy, there will be no successor blocks which
244    // have the value live-in.
245    //
246    // Check to see if the copy is the last use, and if so, update the live
247    // variables information so that it knows the copy source instruction kills
248    // the incoming value.
249    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
250    InRegVI.UsedBlocks[opBlock.getNumber()] = true;
251
252    // Loop over all of the successors of the basic block, checking to see if
253    // the value is either live in the block, or if it is killed in the block.
254    // Also check to see if this register is in use by another PHI node which
255    // has not yet been eliminated.  If so, it will be killed at an appropriate
256    // point later.
257
258    // Is it used by any PHI instructions in this block?
259    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
260
261    std::vector<MachineBasicBlock*> OpSuccBlocks;
262
263    // Otherwise, scan successors, including the BB the PHI node lives in.
264    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
265           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
266      MachineBasicBlock *SuccMBB = *SI;
267
268      // Is it alive in this successor?
269      unsigned SuccIdx = SuccMBB->getNumber();
270      if (SuccIdx < InRegVI.AliveBlocks.size() &&
271          InRegVI.AliveBlocks[SuccIdx]) {
272        ValueIsLive = true;
273        break;
274      }
275
276      OpSuccBlocks.push_back(SuccMBB);
277    }
278
279    // Check to see if this value is live because there is a use in a successor
280    // that kills it.
281    if (!ValueIsLive) {
282      switch (OpSuccBlocks.size()) {
283      case 1: {
284        MachineBasicBlock *MBB = OpSuccBlocks[0];
285        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
286          if (InRegVI.Kills[i]->getParent() == MBB) {
287            ValueIsLive = true;
288            break;
289          }
290        break;
291      }
292      case 2: {
293        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
294        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
295          if (InRegVI.Kills[i]->getParent() == MBB1 ||
296              InRegVI.Kills[i]->getParent() == MBB2) {
297            ValueIsLive = true;
298            break;
299          }
300        break;
301      }
302      default:
303        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
304        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
305          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
306                                 InRegVI.Kills[i]->getParent())) {
307            ValueIsLive = true;
308            break;
309          }
310      }
311    }
312
313    // Okay, if we now know that the value is not live out of the block, we can
314    // add a kill marker in this block saying that it kills the incoming value!
315    if (!ValueIsLive) {
316      // In our final twist, we have to decide which instruction kills the
317      // register.  In most cases this is the copy, however, the first
318      // terminator instruction at the end of the block may also use the value.
319      // In this case, we should mark *it* as being the killing block, not the
320      // copy.
321      MachineBasicBlock::iterator KillInst = prior(InsertPos);
322      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
323      if (Term != opBlock.end()) {
324        if (Term->readsRegister(SrcReg))
325          KillInst = Term;
326
327        // Check that no other terminators use values.
328#ifndef NDEBUG
329        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
330             ++TI) {
331          assert(!TI->readsRegister(SrcReg) &&
332                 "Terminator instructions cannot use virtual registers unless"
333                 "they are the first terminator in a block!");
334        }
335#endif
336      }
337
338      // Finally, mark it killed.
339      LV->addVirtualRegisterKilled(SrcReg, KillInst);
340
341      // This vreg no longer lives all of the way through opBlock.
342      unsigned opBlockNum = opBlock.getNumber();
343      if (opBlockNum < InRegVI.AliveBlocks.size())
344        InRegVI.AliveBlocks[opBlockNum] = false;
345    }
346  }
347
348  // Really delete the PHI instruction now!
349  delete MPhi;
350  ++NumAtomic;
351}
352
353/// analyzePHINodes - Gather information about the PHI nodes in here. In
354/// particular, we want to map the number of uses of a virtual register which is
355/// used in a PHI node. We map that to the BB the vreg is coming from. This is
356/// used later to determine when the vreg is killed in the BB.
357///
358void PNE::analyzePHINodes(const MachineFunction& Fn) {
359  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
360       I != E; ++I)
361    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
362         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
363      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
364        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
365                                     BBI->getOperand(i).getReg())];
366}
367