PHIElimination.cpp revision 8dd26253f54247e77e5accfdd70e7b4bf27b39c2
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIEliminationUtils.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineLoopInfo.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Function.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include <algorithm>
35using namespace llvm;
36
37static cl::opt<bool>
38DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
39                     cl::Hidden, cl::desc("Disable critical edge splitting "
40                                          "during PHI elimination"));
41
42namespace {
43  class PHIElimination : public MachineFunctionPass {
44    MachineRegisterInfo *MRI; // Machine register information
45
46  public:
47    static char ID; // Pass identification, replacement for typeid
48    PHIElimination() : MachineFunctionPass(ID) {
49      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
50    }
51
52    virtual bool runOnMachineFunction(MachineFunction &Fn);
53    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
54
55  private:
56    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
57    /// in predecessor basic blocks.
58    ///
59    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
60    void LowerAtomicPHINode(MachineBasicBlock &MBB,
61                            MachineBasicBlock::iterator AfterPHIsIt);
62
63    /// analyzePHINodes - Gather information about the PHI nodes in
64    /// here. In particular, we want to map the number of uses of a virtual
65    /// register which is used in a PHI node. We map that to the BB the
66    /// vreg is coming from. This is used later to determine when the vreg
67    /// is killed in the BB.
68    ///
69    void analyzePHINodes(const MachineFunction& Fn);
70
71    /// Split critical edges where necessary for good coalescer performance.
72    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
73                       LiveVariables &LV, MachineLoopInfo *MLI);
74
75    typedef std::pair<unsigned, unsigned> BBVRegPair;
76    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
77
78    VRegPHIUse VRegPHIUseCount;
79
80    // Defs of PHI sources which are implicit_def.
81    SmallPtrSet<MachineInstr*, 4> ImpDefs;
82
83    // Map reusable lowered PHI node -> incoming join register.
84    typedef DenseMap<MachineInstr*, unsigned,
85                     MachineInstrExpressionTrait> LoweredPHIMap;
86    LoweredPHIMap LoweredPHIs;
87  };
88}
89
90STATISTIC(NumAtomic, "Number of atomic phis lowered");
91STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
92STATISTIC(NumReused, "Number of reused lowered phis");
93
94char PHIElimination::ID = 0;
95char& llvm::PHIEliminationID = PHIElimination::ID;
96
97INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
98                      "Eliminate PHI nodes for register allocation",
99                      false, false)
100INITIALIZE_PASS_DEPENDENCY(LiveVariables)
101INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
102                    "Eliminate PHI nodes for register allocation", false, false)
103
104void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
105  AU.addPreserved<LiveVariables>();
106  AU.addPreserved<MachineDominatorTree>();
107  AU.addPreserved<MachineLoopInfo>();
108  MachineFunctionPass::getAnalysisUsage(AU);
109}
110
111bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
112  MRI = &MF.getRegInfo();
113
114  bool Changed = false;
115
116  // This pass takes the function out of SSA form.
117  MRI->leaveSSA();
118
119  // Split critical edges to help the coalescer
120  if (!DisableEdgeSplitting) {
121    if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
122      MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
123      for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
124        Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
125    }
126  }
127
128  // Populate VRegPHIUseCount
129  analyzePHINodes(MF);
130
131  // Eliminate PHI instructions by inserting copies into predecessor blocks.
132  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
133    Changed |= EliminatePHINodes(MF, *I);
134
135  // Remove dead IMPLICIT_DEF instructions.
136  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
137         E = ImpDefs.end(); I != E; ++I) {
138    MachineInstr *DefMI = *I;
139    unsigned DefReg = DefMI->getOperand(0).getReg();
140    if (MRI->use_nodbg_empty(DefReg))
141      DefMI->eraseFromParent();
142  }
143
144  // Clean up the lowered PHI instructions.
145  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
146       I != E; ++I)
147    MF.DeleteMachineInstr(I->first);
148
149  LoweredPHIs.clear();
150  ImpDefs.clear();
151  VRegPHIUseCount.clear();
152
153  return Changed;
154}
155
156/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
157/// predecessor basic blocks.
158///
159bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
160                                             MachineBasicBlock &MBB) {
161  if (MBB.empty() || !MBB.front().isPHI())
162    return false;   // Quick exit for basic blocks without PHIs.
163
164  // Get an iterator to the first instruction after the last PHI node (this may
165  // also be the end of the basic block).
166  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
167
168  while (MBB.front().isPHI())
169    LowerAtomicPHINode(MBB, AfterPHIsIt);
170
171  return true;
172}
173
174/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
175/// are implicit_def's.
176static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
177                                         const MachineRegisterInfo *MRI) {
178  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
179    unsigned SrcReg = MPhi->getOperand(i).getReg();
180    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
181    if (!DefMI || !DefMI->isImplicitDef())
182      return false;
183  }
184  return true;
185}
186
187
188
189/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
190/// under the assuption that it needs to be lowered in a way that supports
191/// atomic execution of PHIs.  This lowering method is always correct all of the
192/// time.
193///
194void PHIElimination::LowerAtomicPHINode(
195                                      MachineBasicBlock &MBB,
196                                      MachineBasicBlock::iterator AfterPHIsIt) {
197  ++NumAtomic;
198  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
199  MachineInstr *MPhi = MBB.remove(MBB.begin());
200
201  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
202  unsigned DestReg = MPhi->getOperand(0).getReg();
203  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
204  bool isDead = MPhi->getOperand(0).isDead();
205
206  // Create a new register for the incoming PHI arguments.
207  MachineFunction &MF = *MBB.getParent();
208  unsigned IncomingReg = 0;
209  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
210
211  // Insert a register to register copy at the top of the current block (but
212  // after any remaining phi nodes) which copies the new incoming register
213  // into the phi node destination.
214  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
215  if (isSourceDefinedByImplicitDef(MPhi, MRI))
216    // If all sources of a PHI node are implicit_def, just emit an
217    // implicit_def instead of a copy.
218    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
219            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
220  else {
221    // Can we reuse an earlier PHI node? This only happens for critical edges,
222    // typically those created by tail duplication.
223    unsigned &entry = LoweredPHIs[MPhi];
224    if (entry) {
225      // An identical PHI node was already lowered. Reuse the incoming register.
226      IncomingReg = entry;
227      reusedIncoming = true;
228      ++NumReused;
229      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
230    } else {
231      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
232      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
233    }
234    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
235            TII->get(TargetOpcode::COPY), DestReg)
236      .addReg(IncomingReg);
237  }
238
239  // Update live variable information if there is any.
240  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
241  if (LV) {
242    MachineInstr *PHICopy = prior(AfterPHIsIt);
243
244    if (IncomingReg) {
245      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
246
247      // Increment use count of the newly created virtual register.
248      LV->setPHIJoin(IncomingReg);
249
250      // When we are reusing the incoming register, it may already have been
251      // killed in this block. The old kill will also have been inserted at
252      // AfterPHIsIt, so it appears before the current PHICopy.
253      if (reusedIncoming)
254        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
255          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
256          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
257          DEBUG(MBB.dump());
258        }
259
260      // Add information to LiveVariables to know that the incoming value is
261      // killed.  Note that because the value is defined in several places (once
262      // each for each incoming block), the "def" block and instruction fields
263      // for the VarInfo is not filled in.
264      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
265    }
266
267    // Since we are going to be deleting the PHI node, if it is the last use of
268    // any registers, or if the value itself is dead, we need to move this
269    // information over to the new copy we just inserted.
270    LV->removeVirtualRegistersKilled(MPhi);
271
272    // If the result is dead, update LV.
273    if (isDead) {
274      LV->addVirtualRegisterDead(DestReg, PHICopy);
275      LV->removeVirtualRegisterDead(DestReg, MPhi);
276    }
277  }
278
279  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
280  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
281    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
282                                 MPhi->getOperand(i).getReg())];
283
284  // Now loop over all of the incoming arguments, changing them to copy into the
285  // IncomingReg register in the corresponding predecessor basic block.
286  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
287  for (int i = NumSrcs - 1; i >= 0; --i) {
288    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
289    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
290
291    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
292           "Machine PHI Operands must all be virtual registers!");
293
294    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
295    // path the PHI.
296    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
297
298    // If source is defined by an implicit def, there is no need to insert a
299    // copy.
300    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
301    if (DefMI->isImplicitDef()) {
302      ImpDefs.insert(DefMI);
303      continue;
304    }
305
306    // Check to make sure we haven't already emitted the copy for this block.
307    // This can happen because PHI nodes may have multiple entries for the same
308    // basic block.
309    if (!MBBsInsertedInto.insert(&opBlock))
310      continue;  // If the copy has already been emitted, we're done.
311
312    // Find a safe location to insert the copy, this may be the first terminator
313    // in the block (or end()).
314    MachineBasicBlock::iterator InsertPos =
315      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
316
317    // Insert the copy.
318    if (!reusedIncoming && IncomingReg)
319      BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
320              TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
321
322    // Now update live variable information if we have it.  Otherwise we're done
323    if (!LV) continue;
324
325    // We want to be able to insert a kill of the register if this PHI (aka, the
326    // copy we just inserted) is the last use of the source value.  Live
327    // variable analysis conservatively handles this by saying that the value is
328    // live until the end of the block the PHI entry lives in.  If the value
329    // really is dead at the PHI copy, there will be no successor blocks which
330    // have the value live-in.
331
332    // Also check to see if this register is in use by another PHI node which
333    // has not yet been eliminated.  If so, it will be killed at an appropriate
334    // point later.
335
336    // Is it used by any PHI instructions in this block?
337    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
338
339    // Okay, if we now know that the value is not live out of the block, we can
340    // add a kill marker in this block saying that it kills the incoming value!
341    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
342      // In our final twist, we have to decide which instruction kills the
343      // register.  In most cases this is the copy, however, the first
344      // terminator instruction at the end of the block may also use the value.
345      // In this case, we should mark *it* as being the killing block, not the
346      // copy.
347      MachineBasicBlock::iterator KillInst;
348      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
349      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
350        KillInst = Term;
351
352        // Check that no other terminators use values.
353#ifndef NDEBUG
354        for (MachineBasicBlock::iterator TI = llvm::next(Term);
355             TI != opBlock.end(); ++TI) {
356          if (TI->isDebugValue())
357            continue;
358          assert(!TI->readsRegister(SrcReg) &&
359                 "Terminator instructions cannot use virtual registers unless"
360                 "they are the first terminator in a block!");
361        }
362#endif
363      } else if (reusedIncoming || !IncomingReg) {
364        // We may have to rewind a bit if we didn't insert a copy this time.
365        KillInst = Term;
366        while (KillInst != opBlock.begin()) {
367          --KillInst;
368          if (KillInst->isDebugValue())
369            continue;
370          if (KillInst->readsRegister(SrcReg))
371            break;
372        }
373      } else {
374        // We just inserted this copy.
375        KillInst = prior(InsertPos);
376      }
377      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
378
379      // Finally, mark it killed.
380      LV->addVirtualRegisterKilled(SrcReg, KillInst);
381
382      // This vreg no longer lives all of the way through opBlock.
383      unsigned opBlockNum = opBlock.getNumber();
384      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
385    }
386  }
387
388  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
389  if (reusedIncoming || !IncomingReg)
390    MF.DeleteMachineInstr(MPhi);
391}
392
393/// analyzePHINodes - Gather information about the PHI nodes in here. In
394/// particular, we want to map the number of uses of a virtual register which is
395/// used in a PHI node. We map that to the BB the vreg is coming from. This is
396/// used later to determine when the vreg is killed in the BB.
397///
398void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
399  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
400       I != E; ++I)
401    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
402         BBI != BBE && BBI->isPHI(); ++BBI)
403      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
404        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
405                                     BBI->getOperand(i).getReg())];
406}
407
408bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
409                                   MachineBasicBlock &MBB,
410                                   LiveVariables &LV,
411                                   MachineLoopInfo *MLI) {
412  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
413    return false;   // Quick exit for basic blocks without PHIs.
414
415  bool Changed = false;
416  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
417       BBI != BBE && BBI->isPHI(); ++BBI) {
418    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
419      unsigned Reg = BBI->getOperand(i).getReg();
420      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
421      // We break edges when registers are live out from the predecessor block
422      // (not considering PHI nodes). If the register is live in to this block
423      // anyway, we would gain nothing from splitting.
424      // Avoid splitting backedges of loops. It would introduce small
425      // out-of-line blocks into the loop which is very bad for code placement.
426      if (PreMBB != &MBB &&
427          !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
428        if (!MLI ||
429            !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
430              MLI->isLoopHeader(&MBB))) {
431          if (PreMBB->SplitCriticalEdge(&MBB, this)) {
432            Changed = true;
433            ++NumCriticalEdgesSplit;
434          }
435        }
436      }
437    }
438  }
439  return Changed;
440}
441