PHIElimination.cpp revision 901d4f36908bed8f2f461d2d2ed75696ed50ceee
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "PHIElimination.h"
18#include "llvm/CodeGen/LiveVariables.h"
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/CodeGen/MachineDominators.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/Function.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Debug.h"
32#include <algorithm>
33#include <map>
34using namespace llvm;
35
36STATISTIC(NumAtomic, "Number of atomic phis lowered");
37STATISTIC(NumSplits, "Number of critical edges split on demand");
38STATISTIC(NumReused, "Number of reused lowered phis");
39
40char PHIElimination::ID = 0;
41static RegisterPass<PHIElimination>
42X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
43
44const PassInfo *const llvm::PHIEliminationID = &X;
45
46void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
47  AU.addPreserved<LiveVariables>();
48  AU.addPreserved<MachineDominatorTree>();
49  // rdar://7401784 This would be nice:
50  // AU.addPreservedID(MachineLoopInfoID);
51  MachineFunctionPass::getAnalysisUsage(AU);
52}
53
54bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
55  MRI = &Fn.getRegInfo();
56
57  PHIDefs.clear();
58  PHIKills.clear();
59  bool Changed = false;
60
61  // Split critical edges to help the coalescer
62  if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>())
63    for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
64      Changed |= SplitPHIEdges(Fn, *I, *LV);
65
66  // Populate VRegPHIUseCount
67  analyzePHINodes(Fn);
68
69  // Eliminate PHI instructions by inserting copies into predecessor blocks.
70  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
71    Changed |= EliminatePHINodes(Fn, *I);
72
73  // Remove dead IMPLICIT_DEF instructions.
74  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
75         E = ImpDefs.end(); I != E; ++I) {
76    MachineInstr *DefMI = *I;
77    unsigned DefReg = DefMI->getOperand(0).getReg();
78    if (MRI->use_empty(DefReg))
79      DefMI->eraseFromParent();
80  }
81
82  // Clean up the lowered PHI instructions.
83  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
84       I != E; ++I)
85    Fn.DeleteMachineInstr(I->first);
86
87  LoweredPHIs.clear();
88  ImpDefs.clear();
89  VRegPHIUseCount.clear();
90  return Changed;
91}
92
93/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
94/// predecessor basic blocks.
95///
96bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
97                                             MachineBasicBlock &MBB) {
98  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
99    return false;   // Quick exit for basic blocks without PHIs.
100
101  // Get an iterator to the first instruction after the last PHI node (this may
102  // also be the end of the basic block).
103  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
104
105  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
106    LowerAtomicPHINode(MBB, AfterPHIsIt);
107
108  return true;
109}
110
111/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
112/// are implicit_def's.
113static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
114                                         const MachineRegisterInfo *MRI) {
115  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
116    unsigned SrcReg = MPhi->getOperand(i).getReg();
117    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
118    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
119      return false;
120  }
121  return true;
122}
123
124// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg
125// when following the CFG edge to SuccMBB. This needs to be after any def of
126// SrcReg, but before any subsequent point where control flow might jump out of
127// the basic block.
128MachineBasicBlock::iterator
129llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
130                                          MachineBasicBlock &SuccMBB,
131                                          unsigned SrcReg) {
132  // Handle the trivial case trivially.
133  if (MBB.empty())
134    return MBB.begin();
135
136  // Usually, we just want to insert the copy before the first terminator
137  // instruction. However, for the edge going to a landing pad, we must insert
138  // the copy before the call/invoke instruction.
139  if (!SuccMBB.isLandingPad())
140    return MBB.getFirstTerminator();
141
142  // Discover any defs/uses in this basic block.
143  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
144  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
145         RE = MRI->reg_end(); RI != RE; ++RI) {
146    MachineInstr *DefUseMI = &*RI;
147    if (DefUseMI->getParent() == &MBB)
148      DefUsesInMBB.insert(DefUseMI);
149  }
150
151  MachineBasicBlock::iterator InsertPoint;
152  if (DefUsesInMBB.empty()) {
153    // No defs.  Insert the copy at the start of the basic block.
154    InsertPoint = MBB.begin();
155  } else if (DefUsesInMBB.size() == 1) {
156    // Insert the copy immediately after the def/use.
157    InsertPoint = *DefUsesInMBB.begin();
158    ++InsertPoint;
159  } else {
160    // Insert the copy immediately after the last def/use.
161    InsertPoint = MBB.end();
162    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
163    ++InsertPoint;
164  }
165
166  // Make sure the copy goes after any phi nodes however.
167  return SkipPHIsAndLabels(MBB, InsertPoint);
168}
169
170/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
171/// under the assuption that it needs to be lowered in a way that supports
172/// atomic execution of PHIs.  This lowering method is always correct all of the
173/// time.
174///
175void llvm::PHIElimination::LowerAtomicPHINode(
176                                      MachineBasicBlock &MBB,
177                                      MachineBasicBlock::iterator AfterPHIsIt) {
178  ++NumAtomic;
179  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
180  MachineInstr *MPhi = MBB.remove(MBB.begin());
181
182  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
183  unsigned DestReg = MPhi->getOperand(0).getReg();
184  bool isDead = MPhi->getOperand(0).isDead();
185
186  // Create a new register for the incoming PHI arguments.
187  MachineFunction &MF = *MBB.getParent();
188  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
189  unsigned IncomingReg = 0;
190  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
191
192  // Insert a register to register copy at the top of the current block (but
193  // after any remaining phi nodes) which copies the new incoming register
194  // into the phi node destination.
195  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
196  if (isSourceDefinedByImplicitDef(MPhi, MRI))
197    // If all sources of a PHI node are implicit_def, just emit an
198    // implicit_def instead of a copy.
199    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
200            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
201  else {
202    // Can we reuse an earlier PHI node? This only happens for critical edges,
203    // typically those created by tail duplication.
204    unsigned &entry = LoweredPHIs[MPhi];
205    if (entry) {
206      // An identical PHI node was already lowered. Reuse the incoming register.
207      IncomingReg = entry;
208      reusedIncoming = true;
209      ++NumReused;
210      DEBUG(errs() << "Reusing %reg" << IncomingReg << " for " << *MPhi);
211    } else {
212      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
213    }
214    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
215  }
216
217  // Record PHI def.
218  assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
219  PHIDefs[DestReg] = &MBB;
220
221  // Update live variable information if there is any.
222  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
223  if (LV) {
224    MachineInstr *PHICopy = prior(AfterPHIsIt);
225
226    if (IncomingReg) {
227      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
228
229      // Increment use count of the newly created virtual register.
230      VI.NumUses++;
231
232      // When we are reusing the incoming register, it may already have been
233      // killed in this block. The old kill will also have been inserted at
234      // AfterPHIsIt, so it appears before the current PHICopy.
235      if (reusedIncoming)
236        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
237          DEBUG(errs() << "Remove old kill from " << *OldKill);
238          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
239          DEBUG(MBB.dump());
240        }
241
242      // Add information to LiveVariables to know that the incoming value is
243      // killed.  Note that because the value is defined in several places (once
244      // each for each incoming block), the "def" block and instruction fields
245      // for the VarInfo is not filled in.
246      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
247    }
248
249    // Since we are going to be deleting the PHI node, if it is the last use of
250    // any registers, or if the value itself is dead, we need to move this
251    // information over to the new copy we just inserted.
252    LV->removeVirtualRegistersKilled(MPhi);
253
254    // If the result is dead, update LV.
255    if (isDead) {
256      LV->addVirtualRegisterDead(DestReg, PHICopy);
257      LV->removeVirtualRegisterDead(DestReg, MPhi);
258    }
259  }
260
261  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
262  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
263    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
264                                 MPhi->getOperand(i).getReg())];
265
266  // Now loop over all of the incoming arguments, changing them to copy into the
267  // IncomingReg register in the corresponding predecessor basic block.
268  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
269  for (int i = NumSrcs - 1; i >= 0; --i) {
270    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
271    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
272           "Machine PHI Operands must all be virtual registers!");
273
274    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
275    // path the PHI.
276    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
277
278    // Record the kill.
279    PHIKills[SrcReg].insert(&opBlock);
280
281    // If source is defined by an implicit def, there is no need to insert a
282    // copy.
283    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
284    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
285      ImpDefs.insert(DefMI);
286      continue;
287    }
288
289    // Check to make sure we haven't already emitted the copy for this block.
290    // This can happen because PHI nodes may have multiple entries for the same
291    // basic block.
292    if (!MBBsInsertedInto.insert(&opBlock))
293      continue;  // If the copy has already been emitted, we're done.
294
295    // Find a safe location to insert the copy, this may be the first terminator
296    // in the block (or end()).
297    MachineBasicBlock::iterator InsertPos =
298      FindCopyInsertPoint(opBlock, MBB, SrcReg);
299
300    // Insert the copy.
301    if (!reusedIncoming && IncomingReg)
302      TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
303
304    // Now update live variable information if we have it.  Otherwise we're done
305    if (!LV) continue;
306
307    // We want to be able to insert a kill of the register if this PHI (aka, the
308    // copy we just inserted) is the last use of the source value.  Live
309    // variable analysis conservatively handles this by saying that the value is
310    // live until the end of the block the PHI entry lives in.  If the value
311    // really is dead at the PHI copy, there will be no successor blocks which
312    // have the value live-in.
313
314    // Also check to see if this register is in use by another PHI node which
315    // has not yet been eliminated.  If so, it will be killed at an appropriate
316    // point later.
317
318    // Is it used by any PHI instructions in this block?
319    bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
320
321    // Okay, if we now know that the value is not live out of the block, we can
322    // add a kill marker in this block saying that it kills the incoming value!
323    if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
324      // In our final twist, we have to decide which instruction kills the
325      // register.  In most cases this is the copy, however, the first
326      // terminator instruction at the end of the block may also use the value.
327      // In this case, we should mark *it* as being the killing block, not the
328      // copy.
329      MachineBasicBlock::iterator KillInst;
330      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
331      if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
332        KillInst = Term;
333
334        // Check that no other terminators use values.
335#ifndef NDEBUG
336        for (MachineBasicBlock::iterator TI = llvm::next(Term);
337             TI != opBlock.end(); ++TI) {
338          assert(!TI->readsRegister(SrcReg) &&
339                 "Terminator instructions cannot use virtual registers unless"
340                 "they are the first terminator in a block!");
341        }
342#endif
343      } else if (reusedIncoming || !IncomingReg) {
344        // We may have to rewind a bit if we didn't insert a copy this time.
345        KillInst = Term;
346        while (KillInst != opBlock.begin())
347          if ((--KillInst)->readsRegister(SrcReg))
348            break;
349      } else {
350        // We just inserted this copy.
351        KillInst = prior(InsertPos);
352      }
353      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
354
355      // Finally, mark it killed.
356      LV->addVirtualRegisterKilled(SrcReg, KillInst);
357
358      // This vreg no longer lives all of the way through opBlock.
359      unsigned opBlockNum = opBlock.getNumber();
360      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
361    }
362  }
363
364  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
365  if (reusedIncoming || !IncomingReg)
366    MF.DeleteMachineInstr(MPhi);
367}
368
369/// analyzePHINodes - Gather information about the PHI nodes in here. In
370/// particular, we want to map the number of uses of a virtual register which is
371/// used in a PHI node. We map that to the BB the vreg is coming from. This is
372/// used later to determine when the vreg is killed in the BB.
373///
374void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
375  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
376       I != E; ++I)
377    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
378         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
379      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
380        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
381                                     BBI->getOperand(i).getReg())];
382}
383
384bool llvm::PHIElimination::SplitPHIEdges(MachineFunction &MF,
385                                         MachineBasicBlock &MBB,
386                                         LiveVariables &LV) {
387  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI ||
388      MBB.isLandingPad())
389    return false;   // Quick exit for basic blocks without PHIs.
390
391  for (MachineBasicBlock::const_iterator BBI = MBB.begin(), BBE = MBB.end();
392       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
393    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
394      unsigned Reg = BBI->getOperand(i).getReg();
395      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
396      // We break edges when registers are live out from the predecessor block
397      // (not considering PHI nodes). If the register is live in to this block
398      // anyway, we would gain nothing from splitting.
399      if (!LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB))
400        SplitCriticalEdge(PreMBB, &MBB);
401    }
402  }
403  return true;
404}
405
406MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
407                                                     MachineBasicBlock *B) {
408  assert(A && B && "Missing MBB end point");
409
410  MachineFunction *MF = A->getParent();
411
412  // We may need to update A's terminator, but we can't do that if AnalyzeBranch
413  // fails. If A uses a jump table, we won't touch it.
414  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
415  MachineBasicBlock *TBB = 0, *FBB = 0;
416  SmallVector<MachineOperand, 4> Cond;
417  if (TII->AnalyzeBranch(*A, TBB, FBB, Cond))
418    return NULL;
419
420  ++NumSplits;
421
422  MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
423  MF->insert(llvm::next(MachineFunction::iterator(A)), NMBB);
424  DEBUG(errs() << "PHIElimination splitting critical edge:"
425        " BB#" << A->getNumber()
426        << " -- BB#" << NMBB->getNumber()
427        << " -- BB#" << B->getNumber() << '\n');
428
429  A->ReplaceUsesOfBlockWith(B, NMBB);
430  A->updateTerminator();
431
432  // Insert unconditional "jump B" instruction in NMBB if necessary.
433  NMBB->addSuccessor(B);
434  if (!NMBB->isLayoutSuccessor(B)) {
435    Cond.clear();
436    MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
437  }
438
439  // Fix PHI nodes in B so they refer to NMBB instead of A
440  for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
441       i != e && i->getOpcode() == TargetInstrInfo::PHI; ++i)
442    for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
443      if (i->getOperand(ni+1).getMBB() == A)
444        i->getOperand(ni+1).setMBB(NMBB);
445
446  if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>())
447    LV->addNewBlock(NMBB, A, B);
448
449  if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>())
450    MDT->addNewBlock(NMBB, A);
451
452  return NMBB;
453}
454
455unsigned
456PHIElimination::PHINodeTraits::getHashValue(const MachineInstr *MI) {
457  if (!MI || MI==getEmptyKey() || MI==getTombstoneKey())
458    return DenseMapInfo<MachineInstr*>::getHashValue(MI);
459  unsigned hash = 0;
460  for (unsigned ni = 1, ne = MI->getNumOperands(); ni != ne; ni += 2)
461    hash = hash*37 + DenseMapInfo<BBVRegPair>::
462      getHashValue(BBVRegPair(MI->getOperand(ni+1).getMBB()->getNumber(),
463                              MI->getOperand(ni).getReg()));
464  return hash;
465}
466
467bool PHIElimination::PHINodeTraits::isEqual(const MachineInstr *LHS,
468                                            const MachineInstr *RHS) {
469  const MachineInstr *EmptyKey = getEmptyKey();
470  const MachineInstr *TombstoneKey = getTombstoneKey();
471  if (!LHS || !RHS || LHS==EmptyKey || RHS==EmptyKey ||
472      LHS==TombstoneKey || RHS==TombstoneKey)
473    return LHS==RHS;
474
475  unsigned ne = LHS->getNumOperands();
476  if (ne != RHS->getNumOperands())
477      return false;
478  // Ignore operand 0, the defined register.
479  for (unsigned ni = 1; ni != ne; ni += 2)
480    if (LHS->getOperand(ni).getReg() != RHS->getOperand(ni).getReg() ||
481        LHS->getOperand(ni+1).getMBB() != RHS->getOperand(ni+1).getMBB())
482      return false;
483  return true;
484}
485