PHIElimination.cpp revision a566d63b61f2a29e89696abba1729ac53b9843e6
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/Passes.h"
18#include "PHIEliminationUtils.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/IR/Function.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include <algorithm>
36using namespace llvm;
37
38static cl::opt<bool>
39DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40                     cl::Hidden, cl::desc("Disable critical edge splitting "
41                                          "during PHI elimination"));
42
43static cl::opt<bool>
44SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
45                      cl::Hidden, cl::desc("Split all critical edges during "
46                                           "PHI elimination"));
47
48namespace {
49  class PHIElimination : public MachineFunctionPass {
50    MachineRegisterInfo *MRI; // Machine register information
51    LiveVariables *LV;
52    LiveIntervals *LIS;
53
54  public:
55    static char ID; // Pass identification, replacement for typeid
56    PHIElimination() : MachineFunctionPass(ID) {
57      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
58    }
59
60    virtual bool runOnMachineFunction(MachineFunction &Fn);
61    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
62
63  private:
64    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
65    /// in predecessor basic blocks.
66    ///
67    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
68    void LowerPHINode(MachineBasicBlock &MBB,
69                      MachineBasicBlock::iterator AfterPHIsIt);
70
71    /// analyzePHINodes - Gather information about the PHI nodes in
72    /// here. In particular, we want to map the number of uses of a virtual
73    /// register which is used in a PHI node. We map that to the BB the
74    /// vreg is coming from. This is used later to determine when the vreg
75    /// is killed in the BB.
76    ///
77    void analyzePHINodes(const MachineFunction& Fn);
78
79    /// Split critical edges where necessary for good coalescer performance.
80    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
81                       MachineLoopInfo *MLI);
82
83    // These functions are temporary abstractions around LiveVariables and
84    // LiveIntervals, so they can go away when LiveVariables does.
85    bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
86    bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
87
88    typedef std::pair<unsigned, unsigned> BBVRegPair;
89    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
90
91    VRegPHIUse VRegPHIUseCount;
92
93    // Defs of PHI sources which are implicit_def.
94    SmallPtrSet<MachineInstr*, 4> ImpDefs;
95
96    // Map reusable lowered PHI node -> incoming join register.
97    typedef DenseMap<MachineInstr*, unsigned,
98                     MachineInstrExpressionTrait> LoweredPHIMap;
99    LoweredPHIMap LoweredPHIs;
100  };
101}
102
103STATISTIC(NumLowered, "Number of phis lowered");
104STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
105STATISTIC(NumReused, "Number of reused lowered phis");
106
107char PHIElimination::ID = 0;
108char& llvm::PHIEliminationID = PHIElimination::ID;
109
110INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
111                      "Eliminate PHI nodes for register allocation",
112                      false, false)
113INITIALIZE_PASS_DEPENDENCY(LiveVariables)
114INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
115                    "Eliminate PHI nodes for register allocation", false, false)
116
117void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
118  AU.addPreserved<LiveVariables>();
119  AU.addPreserved<SlotIndexes>();
120  AU.addPreserved<LiveIntervals>();
121  AU.addPreserved<MachineDominatorTree>();
122  AU.addPreserved<MachineLoopInfo>();
123  MachineFunctionPass::getAnalysisUsage(AU);
124}
125
126bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
127  MRI = &MF.getRegInfo();
128  LV = getAnalysisIfAvailable<LiveVariables>();
129  LIS = getAnalysisIfAvailable<LiveIntervals>();
130
131  bool Changed = false;
132
133  // This pass takes the function out of SSA form.
134  MRI->leaveSSA();
135
136  // Split critical edges to help the coalescer. This does not yet support
137  // updating LiveIntervals, so we disable it.
138  if (!DisableEdgeSplitting && (LV || LIS)) {
139    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
140    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
141      Changed |= SplitPHIEdges(MF, *I, MLI);
142  }
143
144  // Populate VRegPHIUseCount
145  analyzePHINodes(MF);
146
147  // Eliminate PHI instructions by inserting copies into predecessor blocks.
148  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
149    Changed |= EliminatePHINodes(MF, *I);
150
151  // Remove dead IMPLICIT_DEF instructions.
152  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
153         E = ImpDefs.end(); I != E; ++I) {
154    MachineInstr *DefMI = *I;
155    unsigned DefReg = DefMI->getOperand(0).getReg();
156    if (MRI->use_nodbg_empty(DefReg)) {
157      if (LIS)
158        LIS->RemoveMachineInstrFromMaps(DefMI);
159      DefMI->eraseFromParent();
160    }
161  }
162
163  // Clean up the lowered PHI instructions.
164  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
165       I != E; ++I) {
166    if (LIS)
167      LIS->RemoveMachineInstrFromMaps(I->first);
168    MF.DeleteMachineInstr(I->first);
169  }
170
171  LoweredPHIs.clear();
172  ImpDefs.clear();
173  VRegPHIUseCount.clear();
174
175  return Changed;
176}
177
178/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
179/// predecessor basic blocks.
180///
181bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
182                                             MachineBasicBlock &MBB) {
183  if (MBB.empty() || !MBB.front().isPHI())
184    return false;   // Quick exit for basic blocks without PHIs.
185
186  // Get an iterator to the first instruction after the last PHI node (this may
187  // also be the end of the basic block).
188  MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
189
190  while (MBB.front().isPHI())
191    LowerPHINode(MBB, AfterPHIsIt);
192
193  return true;
194}
195
196/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
197/// This includes registers with no defs.
198static bool isImplicitlyDefined(unsigned VirtReg,
199                                const MachineRegisterInfo *MRI) {
200  for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
201       DE = MRI->def_end(); DI != DE; ++DI)
202    if (!DI->isImplicitDef())
203      return false;
204  return true;
205}
206
207/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
208/// are implicit_def's.
209static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
210                                         const MachineRegisterInfo *MRI) {
211  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
212    if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
213      return false;
214  return true;
215}
216
217
218/// LowerPHINode - Lower the PHI node at the top of the specified block,
219///
220void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
221                                  MachineBasicBlock::iterator AfterPHIsIt) {
222  ++NumLowered;
223  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
224  MachineInstr *MPhi = MBB.remove(MBB.begin());
225
226  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
227  unsigned DestReg = MPhi->getOperand(0).getReg();
228  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
229  bool isDead = MPhi->getOperand(0).isDead();
230
231  // Create a new register for the incoming PHI arguments.
232  MachineFunction &MF = *MBB.getParent();
233  unsigned IncomingReg = 0;
234  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
235
236  // Insert a register to register copy at the top of the current block (but
237  // after any remaining phi nodes) which copies the new incoming register
238  // into the phi node destination.
239  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
240  if (isSourceDefinedByImplicitDef(MPhi, MRI))
241    // If all sources of a PHI node are implicit_def, just emit an
242    // implicit_def instead of a copy.
243    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
244            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
245  else {
246    // Can we reuse an earlier PHI node? This only happens for critical edges,
247    // typically those created by tail duplication.
248    unsigned &entry = LoweredPHIs[MPhi];
249    if (entry) {
250      // An identical PHI node was already lowered. Reuse the incoming register.
251      IncomingReg = entry;
252      reusedIncoming = true;
253      ++NumReused;
254      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
255    } else {
256      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
257      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
258    }
259    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
260            TII->get(TargetOpcode::COPY), DestReg)
261      .addReg(IncomingReg);
262  }
263
264  // Update live variable information if there is any.
265  if (LV) {
266    MachineInstr *PHICopy = prior(AfterPHIsIt);
267
268    if (IncomingReg) {
269      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
270
271      // Increment use count of the newly created virtual register.
272      LV->setPHIJoin(IncomingReg);
273
274      // When we are reusing the incoming register, it may already have been
275      // killed in this block. The old kill will also have been inserted at
276      // AfterPHIsIt, so it appears before the current PHICopy.
277      if (reusedIncoming)
278        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
279          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
280          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
281          DEBUG(MBB.dump());
282        }
283
284      // Add information to LiveVariables to know that the incoming value is
285      // killed.  Note that because the value is defined in several places (once
286      // each for each incoming block), the "def" block and instruction fields
287      // for the VarInfo is not filled in.
288      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
289    }
290
291    // Since we are going to be deleting the PHI node, if it is the last use of
292    // any registers, or if the value itself is dead, we need to move this
293    // information over to the new copy we just inserted.
294    LV->removeVirtualRegistersKilled(MPhi);
295
296    // If the result is dead, update LV.
297    if (isDead) {
298      LV->addVirtualRegisterDead(DestReg, PHICopy);
299      LV->removeVirtualRegisterDead(DestReg, MPhi);
300    }
301  }
302
303  // Update LiveIntervals for the new copy or implicit def.
304  if (LIS) {
305    MachineInstr *NewInstr = prior(AfterPHIsIt);
306    SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
307
308    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
309    if (IncomingReg) {
310      // Add the region from the beginning of MBB to the copy instruction to
311      // IncomingReg's live interval.
312      LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
313      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
314      if (!IncomingVNI)
315        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
316                                              LIS->getVNInfoAllocator());
317      IncomingLI.addRange(LiveRange(MBBStartIndex,
318                                    DestCopyIndex.getRegSlot(),
319                                    IncomingVNI));
320    }
321
322    LiveInterval &DestLI = LIS->getInterval(DestReg);
323    if (NewInstr->getOperand(0).isDead()) {
324      // A dead PHI's live range begins and ends at the start of the MBB, but
325      // the lowered copy, which will still be dead, needs to begin and end at
326      // the copy instruction.
327      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
328      assert(OrigDestVNI && "PHI destination should be live at block entry.");
329      DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot());
330      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
331                           LIS->getVNInfoAllocator());
332      DestLI.removeValNo(OrigDestVNI);
333    } else {
334      // Otherwise, remove the region from the beginning of MBB to the copy
335      // instruction from DestReg's live interval.
336      DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot());
337      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
338      assert(DestVNI && "PHI destination should be live at its definition.");
339      DestVNI->def = DestCopyIndex.getRegSlot();
340    }
341  }
342
343  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
344  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
345    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
346                                 MPhi->getOperand(i).getReg())];
347
348  // Now loop over all of the incoming arguments, changing them to copy into the
349  // IncomingReg register in the corresponding predecessor basic block.
350  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
351  for (int i = NumSrcs - 1; i >= 0; --i) {
352    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
353    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
354    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
355      isImplicitlyDefined(SrcReg, MRI);
356    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
357           "Machine PHI Operands must all be virtual registers!");
358
359    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
360    // path the PHI.
361    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
362
363    // Check to make sure we haven't already emitted the copy for this block.
364    // This can happen because PHI nodes may have multiple entries for the same
365    // basic block.
366    if (!MBBsInsertedInto.insert(&opBlock))
367      continue;  // If the copy has already been emitted, we're done.
368
369    // Find a safe location to insert the copy, this may be the first terminator
370    // in the block (or end()).
371    MachineBasicBlock::iterator InsertPos =
372      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
373
374    // Insert the copy.
375    MachineInstr *NewSrcInstr = 0;
376    if (!reusedIncoming && IncomingReg) {
377      if (SrcUndef) {
378        // The source register is undefined, so there is no need for a real
379        // COPY, but we still need to ensure joint dominance by defs.
380        // Insert an IMPLICIT_DEF instruction.
381        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
382                              TII->get(TargetOpcode::IMPLICIT_DEF),
383                              IncomingReg);
384
385        // Clean up the old implicit-def, if there even was one.
386        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
387          if (DefMI->isImplicitDef())
388            ImpDefs.insert(DefMI);
389      } else {
390        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
391                            TII->get(TargetOpcode::COPY), IncomingReg)
392                        .addReg(SrcReg, 0, SrcSubReg);
393      }
394    }
395
396    // We only need to update the LiveVariables kill of SrcReg if this was the
397    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
398    // out of the predecessor. We can also ignore undef sources.
399    if (LV && !SrcUndef &&
400        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
401        !LV->isLiveOut(SrcReg, opBlock)) {
402      // We want to be able to insert a kill of the register if this PHI (aka,
403      // the copy we just inserted) is the last use of the source value. Live
404      // variable analysis conservatively handles this by saying that the value
405      // is live until the end of the block the PHI entry lives in. If the value
406      // really is dead at the PHI copy, there will be no successor blocks which
407      // have the value live-in.
408
409      // Okay, if we now know that the value is not live out of the block, we
410      // can add a kill marker in this block saying that it kills the incoming
411      // value!
412
413      // In our final twist, we have to decide which instruction kills the
414      // register.  In most cases this is the copy, however, terminator
415      // instructions at the end of the block may also use the value. In this
416      // case, we should mark the last such terminator as being the killing
417      // block, not the copy.
418      MachineBasicBlock::iterator KillInst = opBlock.end();
419      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
420      for (MachineBasicBlock::iterator Term = FirstTerm;
421          Term != opBlock.end(); ++Term) {
422        if (Term->readsRegister(SrcReg))
423          KillInst = Term;
424      }
425
426      if (KillInst == opBlock.end()) {
427        // No terminator uses the register.
428
429        if (reusedIncoming || !IncomingReg) {
430          // We may have to rewind a bit if we didn't insert a copy this time.
431          KillInst = FirstTerm;
432          while (KillInst != opBlock.begin()) {
433            --KillInst;
434            if (KillInst->isDebugValue())
435              continue;
436            if (KillInst->readsRegister(SrcReg))
437              break;
438          }
439        } else {
440          // We just inserted this copy.
441          KillInst = prior(InsertPos);
442        }
443      }
444      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
445
446      // Finally, mark it killed.
447      LV->addVirtualRegisterKilled(SrcReg, KillInst);
448
449      // This vreg no longer lives all of the way through opBlock.
450      unsigned opBlockNum = opBlock.getNumber();
451      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
452    }
453
454    if (LIS) {
455      if (NewSrcInstr) {
456        LIS->InsertMachineInstrInMaps(NewSrcInstr);
457        LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr);
458      }
459
460      if (!SrcUndef &&
461          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
462        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
463
464        bool isLiveOut = false;
465        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
466             SE = opBlock.succ_end(); SI != SE; ++SI) {
467          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
468          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
469
470          // Definitions by other PHIs are not truly live-in for our purposes.
471          if (VNI && VNI->def != startIdx) {
472            isLiveOut = true;
473            break;
474          }
475        }
476
477        if (!isLiveOut) {
478          MachineBasicBlock::iterator KillInst = opBlock.end();
479          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
480          for (MachineBasicBlock::iterator Term = FirstTerm;
481              Term != opBlock.end(); ++Term) {
482            if (Term->readsRegister(SrcReg))
483              KillInst = Term;
484          }
485
486          if (KillInst == opBlock.end()) {
487            // No terminator uses the register.
488
489            if (reusedIncoming || !IncomingReg) {
490              // We may have to rewind a bit if we didn't just insert a copy.
491              KillInst = FirstTerm;
492              while (KillInst != opBlock.begin()) {
493                --KillInst;
494                if (KillInst->isDebugValue())
495                  continue;
496                if (KillInst->readsRegister(SrcReg))
497                  break;
498              }
499            } else {
500              // We just inserted this copy.
501              KillInst = prior(InsertPos);
502            }
503          }
504          assert(KillInst->readsRegister(SrcReg) &&
505                 "Cannot find kill instruction");
506
507          SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
508          SrcLI.removeRange(LastUseIndex.getRegSlot(),
509                            LIS->getMBBEndIdx(&opBlock));
510        }
511      }
512    }
513  }
514
515  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
516  if (reusedIncoming || !IncomingReg) {
517    if (LIS)
518      LIS->RemoveMachineInstrFromMaps(MPhi);
519    MF.DeleteMachineInstr(MPhi);
520  }
521}
522
523/// analyzePHINodes - Gather information about the PHI nodes in here. In
524/// particular, we want to map the number of uses of a virtual register which is
525/// used in a PHI node. We map that to the BB the vreg is coming from. This is
526/// used later to determine when the vreg is killed in the BB.
527///
528void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
529  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
530       I != E; ++I)
531    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
532         BBI != BBE && BBI->isPHI(); ++BBI)
533      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
534        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
535                                     BBI->getOperand(i).getReg())];
536}
537
538bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
539                                   MachineBasicBlock &MBB,
540                                   MachineLoopInfo *MLI) {
541  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
542    return false;   // Quick exit for basic blocks without PHIs.
543
544  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
545  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
546
547  bool Changed = false;
548  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
549       BBI != BBE && BBI->isPHI(); ++BBI) {
550    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
551      unsigned Reg = BBI->getOperand(i).getReg();
552      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
553      // Is there a critical edge from PreMBB to MBB?
554      if (PreMBB->succ_size() == 1)
555        continue;
556
557      // Avoid splitting backedges of loops. It would introduce small
558      // out-of-line blocks into the loop which is very bad for code placement.
559      if (PreMBB == &MBB && !SplitAllCriticalEdges)
560        continue;
561      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
562      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
563        continue;
564
565      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
566      // when the source register is live-out for some other reason than a phi
567      // use. That means the copy we will insert in PreMBB won't be a kill, and
568      // there is a risk it may not be coalesced away.
569      //
570      // If the copy would be a kill, there is no need to split the edge.
571      if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
572        continue;
573
574      DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
575                   << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
576                   << ": " << *BBI);
577
578      // If Reg is not live-in to MBB, it means it must be live-in to some
579      // other PreMBB successor, and we can avoid the interference by splitting
580      // the edge.
581      //
582      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
583      // is likely to be left after coalescing. If we are looking at a loop
584      // exiting edge, split it so we won't insert code in the loop, otherwise
585      // don't bother.
586      bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
587
588      // Check for a loop exiting edge.
589      if (!ShouldSplit && CurLoop != PreLoop) {
590        DEBUG({
591          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
592          if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
593          if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
594        });
595        // This edge could be entering a loop, exiting a loop, or it could be
596        // both: Jumping directly form one loop to the header of a sibling
597        // loop.
598        // Split unless this edge is entering CurLoop from an outer loop.
599        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
600      }
601      if (!ShouldSplit)
602        continue;
603      if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
604        DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
605        continue;
606      }
607      Changed = true;
608      ++NumCriticalEdgesSplit;
609    }
610  }
611  return Changed;
612}
613
614bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
615  assert((LV || LIS) &&
616         "isLiveIn() requires either LiveVariables or LiveIntervals");
617  if (LIS)
618    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
619  else
620    return LV->isLiveIn(Reg, *MBB);
621}
622
623bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
624  assert((LV || LIS) &&
625         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
626  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
627  // so that a register used only in a PHI is not live out of the block. In
628  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
629  // in the predecessor basic block, so that a register used only in a PHI is live
630  // out of the block.
631  if (LIS) {
632    const LiveInterval &LI = LIS->getInterval(Reg);
633    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
634         SE = MBB->succ_end(); SI != SE; ++SI) {
635      if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
636        return true;
637    }
638    return false;
639  } else {
640    return LV->isLiveOut(Reg, *MBB);
641  }
642}
643