PHIElimination.cpp revision a5fec0dba34206274041543b5924d2565fb10f9b
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/BasicBlock.h"
18#include "llvm/Instructions.h"
19#include "llvm/CodeGen/LiveVariables.h"
20#include "llvm/CodeGen/Passes.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstr.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetInstrInfo.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Support/Compiler.h"
31#include <algorithm>
32#include <map>
33using namespace llvm;
34
35STATISTIC(NumAtomic, "Number of atomic phis lowered");
36
37namespace {
38  class VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
39    MachineRegisterInfo  *MRI; // Machine register information
40
41  public:
42    static char ID; // Pass identification, replacement for typeid
43    PNE() : MachineFunctionPass(&ID) {}
44
45    virtual bool runOnMachineFunction(MachineFunction &Fn);
46
47    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
48      AU.addPreserved<LiveVariables>();
49      AU.addPreservedID(MachineLoopInfoID);
50      AU.addPreservedID(MachineDominatorsID);
51      MachineFunctionPass::getAnalysisUsage(AU);
52    }
53
54  private:
55    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
56    /// in predecessor basic blocks.
57    ///
58    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
59    void LowerAtomicPHINode(MachineBasicBlock &MBB,
60                            MachineBasicBlock::iterator AfterPHIsIt);
61
62    /// analyzePHINodes - Gather information about the PHI nodes in
63    /// here. In particular, we want to map the number of uses of a virtual
64    /// register which is used in a PHI node. We map that to the BB the
65    /// vreg is coming from. This is used later to determine when the vreg
66    /// is killed in the BB.
67    ///
68    void analyzePHINodes(const MachineFunction& Fn);
69
70    // FindCopyInsertPoint - Find a safe place in MBB to insert a copy from
71    // SrcReg.  This needs to be after any def or uses of SrcReg, but before
72    // any subsequent point where control flow might jump out of the basic
73    // block.
74    MachineBasicBlock::iterator FindCopyInsertPoint(MachineBasicBlock &MBB,
75                                                    unsigned SrcReg);
76
77    // SkipPHIsAndLabels - Copies need to be inserted after phi nodes and
78    // also after any exception handling labels: in landing pads execution
79    // starts at the label, so any copies placed before it won't be executed!
80    MachineBasicBlock::iterator SkipPHIsAndLabels(MachineBasicBlock &MBB,
81                                                MachineBasicBlock::iterator I) {
82      // Rather than assuming that EH labels come before other kinds of labels,
83      // just skip all labels.
84      while (I != MBB.end() &&
85             (I->getOpcode() == TargetInstrInfo::PHI || I->isLabel()))
86        ++I;
87      return I;
88    }
89
90    typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
91    typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
92
93    VRegPHIUse VRegPHIUseCount;
94
95    // Defs of PHI sources which are implicit_def.
96    SmallPtrSet<MachineInstr*, 4> ImpDefs;
97  };
98}
99
100char PNE::ID = 0;
101static RegisterPass<PNE>
102X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
103
104const PassInfo *const llvm::PHIEliminationID = &X;
105
106bool PNE::runOnMachineFunction(MachineFunction &Fn) {
107  MRI = &Fn.getRegInfo();
108
109  analyzePHINodes(Fn);
110
111  bool Changed = false;
112
113  // Eliminate PHI instructions by inserting copies into predecessor blocks.
114  for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
115    Changed |= EliminatePHINodes(Fn, *I);
116
117  // Remove dead IMPLICIT_DEF instructions.
118  for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
119         E = ImpDefs.end(); I != E; ++I) {
120    MachineInstr *DefMI = *I;
121    unsigned DefReg = DefMI->getOperand(0).getReg();
122    if (MRI->use_empty(DefReg))
123      DefMI->eraseFromParent();
124  }
125
126  ImpDefs.clear();
127  VRegPHIUseCount.clear();
128  return Changed;
129}
130
131
132/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
133/// predecessor basic blocks.
134///
135bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
136  if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
137    return false;   // Quick exit for basic blocks without PHIs.
138
139  // Get an iterator to the first instruction after the last PHI node (this may
140  // also be the end of the basic block).
141  MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
142
143  while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
144    LowerAtomicPHINode(MBB, AfterPHIsIt);
145
146  return true;
147}
148
149/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
150/// are implicit_def's.
151static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
152                                         const MachineRegisterInfo *MRI) {
153  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
154    unsigned SrcReg = MPhi->getOperand(i).getReg();
155    const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
156    if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
157      return false;
158  }
159  return true;
160}
161
162// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg.
163// This needs to be after any def or uses of SrcReg, but before any subsequent
164// point where control flow might jump out of the basic block.
165MachineBasicBlock::iterator PNE::FindCopyInsertPoint(MachineBasicBlock &MBB,
166                                                     unsigned SrcReg) {
167  // Handle the trivial case trivially.
168  if (MBB.empty())
169    return MBB.begin();
170
171  // If this basic block does not contain an invoke, then control flow always
172  // reaches the end of it, so place the copy there.  The logic below works in
173  // this case too, but is more expensive.
174  if (!isa<InvokeInst>(MBB.getBasicBlock()->getTerminator()))
175    return MBB.getFirstTerminator();
176
177  // Discover any definition/uses in this basic block.
178  SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
179  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
180       RE = MRI->reg_end(); RI != RE; ++RI) {
181    MachineInstr *DefUseMI = &*RI;
182    if (DefUseMI->getParent() == &MBB)
183      DefUsesInMBB.insert(DefUseMI);
184  }
185
186  MachineBasicBlock::iterator InsertPoint;
187  if (DefUsesInMBB.empty()) {
188    // No def/uses.  Insert the copy at the start of the basic block.
189    InsertPoint = MBB.begin();
190  } else if (DefUsesInMBB.size() == 1) {
191    // Insert the copy immediately after the definition/use.
192    InsertPoint = *DefUsesInMBB.begin();
193    ++InsertPoint;
194  } else {
195    // Insert the copy immediately after the last definition/use.
196    InsertPoint = MBB.end();
197    while (!DefUsesInMBB.count(&*--InsertPoint)) {}
198    ++InsertPoint;
199  }
200
201  // Make sure the copy goes after any phi nodes however.
202  return SkipPHIsAndLabels(MBB, InsertPoint);
203}
204
205/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
206/// under the assuption that it needs to be lowered in a way that supports
207/// atomic execution of PHIs.  This lowering method is always correct all of the
208/// time.
209///
210void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
211                             MachineBasicBlock::iterator AfterPHIsIt) {
212  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
213  MachineInstr *MPhi = MBB.remove(MBB.begin());
214
215  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
216  unsigned DestReg = MPhi->getOperand(0).getReg();
217  bool isDead = MPhi->getOperand(0).isDead();
218
219  // Create a new register for the incoming PHI arguments.
220  MachineFunction &MF = *MBB.getParent();
221  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
222  unsigned IncomingReg = 0;
223
224  // Insert a register to register copy at the top of the current block (but
225  // after any remaining phi nodes) which copies the new incoming register
226  // into the phi node destination.
227  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
228  if (isSourceDefinedByImplicitDef(MPhi, MRI))
229    // If all sources of a PHI node are implicit_def, just emit an
230    // implicit_def instead of a copy.
231    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
232            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
233  else {
234    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
235    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
236  }
237
238  // Update live variable information if there is any.
239  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
240  if (LV) {
241    MachineInstr *PHICopy = prior(AfterPHIsIt);
242
243    if (IncomingReg) {
244      // Increment use count of the newly created virtual register.
245      LV->getVarInfo(IncomingReg).NumUses++;
246
247      // Add information to LiveVariables to know that the incoming value is
248      // killed.  Note that because the value is defined in several places (once
249      // each for each incoming block), the "def" block and instruction fields
250      // for the VarInfo is not filled in.
251      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
252
253      LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
254    }
255
256    // Since we are going to be deleting the PHI node, if it is the last use of
257    // any registers, or if the value itself is dead, we need to move this
258    // information over to the new copy we just inserted.
259    LV->removeVirtualRegistersKilled(MPhi);
260
261    // If the result is dead, update LV.
262    if (isDead) {
263      LV->addVirtualRegisterDead(DestReg, PHICopy);
264      LV->removeVirtualRegisterDead(DestReg, MPhi);
265    }
266  }
267
268  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
269  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
270    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
271                                 MPhi->getOperand(i).getReg())];
272
273  // Now loop over all of the incoming arguments, changing them to copy into the
274  // IncomingReg register in the corresponding predecessor basic block.
275  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
276  for (int i = NumSrcs - 1; i >= 0; --i) {
277    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
278    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
279           "Machine PHI Operands must all be virtual registers!");
280
281    // If source is defined by an implicit def, there is no need to insert a
282    // copy.
283    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
284    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
285      ImpDefs.insert(DefMI);
286      continue;
287    }
288
289    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
290    // path the PHI.
291    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
292
293    // Check to make sure we haven't already emitted the copy for this block.
294    // This can happen because PHI nodes may have multiple entries for the same
295    // basic block.
296    if (!MBBsInsertedInto.insert(&opBlock))
297      continue;  // If the copy has already been emitted, we're done.
298
299    // Find a safe location to insert the copy, this may be the first terminator
300    // in the block (or end()).
301    MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, SrcReg);
302
303    // Insert the copy.
304    TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
305
306    // Now update live variable information if we have it.  Otherwise we're done
307    if (!LV) continue;
308
309    // We want to be able to insert a kill of the register if this PHI (aka, the
310    // copy we just inserted) is the last use of the source value.  Live
311    // variable analysis conservatively handles this by saying that the value is
312    // live until the end of the block the PHI entry lives in.  If the value
313    // really is dead at the PHI copy, there will be no successor blocks which
314    // have the value live-in.
315    //
316    // Check to see if the copy is the last use, and if so, update the live
317    // variables information so that it knows the copy source instruction kills
318    // the incoming value.
319    LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
320    InRegVI.UsedBlocks[opBlock.getNumber()] = true;
321
322    // Loop over all of the successors of the basic block, checking to see if
323    // the value is either live in the block, or if it is killed in the block.
324    // Also check to see if this register is in use by another PHI node which
325    // has not yet been eliminated.  If so, it will be killed at an appropriate
326    // point later.
327
328    // Is it used by any PHI instructions in this block?
329    bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
330
331    std::vector<MachineBasicBlock*> OpSuccBlocks;
332
333    // Otherwise, scan successors, including the BB the PHI node lives in.
334    for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
335           E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
336      MachineBasicBlock *SuccMBB = *SI;
337
338      // Is it alive in this successor?
339      unsigned SuccIdx = SuccMBB->getNumber();
340      if (SuccIdx < InRegVI.AliveBlocks.size() &&
341          InRegVI.AliveBlocks[SuccIdx]) {
342        ValueIsLive = true;
343        break;
344      }
345
346      OpSuccBlocks.push_back(SuccMBB);
347    }
348
349    // Check to see if this value is live because there is a use in a successor
350    // that kills it.
351    if (!ValueIsLive) {
352      switch (OpSuccBlocks.size()) {
353      case 1: {
354        MachineBasicBlock *MBB = OpSuccBlocks[0];
355        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
356          if (InRegVI.Kills[i]->getParent() == MBB) {
357            ValueIsLive = true;
358            break;
359          }
360        break;
361      }
362      case 2: {
363        MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
364        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
365          if (InRegVI.Kills[i]->getParent() == MBB1 ||
366              InRegVI.Kills[i]->getParent() == MBB2) {
367            ValueIsLive = true;
368            break;
369          }
370        break;
371      }
372      default:
373        std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
374        for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
375          if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
376                                 InRegVI.Kills[i]->getParent())) {
377            ValueIsLive = true;
378            break;
379          }
380      }
381    }
382
383    // Okay, if we now know that the value is not live out of the block, we can
384    // add a kill marker in this block saying that it kills the incoming value!
385    if (!ValueIsLive) {
386      // In our final twist, we have to decide which instruction kills the
387      // register.  In most cases this is the copy, however, the first
388      // terminator instruction at the end of the block may also use the value.
389      // In this case, we should mark *it* as being the killing block, not the
390      // copy.
391      MachineBasicBlock::iterator KillInst = prior(InsertPos);
392      MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
393      if (Term != opBlock.end()) {
394        if (Term->readsRegister(SrcReg))
395          KillInst = Term;
396
397        // Check that no other terminators use values.
398#ifndef NDEBUG
399        for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
400             ++TI) {
401          assert(!TI->readsRegister(SrcReg) &&
402                 "Terminator instructions cannot use virtual registers unless"
403                 "they are the first terminator in a block!");
404        }
405#endif
406      }
407
408      // Finally, mark it killed.
409      LV->addVirtualRegisterKilled(SrcReg, KillInst);
410
411      // This vreg no longer lives all of the way through opBlock.
412      unsigned opBlockNum = opBlock.getNumber();
413      if (opBlockNum < InRegVI.AliveBlocks.size())
414        InRegVI.AliveBlocks[opBlockNum] = false;
415    }
416  }
417
418  // Really delete the PHI instruction now!
419  MF.DeleteMachineInstr(MPhi);
420  ++NumAtomic;
421}
422
423/// analyzePHINodes - Gather information about the PHI nodes in here. In
424/// particular, we want to map the number of uses of a virtual register which is
425/// used in a PHI node. We map that to the BB the vreg is coming from. This is
426/// used later to determine when the vreg is killed in the BB.
427///
428void PNE::analyzePHINodes(const MachineFunction& Fn) {
429  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
430       I != E; ++I)
431    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
432         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
433      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
434        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
435                                     BBI->getOperand(i).getReg())];
436}
437